
Optimizing UCT for Settlers of Catan

Gabriel Rubin∗, Bruno Paz† and Felipe Meneguzzi‡
Pontifical Catholic University of Rio Grande do Sul

Computer Science Department
Porto Alegre, Brazil

Email: ∗gdearrud@gmail.com, †bruno.paz@acad.pucrs.br, ‡felipe.meneguzzi@pucrs.br

Abstract—Settlers of Catan is one of the main represen-
tatives of modern strategic board games and there are few
autonomous agents available to play it due to its challenging
features such as stochasticity, imperfect information, and 4-
player structure. In this paper, we extend previous work on
UCT search to develop an automated player for Settlers of
Catan. Specifically, we develop a move pruning heuristic for
this game and introduce the ability to trade with the other
players using the UCT algorithm. We empirically compare
our new player with a baseline agent for Settlers of Catan
as well as the state of the art and show that our algorithm
generates superior strategies while taking fewer samples of
the game.

Keywords-Artificial Intelligence; Monte Carlo Tree Search;
Settlers of Catan;

I. INTRODUCTION

Board games are of great interest to the Artificial

Intelligence community. The study of classical games such

as Chess and Checkers motivated great developments in

the area, as many AI techniques have been developed

to improve the performance of an AI in these classic

games. While dealing well with traditional games, these

techniques are often unsatisfactory for modern strate-

gic games, commonly called Eurogames, because of the

greater complexity of these games when compared to tra-

ditional board games [1]. Newly developed techniques [2]

have significantly improved the performance of an AI in

the classic Chinese game Go, bringing new possibilities

for the development of competitive agents for Eurogames.

Settlers of Catan [3] is a good representative of the

Eurogame archetype, with gameplay elements that make

it challenging for traditional tree search algorithms, such

as Minimax: imperfect information, randomly determined

moves, more than 2 players and negotiation between

players. Most autonomous agent players available for this

game have game-specific heuristics and have a low win-

rate against human players.

Previous work showed that Upper Confidence Bounds

for Trees (UCT) [4], a variant of Monte Carlo tree search

prominently used in games such as Go [5], yields a high

win rate when applied to Settlers of Catan with simplified

rules against agents from the JSettlers implementation of

the game [6]. JSettlers [7] is an open-source Java imple-

mentation of Settlers of Catan that includes implementa-

tions of AI agents that are frequently used as benchmarks

for new game playing strategies [6], [8]. However, the

strategies generated by this previous UCT implementation

do not negotiate with other players [6] and was only

tested on Settlers of Catan with simplified rules [6].

Given the importance of trade as a gameplay element and

the challenges of implementing effective players of the

game with unmodified rules, we aim to develop UTC-

based strategies capable of overcoming these limitations

and surpassing existing techniques for playing Settlers of

Catan.

Thus this paper provides three main contributions. First,

we modify the base UCT algorithm to use domain knowl-

edge and optimize it to improve its win rate in Settlers

of Catan without relaxing the game rules. Second, we

develop a method for trading with other players using

UCT, by implementing a trade-optimistic search and com-

pare it to our solution using the base UCT algorithm with

no trading. Finally, we also show how the agent can be

improved by using Ensemble UCT [9], a parallel variation

of the base UCT algorithm that improves win rates and

response time.

II. BACKGROUND

In Settlers of Catan, each player controls a group of

settlers who intend to colonize an island. The game is

a race for points: the first player to obtain 10 victory

points wins. To obtain victory points, players must gather

resources and build their colonies on the island. In the

section below, we explain the fundamental rules of the

game in some detail. For a more detailed explanation

of rules, we encourage the reader to check the official

rules [3].

A. Game Rules

The game board, illustrated in Figure 1, represents the

island and its ocean through hexagons. Every hexagon

can be either one of six different types of terrain, or part

of the ocean. Each terrain type produces its own type of

resource: fields produce grain, hills produce brick, moun-
tains produce ore, forest produces lumber, and pasture
produces wool. There is one special terrain that don’t

produce resources: the desert. Finally, on top of each

terrain, there is a token with a number between 2 and

12, representing the possible outcomes out of 2 six-sided

dice.

