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Abstract

As the semantic web expands, ontological data becomes dis-
tributed over a large network of data sources on the Web.
Consequently, evaluating queries that aim to tap into this dis-
tributed semantic database necessitates the ability to consult
multiple data sources efficiently. In this paper, we propose
methods and heuristics to efficiently query distributed onto-
logical data based on a series of properties of summarized
data. In our approach, each source summarizes its data as an-
other RDF graph, and relevant section of these summaries are
merged and analyzed at query evaluation time. We show how
the analysis of these summaries enables more efficient source
selection, query pruning and transformation of expensive dis-
tributed joins into local joins.

Introduction
Linked Data is extending the Web into a global space of RDF
data, with more than 30 billion RDF statements being online,
contributed not only by government entities (e.g., data.gov)
and scientific communities (e.g., the Bio-medical commu-
nity), but also by companies (e.g., BestBuy) and commu-
nity driven efforts (e.g., DBpedia). Ontological vocabulary
is used to annotate RDF data; such vocabulary can be de-
fined in an ontology using the OWL Web Ontology Lan-
guage. The use of ontological vocabulary necessitates the
use of reasoning.

Query processing over distributed and large numbers of
data sources becomes one of the key challenges for the se-
mantic web. Even without reasoning, this is a challenging
task. Querying all sources in the network would be ineffi-
cient because only a small number of sources might be rel-
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evant for a given query. Furthermore, querying a semantic
data network may amount to querying each relevant source
for partial answers and joining the partial answers over the
network. Hartig et al. proposed to leverage the correspon-
dence between source addresses and identifiers used in the
queries (Hartig, Bizer, and Freytag 2009). Konrath et al.
used extracted schemas for source selection (Konrath, Got-
tron, and Scherp 2011). Harth et al. proposed a data sum-
marization approach for querying Linked Data (Harth et al.
2010), without considering reasoning.

In this paper, we investigate the use of distributed sum-
marization so as to enable scalable reasoning for querying
linked ontological data. Prior work (Fokoue et al. 2006) has
shown that practical scalable query answering and reasoning
can be achieved on large local knowledge bases through the
construction of a local summary A ′ of an ABox A (the data
part of an ontology). The summary A ′ captures the patterns
of relationships between individuals in A . However, efficient
aggregation of local summaries into a global summary re-
mains as a significant challenge in distributed settings.

Our key contributions in this paper are threefold. First,
we propose an alternative summarization technique which
can be efficiently built in a decentralized fashion. By ex-
ploiting the principles of Linked Data, each source sum-
marizes its data as another RDF graph, which is signifi-
cantly smaller in size and hides details of the actual data
by containing only the patterns repeating in the data. Rel-
evant (w.r.t. input queries) sections of these summaries are
merged and analyzed at query evaluation time. Second, we
show how the analysis of these summaries enables more ef-
ficient source selection, query pruning and transformation of
expensive distributed joins into local joins. Finally, through
experiments over real and synthetic data, we show that our
approach provides significant performance gains over state-
of-the-art federated query engines for distributed semantic
data.

Preliminaries
In the rest of the paper, we use the term ontology and knowl-
edge base interchangeably. Description Logics (DLs) are the
formal underpinning of the OWL standard. Due to limited
space, we refer the reader to (Baader et al. 2002) for details
of DLs.
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Conjunctive Query
Let NI be a set of individuals, NR a set of roles, and NC a set
of concepts in knowledge base (i.e., ontology) K = (A ,T ),
where A is the ABox and T is the TBox (schema part
of K ). Let NV be set of variables. We assume that these
four sets are mutually disjoint. A conjunctive query q is of
the form (x1, ...,xn) ← t1 ∧ ... ∧ tm where, for 1 ≤ i ≤ n,
xi ∈ NV and, for 1 ≤ j ≤ m, t j is a query term. A query
term t is of the form C(x) or R(x,y) where x and y are ei-
ther variables in NV or individuals in NI , C is an atomic
concept and R is an atomic role. We consider the evalua-
tion of a conjunctive query w.r.t. a DL-LiteR T using the
standard first order semantics presented in (Calvanese et
al. 2007). A construct conjunctive query q is of the form
construct[c1, ...,cn]← t1∧ ...∧ tm∧filter(α1)∧ ...∧filter(αp)
where, ci and ti have the same form as terms in a conjunctive
query and αi is a boolean expression. Furthermore, variables
in ci are restricted to those appearing in ti or αi. Construct
conjunctive queries are evaluated only w.r.t an empty T . The
semantics is similar to SPARQL construct1 query semantics;
that is, the evaluation of q builds the A obtained by instan-
tiating patterns ci for each variable binding that satisfies all
the constraints t1∧ ...∧ tm∧α1∧ ...∧αp.

