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Introduction
Task-based fMRI is a powerful approach to understand brain processes
for a certain task. However, fMRI images are usually preprocessed hours,
days or even months after the scan. During the functional image prepro-
cessing stage, defects in images are detected and, in some cases, cannot
be corrected. For example, technical problems with the scanner or lack of
collaboration from the subject to perform the given tasks. For these cases
it is necessary to realize a new scan. In order to mitigate lost scans due to
patient non-compliance, we need an approach to detect such non-
compliance during the scan.
Approach
In this Brainhack project, we aim to detect if a subject is following the
given task and provide an almost real-time feedback to the researchers
to make a decision during the exam if the subject is not collaborating.
This is necessary to be performed in order to avoid loss of data, in
which the images are typically processed and quality assessed at an-
other day. We will focus on task where there are no button responses
from the subject, hence relying solely in the BOLD signal if the subject
is collaborating. To do so, we use plan abandonment techniques [1] a
sub-area of Artificial Intelligence. For a given fMRI paradigm, a plan
should be created and compared with the subject’s brain activation
during the scan using recognition methods. To use plan abandonment
techniques, we need to discretize and formalize the fMRI and construct
a expected plan based on the hypothesized paradigm using this
formalization. To evaluate the compliance with a specific paradigm, we
aim to use real-time fMRI methods to retrieve BOLD signals of brain re-
gions that are supposed to be active in a particular time range. In order
to tolerate fluctuations of the BOLD signal, we aim to use the methods
that detect non-compliance using a threshold from the expected acti-
vation.By doing so, it is possible to detect if a subject is following the
paradigm given a specific stimulus type, such as visual or auditory
stimulus. The brain state of each stimulus type will be mapped based
on atlas from the literature. For example, to cover motor activations,

Fig. 15 (abstract A18). Connecting to the data repository
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Brodmann area 4 will be mapped with a state motor_actv. Thus, for a
paradigm that works with motor tasks, the plan must contain motor_-
actv for the given time that the task occurs.
Discussion
The formalization of brain states strongly depends on the
discretization of specific region states, which might vary from subject
to subject. In order to normalize the signals, a previous tuning phase
is required with simple paradigms, depending on which paradigm
will be executed. During the scan, an online normalization must be
made to a standard space, such as the MNI brain space. This real-
time processing is required to map expected active regions to the
previously selected brain areas from an atlas.
The usage of real-time fMRI methods aggregates to our approach since
the tuning and pursuance recognition can be made during the exam.
Such real-time fMRI methods can also monitor movements during the
scan in order to identify if there is too much subject movement. In the
case of fMRI paradigm abandonment, the paradigm can be adapted to
induce or interest the subject in a way that the subject proceeds with
its tasks, using methods such as demonstrated by [2]. Neurofeedback
can be used to sustain the subject’s interest by letting the paradigm be
more challenging, requiring more attention and collaboration from the
patient, such as the paradigm from [3].
Conclusions
This project is in its initial phase. Real-time fMRI methods are being
tested, using AFNI’s provided tools. In order to use plan abandonment
techniques, the next step is to formalize basic stimuli types based on
mapped regions. By using these formalizations, paradigms can be con-
verted to a problem of plan abandonment and it becomes possible to
evaluate the participation of a subject during the scan.
Availability of supporting data
More information about this project can be found at: https://github.
com/brainhack-poa/fmri-plan-recongnition.
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Introduction
Self-organization is a fundamental property of complex systems, de-
scribing the order spontaneously arising by the local interactions of
the system components not mediated by top-down inputs. Though,

self-organizing systems typically possess a large number of compo-
nents and exhibit complex dynamics, their evolution is deterministic
and governed by a small number of order parameters. This property
was used to model the self-organization of the ocular dominance
columns of the striate cortex in patterns of neighboring stripes [1]
which respond preferentially to inputs from the left or the right eye.
In this model the self-organization across ocular dominance and
orientation preference layers was coupled, were both layers were
modeled with the Swift-Hohenberg eq. [2] We reduce the model
complexity by including only the cortical dominance layer and inves-
tigate the parameter dependency of the self-organization with a
Matlab implementation.
Approach
The Swift-Hohenberg eq. [2] was used to model the self-organization
of the ocular dominance columns. There are two order parameters in
this equation, the first one determines the spatial wavelength (λ) of
the stripes and the second one the branchiness (ε) of the pattern. is
the Laplace operator.

∂tψ x; y; tð Þ ¼ ε− Δþ 4π2

λ2

� �2
" #

�ψ−ψ3 ð1Þ

The algorithm used to generate the results has been modified from
an open source script [http://nile.physics.ncsu.edu/hon292a-f08/]. The
Swift-Hohenberg equation was solved by applying periodic boundary
conditions after a Fourier transform to k space, which simplifies the
computation of the solution.
Results
Figures 16 (a), (b) and (c) shows the temporal evolution of the solu-
tion to the Swift-Hohenberg equation for random initial conditions
(a), constant ε and time increasing from (a) to (c). In (c), (d) and (e)
three solutions with different ε are shown. The branchiness increases
with ε from (c) to (e). The wavelength (λ) was set to the same value
in all figures and the pattern in (d) is similar to the ocular dominance
layers found in the visual cortex.
Conclusions
A simple model suffices to study basic properties of ocular domin-
ance self-organization. Possibly, a combination of models for self-
organization in neighboring cortical layers would allow to investigate
even higher organizational principles of the cortex [1] e.g.~the coord-
ination between ocular dominance layers, orientation layers, and
cytochrome oxidase.
Availability of supporting data
More information about this project can be found at: http://brain-
hack.org/self-organization-and-brain-function. Further data and files
supporting this project are hosted in the GigaScience repository:
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