1) Buildings: There are 3 types of buildings: settle-

ments, cities and roads. Each building has a price in

resources and can give players victory points: roads cost 1

brick and 1 lumber and give no victory points; Settlements

cost 1 brick, 1 lumber, 1 wool, and 1 grain, and are worth
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Figure 1. The board of Settlers of Catan. This image include player
settlements, roads, cities and other elements.

1 victory point; Cities cost 3 ores and 2 grains, and are

worth 2 victory points.

Players can build settlements or cities on the intersection

between 3 terrain hexagons in order to obtain the resources

produced by them. These resources can then be used to

buy more buildings. Players can only place settlements and

roads adjacent to another one of their roads, and cities can

only be placed on top of one of their settlements.

2) Resource production: Resource production occurs

in the beginning of each player’s turn by rolling the 2

six-sided dice. Resources are then produced based on the

outcome of the roll and the value depicted on top of the

terrains on the board: any player with a settlement or city

adjacent to a terrain with the same number as the dice

roll, produces that terrain’s resources, adding them to their

hand. Settlements produce 1 resource per dice roll and

cities produce 2 resources.

When a dice roll results in total of 7, all players that

have more than 7 resources in their hand must discard

half of them and move the robber. The robber is a special

piece that blocks a terrain from producing during a dice

roll. The robber starts the game at the desert terrain.

Once the player rolls 7 and moves the robber to a terrain,

that player can steal a random resource from other player

whose settlement or city is adjacent to the robber’s terrain.

3) Development cards and extra points: Players can

also buy a card from the deck of development cards with

resources. Each card costs 1 ore, 1 wool, and 1 grain.

This deck have 5 types of cards in it, each one of these

has different effects on the game: Knight cards can be used

to move the robber; Road Building cards can be used to

place 2 roads on the board; Monopoly cards can steal all

resources from a specific type from all other players; Year
of Plenty cards obtain any 2 resources; and Victory Point
cards are worth 1 victory point at the end of the game.

There are 2 achievements that give victory points to

the players during the game: The player with the longest

continuous road gets 2 victory points, and the player

with the largest army (largest number of knights cards

used) also gets 2 victory points. These achievements are

disputed during the match and cannot be shared between

two players.

4) Trading: Players can trade resources with the game’s

bank or with other players. Trade rates are 4 to 1 with the

bank and negotiable with other players. Players can only

make trade offers during their turn. If a player decides to

make no trade offer during its turn, then no other player

can trade. Players can react to a trade offer by accepting

it, declining it, or making a counter-offer.

There are ports in the game board that give players

access to better trade rates with the bank. Players must

place settlements or cities adjacent to these ports access

points in order to use their trade rates. Each port have 2

access points. Ports are divided in 2 categories: generic
ports have 3 to 1 rate for any resource, and special ports

have a rate of 2 specific resources to 1. In the game board,

there is a special port for each resource type and 4 generic
ports, totalizing 9 ports.

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [10] is a modern

algorithm that estimates the best move by iteratively

constructing a search tree whose nodes represent the game

states and edges represent the actions that lead from one

state to another. Each node in the tree holds an estimated

reward value Q(v) and visit count N(v).
At each iteration, the algorithm executes 4 steps, repre-

sented in Figure 2 [11]: Selection, Expansion, Simulation,

and Backpropagation. The algorithm returns the estimated

best move when a computational budget (i.e. time, itera-

tion count or memory constraint) is reached.

Figure 2. The 4 steps of the MCTS algorithm [11].

• The algorithm starts with the selection step, initially

traversing the constructed search tree, using a tree

policy πT , this policy is dynamic and adapts as the

tree grows. The algorithm traverses the tree from the

root node using the πT policy to select child nodes

until it reaches a node with untried actions.