Centralized Summary ABox
Prior work (Fokoue et al. 2006) has demonstrated that practi-
cal scalable query answering and reasoning -even in very ex-
pressive description logics- can be achieved on large knowl-
edge bases through the construction of a summary ABox
A ′ corresponding to the ABox A . Intuitively, an individ-
ual in A ′ represents a set of individuals in A which have
some common semantically relevant properties (e.g., they
are members of the same explicit concepts). Formally, an
ABox A ′ is a summary ABox of ABox A if there is a map-
ping function f that satisfies the following constraints:

(1) if C(a) ∈ A then C(f(a)) ∈ A ′

(2) if R(a,b) ∈ A then R(f(a), f(b)) ∈ A ′ 2

(3) if a ˙6=b ∈ A then f(a) ˙6=f(b) ∈ A ′

For a subset S of a summary ABox A ′, we define the
preimage of S , denoted f−1[S ], as the following subset of
A : f−1[S ] = {R(a,b)|R(m,n) ∈ S ∧m = f(a) ∧ n = f(b)}
∪ {C(a)|C(m) ∈ S ∧m = f(a)} ∪ {a ˙6=b|m ˙6=n ∈ S ∧m =
f(a)∧n = f(b)}.

If the summary ABox A ′ obtained by applying the map-
ping function f to A is consistent w.r.t. a TBox T , then A
is consistent w.r.t. T . However, the converse does not hold.
(Dolby et al. 2007) introduced a refinement method to deal
with an inconsistent summary.

Let L be a mapping from each individual in A to a set of
concepts, such that C(a) ∈ A iff C ∈ L(a). We call L(a) the
concept set of a. In a centralized setting, a summary ABox
that satisfies properties (1)-(3) can be effeciently built by (a)
mapping individuals with the same concept set CS to the
same summary individual n whose concept set is CS and

1http://www.w3.org/TR/rdf-sparql-query/#construct
2This also applies to the equality relation (=)

(b) adding relations between n and other summary individ-
uals to satisfy (2) and (3). In practice, such summary ABox
A ′ is dramatically smaller than the original ABox A . It can
be constructed efficiently from A using conventional rela-
tional database queries. It only needs to be computed once,
persisted, and then reused in subsequent queries. It is easily
updated incrementally and is thus resilient to changes in A .
Unfortunately, this simple summarization technique is im-
practical in a decentralized setting since it requires complete
explicit information for each individual.

Distributed Summary
In a decentralized setting, an abox A is spread to n sources s1
to sn, with Ai denoting the portion of the abox A located in
si, and A =

⋃
1≤i≤n Ai. Conceptually, the construction of the

global summary ABox A ′ of a distributed ABox A consists
of two steps: (a) construction of local summaries and (b) the
merge of the local summaries. In what follows, we assume
the existence of a global hash function h which maps an in-
dividual a in a source si to its hash value h(a), as well as an
owner function Ow that maps a hash value hv computed by
h to a source si considered as the unique ‘owner’ of individ-
uals whose hash value is hv. Specific implementations of h
and Ow are defined on Page 4.

Constructing Local Summaries At each source si, a local
summary ABox A ′i of Ai is built by mapping individuals
with the same concept set CS in Ai and the same hash value
hv to the same local summary node n in A ′i whose concept
set L(n) = CS and hash value h(n) = hv (if such a node n
does not exist in A ′i, a new node n is first created in A ′i with
L(n) = CS and hash value h(n) = hv). As in the traditional
summary construction described in the previous section, n is
then related to other summary nodes in A ′i to preserve role,
equality and different-from assertions (i.e., satisfy properties
(2) and (3) of a summary ABox). Let fi denote the summary
function of the summary ABox A ′i.

