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Abstract—In coalition operations, information from different
sources belong to different organisations have to be gathered and
aggregated. The information from these resources may not be
consistent. Inconsistencies in the gathered information creates se-
vere uncertainties that hinders the usefulness of the information.
In this paper, we have propose a Subjective Logic based approach
for modelling the trustworthiness of information sources within
a specific context. This model is used to handle inconsistencies
through filtering information from less trustworthy sources.
Index Terms—Trust; Information Fusion; Conflict Resolution

I. INTRODUCTION

In modern coalition operations, new sensing opportuni-
ties and information collection paradigms have proliferated,
as exemplified by trends in Internet of Things [1] and
crowd/participatory-sensing applications. In these cases, the
closed, single-administrative-domain association between the
information producers and consumers is challenged by more
open and, hence, more complex and unpredictable, collabora-
tive multi-administrative (and even no-administrative) domain
associations. Knowledge of the capabilities of sensing entities
may be unavailable and unknown, or policy-constrained, and
certainly of questionable reliance. In addition, shared data may
be deliberately manipulated for various reasons. As a result,
it becomes harder to quantify the value of the fused data and
the risks associated with acting on subsequent inferences.
Many tasks critically depend on making correct inferences

about the state of the world, and therefore depend on the
availability of specific data. However, this data is often not
available, and must instead be obtained through third party
data providers. The data from differnt providers may conflict.
Without resolving these conflicts, the uncertainty due to these
conflicts may hamper the inferences that are critical to achieve
crucial goals. The reliability of data from these providers
depends on the degree of trust in those providers. One way of
handling conflicts is to filter conflicting information based on
the reliability of their source.
In this paper, we consider information represented using an

OWL ontology based on Description Logics [2]. Facts about
the state of the world are gathered from different sources.
Then, the following steps are followed: a) gathered information
is fused into a KB, b) conflicting sets of facts are detected
using off-the-shelf tools, c) trustworthiness of each conflicting
sets of facts are computed based on their source, and d)

the facts with lower trustworthiness are removed to resolve
conflicts.

II. TRUST AND SUBJECTIVE LOGIC
We can define trust broadly as the willingness of one party

(trustor) to rely on the actions of another party (trustee) [3].
Several approaches have been proposed to model trust.. A
number of these approaches are based on Subjective Logic
(SL), which is a belief calculus that allows agents to express
opinions as degrees of belief, disbelief and uncertainty about
propositions. Let ρ be a proposition such as “information
source y is trustworthy in context c”. Then, the binary opinion
of agent x about ρ is equivalent to a Beta distribution. That
is, the binomial opinion about the truth of a proposition ρ is
represented as the tuple (b, d, u, a), where b is the belief that ρ
is true, d is the belief that ρ is false, u is the uncertainty, and
a is base rate (a priori probability in the absence of evidence),
as well as b + d + u = 1.0 and b, d, u, a ∈ [0, 1]. Opinions
are formed on the basis of positive and negative evidences,
possibly aggregated from different sources. Let r and s be
the number of positive and negative past observations about
y respectively, regarding ρ. Then, b, d, and u are computed
based on Equation 1.

b =
r

r + s+ 2
, d =

s

r + s+ 2
, u =

2

r + s+ 2
(1)

Then the opinion’s probability expectation value is computed
using Equation 2. Considering ρ, the computed expectation
value can be used by x as the trustworthiness of y in the
context c [4], [5].

txy:c(r, s, a) = b+ a× u =
r + a× 2

r + s+ 2
(2)

The base rate parameter a represents a priori degree of trust
x has about y in context c, before any evidence has been
received. The default value of a is mostly choose as 0.5 in
literature [4], [5], which means that before any positive or neg-
ative evidence has been received, both outcomes are equally
likely. While x has more evidence to evaluate trustworthiness
of y, the uncertainty u, so the effect of a, decreases.

III. KNOWLEDGE REPRESENTATION
In order to represent knowledge, we have used Description

Logics (DLs). For convenience, we have selected to address
the semantics of SHIQ, which is equivalent to OWL-DL 1.0
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TABLE I
SHIQ DESCRIPTION LOGIC

Definitions Semantics
C �D CI ∩DI

C �D CI ∪DI

¬C ΔI\CI

∃R.C {x|∃y. < x, y >∈ RI , y ∈ CI}

∀R.C {x|∀y. < x, y >∈ RI ⇒ y ∈ CI}

≤ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≤ n}

≥ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≥ n}

R− {< x, y > | < y,x >∈ RI}
(a) Constructors

Axioms Satisfiability conditions
Trans(R) (RI)+ = RI

R 
 P < x, y >∈ RI ⇒< x, y >∈ P I

C 
 D CI ⊆ DI

a : C aI ∈ CI

R(a, b) < aI , bI >∈ RI

a ˙�=b aI �= bI

(b) Axioms

1 minus nominals and datatype reasoning, as shown in Table I
(We assume the reader is familiar with Description Logics [2]).
Let NC be the set of atomic concepts,NR be the set of atomic
roles, and NI be the set of individuals. NC , NR, and NI are
mutually disjoint. Complex concepts and roles are built using
constructs presented in Table I(a).
A SHIQ knowledge base K = (T ,A) consists of a Tbox T

and an Abox A. A Tbox T is a finite set of axioms, including:
• transitivity axioms of the form Trans(R) where R is a
role.