• The expansion step selects the node reached in the

last step and choose an untried action at random to

create a new child node.

• The simulation step uses a rollout policy πR from the

node created in the last step to select actions until it

reaches a terminal state.

• The backpropagation step propagates the rewards

obtained in the last step from the node created from

the expansion step up to the root node of the search
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tree, updating the visited nodes Q(v) and N(v)
values.

C. Upper Confidence Bounds for Trees

UCT is a variation of MCTS that uses UCB1 [12], a

method that solves the multi-armed bandit problem, as

its tree policy πT , balancing exploration and exploitation

during the selection step. With this modification, UCT is

shown to outperform the base MCTS algorithm on many

games [11].

The action choice used in UCB1 is implemented using

Equation 1, where Xj is the average reward obtained by

choosing the action j, nj is the number of times that action

j was selected, n is number of visits the current node

has been visited and Cp is a exploration value. The Xj

term encourages exploitation, whereas the Cp

√
lnn
nj

term

encourages exploration.

argmax
j

(
Xj + Cp

√
lnn

nj

)
(1)

The exploration value Cp can be adjusted to bias the

selection towards exploration or exploitation. With Cp =

0, the exploration term is never taken into account and

the selection is only based on exploitation. There is no

predefined value for Cp, and it should be tuned for each

implementation based on experimentation [11].

1) UCT Variations: Ensemble UCT [9] is a parallel

variation of the UCT algorithm that can speed up the

UCT search as well as improve its performance, with

evidence that it can also outperform plain UCT in the

game of Go [13]. This algorithm parallelizes the UCT

search using root parallelization [13]: from a common

root node, the algorithm creates p independent UCT trees,

each in a separate thread, and expand them in parallel until

a computational budget is reached. Then, the algorithm

merges all root nodes and its children into a single tree.

The nodes of the merged tree hold the total estimated

reward N(v)E and total visit count Q(v)E , calculated

by Equation 2, where Q(v)i and N(v)i are the estimated

reward and visit count of that node in tree i.

N(v)E =

p∑
i=1

N(v)i, and, Q(v)E =

p∑
i=1

Q(v)i (2)

The best move is chosen from the root of the merged
tree, using the same selection policy as UCT. Figure 3

illustrates the process done by this algorithm.

Figure 3. Ensemble UCT algorithm steps.

Sparse UCT [14] is a variation of the UCT algorithm

that represents stochastic moves in the search tree as

multiple nodes, where each node represents one possible

outcome from taking that move. During the selection step

of the algorithm, these nodes are chosen at random, and

are also expanded at random during the expansion step of

the algorithm, to simulate stochastic results.

III. HEURISTICS FOR UCT IN SETTLERS OF CATAN

The use of domain knowledge was shown to improve

the gameplay strength of UCT agents in many games [11].

In this section we describe the strategies we developed to

improve the win rate of our UCT agent in the game of

Settlers of Catan.

First, we describe our move pruning strategy that

uses domain knowledge to reduce the algorithm’s search

space and compare it to a strategy developed in previ-

ous work. Afterwards, we introduce our trade-optimistic

search method used by our agent to trade resources with

other players.

A. Move pruning

The search space of Settlers of Catan is huge, with

many legal moves per turn, and players can make multiple

moves per turn. Previous work by Szita et al. [6] showed

that an UCT agent can use domain knowledge to bias

the tree search, decreasing the amount of rollouts spent

by selecting suboptimal moves, increasing its playing

strength.

1) Move pruning in previous work: In their work, Szita

et al. introduce the concept of virtual wins to bias the

tree search: at the start of the expansion step, their agent

initialize both Q(v) and N(v) of the new child node to a

predetermined virtual value. This value is set according to

the move selected in the selection step: 20 for settlement-

building, and 10 for city-building. Other moves don’t

receive virutal wins. By initializing both Q(v) and N(v)
of these nodes to a greater value than other nodes in the

tree, their agent explore them more often.