Merging Local Summaries The main challenge of the
merger phase is illustrated by a simple example: if an in-
dividual a is present in the ABox A1 of source s1, where it is
mapped to the node n1 in the local summary A ′1, and in the
ABox A2 of the source s2, where it is mapped to the node
n2 in A ′2, the merger phase must ensure that, in the final
merged summary, a is mapped to a single summary node
which has the same role, concept, equality and different-
from assertions as both n1 and n2. To achieve this goal, we
rely on the hash function h to identify summary nodes in
different local summaries whose set of corresponding ABox
individuals might overlap (e.g.,, n1 and n2 in the previous
example, which, by construction of local summaries, will
have the same hash value). Moreover, we use the Ow func-
tion to ensure a unique representative of each ABox indi-
vidual in the final merged summary. Although an individual
a may be mentioned in various sources, the intuition is that
its most authoritative description is provided by the source
which owns it (i.e., Ow(h(a)). The distributed global sum-
mary ABox A ′ is built from the local summaries according
to Algorithm 1. This algorithm takes as a parameter the set of
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Algorithm 1 Building the global summary.
1: procedure BUILDGLOBALSUMMARY(S)
2: N← /0

3: for all si ∈ S do
4: A ′i← BUILDLOCALSUMMARY(si)
5: for all n ∈ A ′i|Ow(h(n)) 6= si do
6: sow← A ′ow|sow = Ow(h(n))
7: N← N∪〈n,si,sow〉
8: end for
9: end for

10: for all 〈n,si,sow〉 ∈ N do
11: M←{m|m ∈ A ′ow∧h(n) = h(m)}
12: for all (α ∈ A ′i|n appears in α)∧m ∈M do
13: A ′i← (A ′i/{α})∪{α[n→ m]}

α[n→ m] is the assertion obtained after
replacing n by m in α

14: end for
15: end for
16: return

⋃
1≤i≤n A ′i

17: end procedure

individual sources S, and assumes a function that builds lo-
cal summaries according to the previous section. Informally,
the distributed summary ABox A ′ is built from retrieved
local summaries A ′i by replacing, in each A ′i, a ‘foreign’
summary node n (i.e., a node such that Ow(h(n)) 6= si) by
all summary nodes m in the local summary of the source
Ow(h(n)) having the same hash value as n (i.e., m is a node
in the local summary of Ow(h(n)) and h(n) = h(m) 3).

Distributed Summary Function For a source si, let A ′′i
denote the summary obtained after replacing all “foreign”
nodes in the local summary retrieved from si (i.e., A ′′i is
the value of A ′i at line 16 in Algorithm 1). The summary
function f of A ′ maps an individual a in A to a node n in
A ′′i such that a is owned by source si (i.e., si = Ow(h(a)))
and h(n) = h(a) (by construction, at least one such n ex-
ists. In case of multiple n, if a is in Ai, then fi(a) is chosen;
otherwise, any such n can be chosen). In practice, f is not
computed as it is not needed for any optimization technique
described in the paper. It can easily be shown that this sum-
marization scheme satisfies the three fundamental properties
of a summary ABox.

Summary Filtering
For a given query or reasoning task, only a small fraction of
the distributed summary is typically relevant. As a result, in
practice, we never perform the merger step of the distributed
summarization directly on the local summaries, but rather
on their relevant subsets. In the remainder of this section, we
consider filtering w.r.t. conjunctive query answering with a
shared aligned DL-LiteR TBox. Since conjunctive query an-
swering w.r.t. a DL-LiteR TBox can be reduced to answer-
ing a union of conjunctive queries w.r.t. an empty TBox, we
present only summary filering w.r.t. a conjunctive query and
an empty TBox.