• role inclusion axioms of the form R � P where R and
P are roles. �∗ denotes the reflexive transitive closure of
the � relation on roles.

• concept inclusion axioms of the form C � D where C

and D are concept expressions.
An Abox A is a set of axioms of the form a : C, R(a, b),

and a ˙�=b.
As for First Order Logic, a model theoretical semantic is

adopted here. In the definition of the semantics of SHIQ, I=
(ΔI , .I) refers to an interpretation where ΔI is a non-empty
set (the domain of the interpretation), and .I , the interpretation
function, maps every atomic concept C to a set CI ⊆ ΔI ,
every atomic role R to a binary relation RI ⊆ ΔI ×ΔI , and
every individual a to aI ∈ ΔI . The interpretation function
is extended to complex concepts and roles as indicated in the
second column of Table I(a).
An interpretation I is a model of a knowledge base K =

(T ,A), denoted I |= K, iff. it satisfies all the axioms in A,
and T (see Table I(b)). A knowledge base K = (T ,A) is
consistent iff. there is a model of K. Let α be an axiom, a

1http://www.w3.org/2001/sw/WebOnt
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Fig. 1. A simple scenario demonstrating the interactions between consumers
and providers

knowledge base K entails α, denoted K |= α, iff. every model
of K satisfies α.

IV. COMPUTING TRUSTWORTHINESS
In this paper, we consider a simple scenario, where an

information consumer is in need of a certain information and
queries a set of information providers to access it. We assume
each information provider has a knowledge base K = (T ,A)
and both information consumer and providers share the same
T but have possibility different A. The queries send by the
consumer is represented as DL-queries, which are DL class de-
scriptions based on the shared T . Therefore, these queries can
be clearly interpreted by the providers. Figure 1 demonstrates
the scenario with a simple query example. In this figure, the
consumer queries a set of information providers for learning
locations in Asia where there exist some terrorist activities,
i.e., ∃hasActivity.T erroristActivity � ∃locatedIn.Asia.

A. Context Representation
Trustworthiness of an information source is evaluated within

a specific context c. We use DL class expressions to represent
context with respect to a KB K = (T ,A). A class expression
describes a concept using the constructs introduced in Table I.
For instance, a class expression composed of top concept
Thing refers to the most general context, while one like
∃locatedIn.Asia refers to a context representing a query rele-
vant to things located in Asia. That is, in this work, we assume
each query constitutes a context in which trustworthiness of
the queried nodes should be evaluated.

B. Context Hierarchies and Similarity
Given a set of context concepts, wet can reason about the

relationships between these concepts using a DL reasoner
and can infer a taxonomy. The inferred taxonomy for a set
of context concepts are shown in Figure 2. This taxonomy
provides valuable information such as subsumption relation-
ships or similarity between the contexts. There are different
methods for computing similarity between two concepts within
a taxonomy. Our model does not depend on a specific simi-
larity metric. Once a taxonomy between concepts is derived,
a specific method can be chosen by the agent to compute
similarity between the search concepts.
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Fig. 2. Context hierarchy

In a concept taxonomy, semantic similarity between two
concepts can be estimated by calculating the distance between
these concepts. The length of the path between any two
concepts indicates how similar these concepts are. There are
various distance-based semantic similarity metrics [6]–[8] that
can be used for this purpose.
In this work, we describe the similarity metric proposed by

Wu and Palmer [6] because of its intuitiveness and simplicity.
Accordingly, we compute similarity between c1 and c2 using
Equation 3. Let c0 be the most specific concept subsuming
both c1 and c2. In the equation, N1 is the length of the path
between c1 and c0; N2 is the length of the path between c2
and c0; lastly, N0 is the length of the path between c0 and the
root of the concept taxonomy.

sim(c1, c2) =
2×N0

N1 +N2 + 2×N0
(3)

An interesting property of distance-based similarity metrics
is their instant response to the changes in the taxonomy. That
is, while new concepts are added to or existing concepts
are removed from a concept taxonomy, similarity between
two specific concepts in the updated taxonomy may change
immediately. This is simply because of the fact that, in the
updated taxonomy, the distance between these two concepts
may increase or decrease after the insertions and deletions.