Their results show that their virtual wins heuristic

increased their agents playing strength in a game of

Settlers of Catan with rule changes [6], and that prioritize

settlement-building and city-building is a viable strategy

in Settlers of Catan. A possible explanation for the success

of this strategy is that these moves give players more

resource production and victory points, making them often

preferable when compared to other moves available.

Nevertheless, we find in our tests that biasing the tree

search with virtual wins is not enough: the agent usually

spends too many resources in road-building and other

actions, leaving few resources for settlement-building and

city-building. Since these are the most expensive moves

available, players must manage their resources carefully

to be able to afford them. Spending resources on other

moves can delay the opportunity of building cities and

settlements, but accumulating resources in order to afford

these moves can be risky, because of the discard rule, so

waiting for the right moment to take these moves requires
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some measure of luck. A player can play safe by always

making these moves when they are affordable.

2) Our solution: In order to deal with this problem,

we developed a move pruning heuristic that cuts all other

moves whenever building a city or a settlement is possible,

so that our agent take fewer risks and the penalty of losing

half its resources impact it as little as possible. Our move

pruning strategy also prioritizes cities over settlements

since cities are worth two victory points and yields twice

the resource production of a settlement, increasing the

average resources gathered per turn, and consequently the

amount of moves available to the agent per turn, as early

as possible.

We use this same method in the πR policy of the

UCT algorithm to prune available actions, which are

then selected at random. Random move selection increase

rollout response time, allowing our agent to perform many

rollouts at a given time, if a more complex heuristic were

to be considered, rollout speed would be affected. In our

experiments, we show that our move pruning strategy have

better win rates compared to the virtual wins strategy when

playing Settlers of Catan without rule changes.

3) Implementation: Our move pruning method is

shown in Algorithm 1, along with its usage by the UCT

algorithm during the tree’s expansion step, represented

by the EXPAND function on line 1, where: v is the

node to be expanded, a is an action, A(v) is a list

of untried actions from state s(v), v′ is a child node,

A(v′) is the list of available actions from state s(v′), and

a(v′) is the action that led to state s(v′). Our method

MOVEPRUNING is represented on line 8, where: s is

a game state, Aa is a list of actions, and auxiliary

functions GETPOSSIBLECITIES, GETPOSSIBLESETTLE-

MENTS, and GETOTHERPOSSIBLEACTIONS, return a list

of actions available from state s.

Algorithm 1 Move pruning method

1: function EXPAND( v ) returns a node
2: choose a ∈ untried actions from A(v)
3: add a new child v′ to v
4: with s(v′) = APPLYACTION( s(v) , a )

5: and a(v′) = a
6: and A(v′) = MOVEPRUNING( s(v′) )

7: return v′

8: function MOVEPRUNING( s ) returns a list of
actions

9: A = empty

10: A← GETPOSSIBLECITIES( s )

11: if A is not empty then
12: return A
13: A← GETPOSSIBLESETTLEMENTS( s )

14: if A is not empty then
15: return A
16: return GETOTHERPOSSIBLEACTIONS( s )

B. Trade-optimistic search

Previous implementations of UCT for Settlers of Catan

did not consider trading with other players [6], a gameplay

element that can boost the playing capabilities of an agent

in this game. Trading with other players in Settlers of

Catan is a challenging problem since it can benefit an

opposing player, and estimating the impact of a trade

can be difficult without knowing the opponents resources.

However by not trying to trade at all, a player could be

starved of resources for many turns, lowering its chances

of remaining competitive in the game. Our solution deals

with two trading cases separately: reacting to other players

trade offers, and making trade offers for other players.

Our agent can react to trade offers with a regular UCT

search with two options from the root node: accept or

decline the trade offer, without making counter-offers.

Finding the counter-offer that is most likely to be accepted

by our opponent while being beneficial for our agent

is difficult, since we don’t know exactly what resources

our opponent have in its hand, so we decided to leave

this feature out of our trading strategy. We find that this

approach is acceptable for reacting to trade offers.