3if no such m exists in Ow(h(n)), a new one is created with
h(m) set to h(n)

We assume that all the local summaries have been pulled
in a central location. For a conjunctive query q, the filter-
ing is done by relaxing q to account for the fact that joins
in q are not necessarily local to each local summary. For
instance, the query q(x)← R(x,y)∧S(x,a)∧C(x) (where R
and S are roles, C is a concept, a is an individual, and x and y
are variables) is transformed into the relaxed construct query
[q]r:

construct[R(x1,y1) ,S(x2,vala1) ,C(x3)]←
R(x1,y1)∧S(x2,vala1)∧C(x3)∧

hr(x1,hvx)∧hr(x2,hvx)∧hr(x3,hvx)∧hr(vala1 ,h(a))∧
src(x1,sx1)∧ src(x2,sx2)∧ src(x3,sx3)∧ src(y1,sy1)∧
filter(sx1 6= sx2 ∨ x1 = x2)∧ filter(sx2 6= sx3 ∨ x2 = x3)∧

filter(sx1 6= sx3 ∨ x1 = x3)

Evaluating [q]r on the union of local summaries retrieves
only relevant statements from each local summary. We make
three important observations about [q]r in this example.
First, each join variable x in q (i.e., a variable that occurs
at least twice in the body of the query) is replaced by new
variables xi for each occurrence of x. Second, these new vari-
ables xi must have the same hash value hvx to allow joins
across local summaries as long as the summary nodes share
the same hash value (as they potentially represent the same
ABox individual). These constraints appear in the second
line of the body of the query. hr in hr(x1,hvx) corresponds
to a role that indicates the hash value of an individual. How-
ever, if xi and x j come from the same source, then they must
also be identical since an individual in a local ABox cannot
be mapped to two distinct nodes in the local summary. This
constraint is enforced by the boolean filter tests in [q]r (src
is a role that indicates the source of a node). Finally, each
occurrence of a constant (e.g., a) is replaced by a new vari-
able (e.g., vala1 ), referred to as a constant variable. This new
variable is then constrained to have the same hash value as
the constant (e.g., hr(vala1 ,h(a))).

Formally, the relaxation operator [.]r is defined induc-
tively as follows (we use the auxillary function con to spec-
ify constraints on the hash value of nodes bound to variables
in [q]r ):

• For the kth occurrence of a variable x, denoted xk (here-
after referred to as an occurrence-annotated variable):
[xk]r = xk and con(xk) = {hr(xk,hvx)}. hvx is a variable
whose values represent the hash values of summary nodes
bound to the variable x.

• For the kth occurrence of a constant a, denoted ak [ak]r =
valak and con(ak) = {hr([ak]r,h(a))}. valak is a variable,
called constant variable, representing the kth occurrence
of a.

• For a term t of the form R(v,w) where R is a role, v and
w are occurrence-annotated variables or constants, we de-
fine auxillary functions: [t]br to represent its contribution
to the body clause of the final query, and [t]cr for its con-
tribution to the construct clause:

– [R(v,w)]br = {R([v]r, [w]r)} ∪ con(v) ∪ con(w) ∪
{src([v]r,s[v]r),src([w]r,s[w]r)}
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– [R(v,w)]cr = [R(v,w)]br ∪
{var([v]r,“[v]r”),var([w]r,“[w]r”)}. src is a role
that indicates the source of a summary node. It is spec-
ified for each summary node at summary construction.
s[v]r (e.g., sx1 ) is a new variable for the source of the
summary node bound to the new variable [v]r (e.g.,
x1). Finally, var is a role in the filtered summary that
indicates the occurrence-annotated or constant variable
to which each filtered summary node is bound. It plays
a key role in the subsequent analysis of the filtered
summary (see page 5).

• For a term t of the form C(v), it is handled in a similar
fashion as the previous case (i.e., R(u,v)).