C. Parameter Estimation
For a given information source y, trustworthiness of y in

a context c is computed using Equation 2. However, this
computation requires three parameters: r, s, and a. Here, r
and s refer to the number of times y has provided correct
and incorrect information in the context c, respectively. In
many setting, both r and s are zero since we do not have
any evidence in c. So, the trust is solely based on the base
rate a. Therefore, it is critical to select the right base rate
a to compute trustworthiness of y in c when we have no or
little evidence. We can assign a specific value to base rate
for a specific context manually. For instance, if we set base
rate of the context Thing to 0.5, the apriori trust for y in the
most general context becomes 0.5. Although we can assign
base rates to some contexts, we cannot do it for all. Let us
assume that a context c′ ∈ C is not assigned a base rate. In
this case, the information consumer x needs to estimate axy:c′ ,

the base rate for y in c′, iteratively using Equation 4, where
sim(c, c′) is the similarity function, Super(c′) is the set of
direct super concepts of c′ in the context hierarchy, and txy:c
is the trustworthiness of y in c computed using Equation 2.

axy:c′ =

∑
c∈Super(c′)∧c�=c′ sim(c, c′)× txy:c
∑

c∈Super(c′)∧c�=c′ sim(c, c′)
(4)

Using Equation 4, an information consumer may estimate
the apriori trust (i.e., base rate) for an information provider
in a new context c′. While doing this, the trustworthiness of
y in other contexts are used. In some settings, the consumer
may not have any previous interaction with the provider. In
these situations, the base rate estimated by Equation 4 would
be determined by the default base rate values. If the base rate
value for the most general context Thing is set to 0.5, this
would be the default base rate for any context for an unknown
information provider.
Given a queryQ of information consumer x, the trustworthi-

ness of answers from an information provider y is equivalent
to y’s trustworthiness in the context Q, i.e., txy:Q computed
based on Equation 2.

V. CONFLICT RESOLUTION

Adding information from diverse information sources to a
KB may make it inconsistent. An inconsistency in the KB can
be resolved as follows. First, the justification of the conflict
is derived using off-the-shelf reasoners such as Pellet [9].
Computing a single justification can be done fairly efficiently
by 1) using tracing technique to obtain a significantly small set
S of axioms that is responsible for an inconsistency discovered
by a single consistency test, and 2) performing additional |S|
consistency check on KBs of size at most |S| − 1 to remove
extraneous elements from S.
Unfortunately, computing all justifications is well known

to be intractable even for small and medium size expressive
KBs. Kalyanpur establishes a connection between the problem
of finding all justifications and the hitting set problem (i.e.,
given n sets Si, find sets that intersect each Si [10]. The
intuition behind this result is the fact that in order to make
an inconsistent KB consistent at least one axiom from each
justification must be removed. Therefore, starting from a single
justification a Reiters Hitting Tree can be constructed in order
to get all justifications as illustrated in Figure 3 from [10].
Starting from the first justification J = {2, 3, 4} computed in
the KB K (J is set to be the root v0 of the tree), the algorithm
arbitrary selects an axiom in J , say 2, and creates a new node
w with an empty label in the tree and a new edge 〈v0, w〉 with
axiom 2 in its label. The algorithm then tests the consistency of
the K−{2}. If it is inconsistent, as in this case, a justification
J ′ is obtained for K − {2}, say {1, 5}, and it is inserted in
the label of the new node w. This process is repeated until
the consistency test is positive in which case the new node is
marked with a check mark. As an important optimization, we
stop exploring super set of path discovered earlier and marked
the node with ’X’.
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Fig. 3. Computing all justifications using Reiters Hitting Set Tree Algorithm
from

The hitting set tree described above allows us discover dif-
ferent ways of resolving inconsistencies in a KB. For instance,
in Figure 3, we can resolve a conflict by removing one of
several sets of axioms, e.g., {2, 5, 4}, {2, 5, 7}, {2, 1, 4, 3}
and so on. Let these sets be s0, s1, . . . , sm, where each set
si contains only ABox axioms Ai0, Ai1, . . . , Aik. To resolve
a conflict, we need to select one of these sets and remove all
axioms in the set from the KB. Here, we propose to select
this set based on the trustworthiness of axioms it has. That is,
we select a set so that we remove the less trustworthy axioms
from the KB to resolve a conflict. Trustworthiness of an axiom
Aij for information consumer x is computed using Equation 5,
where sources(Aij) is the set of sources that have provided
Aij to x and txy:c(Aij)

is the trustworthiness of the source y in
the context of Aij .

Aij = arg max
y∈sources(Aij)

txy:c(Aij)
(5)

The context c(Aij) of the ABox axiom Aij can be deter-
mined at different granularity. For instance, if Aij is a type
assertion such as 〈a, type, C〉, then c(Aij) can be C. If Aij is
an object property assertion such as 〈a, P, b〉, then c(Aij) can
be ∃P.C, where C is the type of b.

VI. CONCLUSION
In this paper, we have proposed a novel approach for

estimating trustworthiness of information sources within a
specific context using Subjective Logic. Then, we have shown
how conflicts during information fusion can be resolved using
the proposed trust model. In this preliminary work, we only
propose the approach and leave its evaluation with real-life
datasets and scenarios as a future work. Also, we would
like to integrate the proposed approach into distributed query
processing settings where the queried nodes in a data network
have different level of trustworthiness in different contexts.
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