• Finally, for a conjunctive query q of the form x1, ...,xn
← t1∧ ...∧ tm , the relaxed query [q]r used to construct the
filtered local summaries is :

construct[c1. ...cp. ] ← b1∧ ...∧bq∧ f l1∧ ...∧ f lr

where ci ∈
⋃

1≤ j≤m[t
′
j]

c
r , bi ∈

⋃
1≤ j≤m[t

′
j]

b
r (t ′j is the term

obtained after replacing variables occurring in ti by
their corresponding occurrence-annotated variable), and
f li ∈

⋃
x∈joinVar(q){filter(sx j 6= sxk ∨ x j = xk)|1≤ j < k ≤

occ(x,q)} or f li ∈
⋃

c∈joinConst(q){filter(svalc j
6= svalck

∨
valc j = valck)|1≤ j < k≤ occ(c,q)} (joinVar(q) is the set
of join variables in q, joinConst(q) is the set of constants
appearing at least twice in q, and occ(u,q) is the number
of occurrence of u in the body of q) .

The correctness of filtering relies on the following Theorem
whose proof is provided in (Fokoue et al. 2012):

Theorem 1 Let A ′i be the local summary of a local ABox Ai
located at source si with summary function fi, for 1 ≤ i ≤ n
and n> 0. For a conjunctive query q, let filter(A ′i,q) denote
the largest subset of A ′i contained in the result of evaluating
[q]r on

⋃
1≤i≤n A ′i. Then, the evaluation of q w.r.t. an empty

TBox produces the same results on A =
⋃

1≤i≤n Ai and on⋃
1≤i≤n fi

−1[filter(A ′i,q)]
Furthermore, if q is minimal w.r.t. the number of its terms
(i.e., if a conjunctive query q′ is equivalent to q w.r.t. the
empty TBox, then either q′ has more terms than q or there
are syntactically identical after variable renaming and term
reordering), then the filtering performed by evaluating [q]r is
optimal. This is formalized by the Theorem 2 whose proof
is in (Fokoue et al. 2012).

Notation 1 For a summary ABox S , S denotes the subset
of S obtained after removing relations involving metadata
roles (i.e., src, hr, var).

Theorem 2 Let A ′i be the local summary ABox located at
source si, for 1 ≤ i ≤ n and n > 0. Let S ′ be a strict sub-
set of

⋃
1≤i≤n filter(A ′i,q). If q is minimal w.r.t. the number

of its terms, then there exists n ABoxes Si (1 ≤ i ≤ n) such
that (1) A ′i is a valid summary ABox for Si with summary
function gi and (2) the evaluation of q w.r.t. an empty TBox
returns different set of results on

⋃
1≤i≤n gi

−1[S ′∩A ′i] and
on

⋃
1≤i≤n Si

In practice, for performance reasons and since access
to some remote local summaries may be restricted to a
SPARQL end point, before issuing the query [q]r against⋃

1≤i≤n A ′i, we start by retrieving, for each term t in q, the
relevant portion of each local summary A ′i. This is achieved
by evaluating [()← t ′]r against A ′i, where t ′ is the term ob-
tained after replacing variables occurring in t by their corre-
sponding occurrence-annotated variable.

A Meaningful Global Hash for Linked Data
The global hash function h and the owner function Ow play
a key role in the distributed summary. We first briefly de-
scribe some important desiderata on h and Ow. The num-
ber of buckets created by the hashing obviously controls the
trade-off between precision of the global distributed sum-
mary and its size. However, the decision on the number of
buckets should not be made upfront and at a global level
(Desideratum-1). Instead, this decision should be made,
without coordination, by local sources as they build their
local summary. For example, one source with a large and
very complex data set might require a more aggressive hash-
ing (fewer buckets), while another source might choose a
less aggressive hashing because it still produces a relatively
small summary of its ABox. On the other hand, a nor-
malization mechanism is needed when merging the rele-
vant sections of the local summaries to compensate for the
difference in “aggressiveness” of hashing between sources
(Desideratum-2). Finally, the owner function Ow should be
able to interpret hash value of an individual a to identify the
source which is more likely to have the most authoritative
information about a (Desideratum-3).

If the identifiers of individuals and the distribution of
data in the network of sources are completely random, it
is unclear how such h and Ow can be designed to satisfy
the previous three desirata. Fortunately, this is not how the
Linked Open Data is organized. The first three of its four
principles outlined by Tim Berners-Lee4 can be exploited
to design h and Ow: “(i) Use URIs to identify things; (ii)
Use HTTP URIs so that these things can be referred to and
looked up by people and user agents; (iii) Provide useful
information about the thing when its URI is dereferenced”.
These principles clearly entail a notion of ownership of each
individual; namely, the domain (or host name) of the HTTP
URI of the individual is its owner. A HTTP URI has syntax
http://P0/. . ./Pn/name where P0 is domain, {P1, . . . ,Pn} are
path elements, and name is local name. We can leverage URI
syntax to create desirable h and Ow functions. Function h
can be defined by removing some elements of URIs. That
is, given the level of abstraction l, h(http://P0/. . ./Pn/name) =
http://P0/. . ./Px, where x = max(n − l,0). Here, the hash
value of a URI serves as a bucket of URIs with common
domain and path elements. The size of the bucket increases
and hashing becomes more aggressive as l increases.
For instance, h(http://dbpedia.org/resource/Bill Clinton) is
http://dbpedia.org/resource when l = 0, but it becomes
http://dbpedia.org when l = 1. Similarly, following

4http://www.w3.org/DesignIssues/LinkedData
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Linked Open Data principles, Ow can be defined as
Ow(http://P0/. . ./Px)= P0.

To hash URIs in a specific domain, two different sources
si and s j may select different l values, such as li and
l j. This means that the same URI will be represented by
different hash values in their local summaries. Therefore,
in the meta-data of each local summary, sources state l
values they used for each domain. While aggregating lo-
cal summaries, hash values are normalised easily by tak-
ing the maximum level of abstraction. For instance, if
li = 0 and l j = 1 for dbpedia.org domain, then normalized
value for h(http://dbpedia.org/resource/Bill Clinton) would be
http://dbpedia.org in the global summary.

Summary-based Optimizations
The filtered and annotated (with src, hr, var) local sum-
maries enable three important types of optimizations: query
pruning, efficient source selection, and transformation of
distributed joins into local joins (even when multiple sources
are selected).

Query Pruning
For a conjunctive query q, if the evaluation of [q]r on the
local summaries A ′i of Ai (1 ≤ i ≤ n) results in an empty
summary, then, by Theorem 1, the evaluation of q w.r.t. the
empty Tbox on A =

⋃
1≤i≤n Ai is guaranteed to also return

an empty result set. Query pruning is particularly important
for conjunctive queries evaluated w.r.t. to a DL-LiteR Tbox
because, as shown in the experimental evaluation, many
generated conjunctive queries can be discarded - including
queries that cannot be pruned based only on the unsatisfiabil-
ity of one of their terms. Furthermore, the optimality of the
filtering (see Theorem 2) makes our approach more likely to
detect queries with empty result set.

Source Selection
Source selection consists in assigning to each term t in a
query q, the set of sources, denoted srcsel(t), that need to
be contacted in order to answer t. Assuming that t is of the
form R(v,w) (C(v) is treated in a similar fashion), by defi-
nition of [.]r, [v]r is always a variable x (of the form valv if
v is a constant; otherwise, it is of the form xk). In our ap-
proach, source selection is performed by simply evaluating
the following conjunctive query on the filtered summary:

(s)← var(u,“x”)∧ src(u,s)

This query selects the sources of all the filtered summary
nodes which have a variable annotation (var) to the variable
x (x = [v]r). The correctness of our source selection stems
from the fact that the construct query used to build the fil-
tered summary adds the triple var(n,“x”) for all constructed
nodes n bound to x.

Distributed Join Elimination
We now present two techniques to transform distributed
joins into local joins. The first technique is applicable to any
system with some source selection capability, whereas the
second is unique to our approach.

Exclusive Source-Based Technique Given a conjunctive
query q and a join variable x appearing in n terms of q (n> 1)
such that m (1 < m≤ n) of these terms have the same unique
source s, an expensive distributed join can be avoided by
performing the m join locally on the source s. This simple
technique works fairly well as discussed in (Schwarte et al.
2011) when the sources use different vocabularies or ontolo-
gies. However, it is less effective when they have the same
ontology and most subjects and objects in terms of q are
variables. In such situations, as illustrated on the UOBM 30
dataset in the experimental evaluation, almost all sources are
selected.

Variable Locality-Based Technique In distributed set-
tings where a common vocabulary or ontology is shared
by many sources, some roles exhibit a local behavior;
that is, in each source s, they are only involved in state-
ments where the subject a (or the object a) is an indi-
vidual owned by s (i.e., Ow(h(a)) = s)). For example, in
the distributed data network of a multinational coorpora-
tion where each data source contains information for each
country, the role “salary” and “position” would appear in
each source. However, in each source s, the subject of a
statement with such a role is always an employee (e.g.,
htt p : //xyz.com/France/HR/Jean Dupond) working in
the country corresponding to s . Therefore, the conjunc-
tive query q=(x , p ,s)← salary(x, s)∧ position(x, p)∧s>
200K can more efficiently be evaluated by computing it lo-
cally at each source and returning the union of the local re-
sults - thus avoiding an expensive distributed join.

Annotations in the filtered summary allow us to detect
this locality. Let x be a join variable which appears in n
(n > 1) terms of a query q. For a subset S = {t1, ..., tm} (with
1 < m≤ n), x can be identified as local for the join (t1, ..., tm)
if all filtered summary nodes with the same hash value bound
to any occurrence of x in a ti come from the same source.
Formally, for 1≤ i≤m, if terms ti satisfy the following prop-
erty (Var-Locality), then the join on x for the all the terms ti
(1 ≤ i ≤ m) can safely be performed locally in each source:
(Var-Locality) If two distinct nodes α and β in the filtered
summary are such that var(α,“xi”), var(β,“x j”), hr(α,hv)
and hr(β,hv) are statements in the filtered summary (where
xi and x j are any occurrence-annotated variables correspond-
ing to occurrences of x in {t1, ..., tm}, and hv denotes the
common hash value of α and β), then α and β must come
from the same source (i.e., src(α,sc) and var(β,sc) must be
in the filtered summary, where sc is the value of the common
source).

Experimental Evaluation
To evaluate the effectiveness of our approach, we devel-
oped two experiments to assess the efficiency gains over ex-
isting state-of-the-art distributed query answering engines,
such as Alibaba and FedX (Schwarte et al. 2011), using our
summary-based optimizations. 5

The first set of experiments consists of a subset of the
FedBench (Schmidt et al. 2011) benchmark and aims to

5See (Schmidt et al. 2011; Dolby et al. 2007) for additional in-
formation on the datasets used.
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Table 1: Number of assertions in summary and number of
sources by domain — ‡ indicates small-sized sources.

Domain LIFESCI OPENDOM UOBM5 UOBM30
Summary Size 33506 60041 97956 702206
Number of Sources 4 6+30‡ 5 30

Summary Size
Source Data Size 0.063 % 0.037% 8.8% 9.2 %

compare our approach to the FedX and Alibaba. FedBench
benchmarks consist of sets of queries issued to a variety
of collections of data sources, with queries spanning mul-
tiple individual sources to require a federated query answer-
ing mechanism. For example, the “Cross Domain” collec-
tion of datasets includes DBpedia (Bizer et al. 2009), the
New York Times ontology, LinkedMDB (Consens 2008),
Jamendo, Geonames and the SW Dog ontology (an ontol-
ogy describing academic conferences). In our experiments,
we use only the conjunctive queries from FedBench for both
the “Life Sciences” dataset (LIFESCI), as well as a modi-
fied version of the Cross Domain dataset called “Open Do-
main” (OPENDOM). Within OPENDOM the SW Dog ontol-
ogy’s ABox is broken down into multiple sources, one for
each individual conference, resulting in 36 different sources
rather than the six sources from FedBench. Moreover, the
set of queries for OPENDOM is divided into cross-domain
and linked data (OPENDOM-LD).

The second set of experiments consists of a series of
federated queries over the UOBM benchmark (Ma et al.
2006).UOBM is an improvement over the popular LUBM
(Guo, Pan, and Heflin 2005) adding the ability to scale the
size of the benchmark almost indefinitely, but critically, it
adds multiple links between universities. Since we use one
data source per university, inter-university links lead to some
federated queries requiring joins across data sources. In our
benchmark, we have transformed the UOBM ontology into
DL-LiteR expressivity, and generated two datasets with, re-
spectively, five (UOBM5) and 30 universities (UOBM30).
Using the DL-LiteR query compilation described in (Rosati
and Almatelli 2010) 6, the UOBM queries were translated
into 483 conjunctive queries w.r.t an empty TBox (the com-
pilation step also prunes out generated queries with concept
or role not present in the sources).

The federation engines were run on a laptop with a dual-
core 2.4Ghz Intel CPU and 3GB of RAM (1GB maximum
heap size for the Java Virtual Machine) running Windows
XP. The federation engines connected to a remote HTTP
Sesame RDF server with four 2.33GHz 64-bit Intel CPUs
and 25 GB of RAM running Linux. The size ratio of sum-
mary to data sources varied significantly, depending on the
number of similar concepts in each source, ranging from
0.037% for OPENDOM to 9.2% for UOBM30. The size of
the summaries and the number of sources for each dataset is
shown in Table 1.

The results of these experiments are summarized in Ta-
ble 2, which shows runtime statistics for each combina-
tion of dataset and federation engine (with and without our

6This compilation technique produces a non recursive datalog
which we translate into a set a conjunctive queries

Table 2: Querying Times (sec) — † did not fully complete.
Engine Dataset Average St. Dev Range
FedX UOBM5 8 11 0-180
FedX+SO UOBM5 5 7 0-51

Alibaba † UOBM30 days - -
Alibaba+SO UOBM30 51 142 0-944

FedX UOBM30 114 121 0-680
FedX+SO UOBM30 25 57 0-603

Alibaba † OPENDOM 213 205 45-511
Alibaba+SO OPENDOM 76 73 19-187

FedX OPENDOM 27 15 9-45
FedX+SO OPENDOM 10 8 3-26

Alibaba † OPENDOM-LD 521 352 38-941
Alibaba+SO OPENDOM-LD 420 441 12-930

FedX OPENDOM-LD 18 13 8-47
FedX+SO OPENDOM-LD 15 13 0-45

Alibaba LIFESCI 1041 100 883-1125
Alibaba+SO LIFESCI 577 367 126-931

FedX LIFESCI 18 17 3-46
FedX+SO LIFESCI 19 23 4-59

Table 3: Summarization overhead ratio
( Summary Filtering and Analysis Time

Total Query Evaluation Time )

Engine Dataset Average St. Dev Range
FedX+SO UOBM5 .64 0.31 0.02-1
FedX+SO UOBM30 .54 .36 .01-1

FedX+SO OPENDOM 0.41 0.34 0-.74

FedX+SO OPENDOM-LD 0 0 0-0

FedX+SO LIFESCI 0.01 0 0-0.01

Alibaba+SO UOBM30 .29 .3 0-1

Alibaba+SO OPENDOM .1 .13 0-.35

Alibaba+SO OPENDOM-LD 0.05 0.16 0-.5

Alibaba+SO LIFESCI 0 0 0-0

summary-based optimizations (SO) ). The summarization
overhead ratio, which is expressed as time to perform sum-
mary filtering and analysis divided by the total evaluation
time, is presented in Table 3. The results show that the cost
of analyzing the summary is amortized by the gains obtained
from more efficient query plans in all datasets and engines,
except for FedX on LIFESCI, which has the smallest num-
ber of sources. Moreover, the improvements for UOBM are
much more dramatic as the number of sources increases due
to our unique “variable locality-based technique” to elimi-
nate expensive distributed joins, a more efficient source se-
lection and query pruning (13% of the queries are pruned
without contacting any source). For UOBM30, we observe
a four times average speed gain on FedX (Alibaba without
our optimizations on UOBM30 did not complete after 2.5
days).

Conclusions
In this paper, we developed a novel distributed summariza-
tion approach for efficiently querying Linked Open Data.
Our approach exploits the main principles of Linked Data
for indexing distributed data. We performed extensive ex-
periments over real and synthetic data and show that our
approach improves state-of-the-art query engines for dis-
tributed semantic data in DL-LiteR ontologies. In future
work, we will extend our approach for more expressive on-
tology languages.
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