1) Trade offering through optimistic search: We pro-

pose an optimistic method for creating trade offers that

uses the UCT search to estimate what trades are most

beneficial to our agent. After rolling the dices, our agent

simulates the ability to afford any available move by

trading spare resources with other players: our agent

labels moves that are not currently affordable, but could

be afforded via trading, as trade-optimistic moves, and

consider them as affordable moves during the UCT search.

If our agent can’t afford a move and this move is not

affordable via trading, it is not considered during the UCT

search. If the UCT search selects a trade-optimistic move

as the best move to be taken, our agent make trade offers

to other players in order to afford that move.

In this method, our agent only makes trade offers with

1 to 1 resource rate. Trades with this rate are more likely

to be accepted by other players, and even if not all trades

are successful, our agent is still closer to afford the chosen

trade-optimistic move. These trade offers are directed

to all other players, to increase our agent’s chances of

obtaining all the resources needed to afford the selected

trade-optimistic move. Therefore, our agents consider that

a move is affordable via trading if it has the same amount

of resources in its hand than the amount of resources

needed to afford that move, even if they are not of the

correct type. For example, if our agent have 2 resources

in its hand out of the 5 needed build a city (i.e. 2 ores), it

would need another 3 spare resources, from any type, in

order to consider city-building as a trade-optimistic move:

to get the remaining 3 resources needed to build a city (i.e.

1 ore and 2 grains), our agent needs to make 3 trades.

2) Implementation: Algorithm 2 shows our trade-

optimistic search method in pseudocode, as well as how it

utilizes the UCT search. Before starting the UCT search,

on line 27, our agent adds the trade-optimistic moves to the

list of moves available from the root node of the UCT tree.
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These trade-optimistic moves are obtained by calling func-

tion GETTRADEOPTIMISTICMOVES, where: v is a node,

p is the current player, R(p) are the resources of player p,

and R(a) is the price of a. Equation
∑

R(p) >=
∑

R(a)
is used on line 38 of this function, to check if an action

a is affordable via trading, by comparing the number of

resources in the current player’s hand with the number of

resources needed in order to afford a, without considering

resource types.

With the updated list of moves available, the UCT

search is performed. If the UCT search selects a trade-
optimistic move as the best move to be taken, our agent

puts all trades needed in order to afford the chosen move

in a trade queue, on line 10. These trades are obtained

by calling function GETTRADESNEEDED, where: p is the

current player, a is a trade-optimistic move, ΔR is a list

with the resources player p needs in order to afford a,

R(p) are the resources of player p, R(a) is the price of a,

AT is a list of trade offers, and aT is a trade offer action.

Our agent tries all trades in the queue. Even if one trade

fails, it continues to try trades from the queue until the

queue is empty, as shown on line 6. After all trade offers

were made, our agent do another UCT search, without any

trade-optimistic moves, by calling function TRADEUCT

with parameter opt = False. This second UCT search

is needed since it don’t consider trade-optimistic moves,

and if any trades were successful, the resources of our

agent will have changed, invalidating the results of the first

UCT search. Our agent ignores any counter-offers from

other players, so that the trade queue strategy is preserved.

Trading with other players is tried only once per turn, to

avoid trading loops: this control is made with the local

flag canTrade.

IV. IMPLEMENTATION AND EXPERIMENTS

Our implementation consists of: a client for the JSettlers

server; our base UCT agent implementation and its varia-

tions; and our own Settlers of Catan simulator that is used

to simulate the game during UCT rollouts more efficiently

than the JSettlers server implementation. We implemented

all of our algorithms using Python 2.7 and designed the

code to be easy to modify and adapt for new strategies

and experiments without sacrificing performance.

In the following sections, we detail our implementation,

the experiments we carried out and their results. We

first explain how we implemented UCT so that its tree

correctly represent the possible states in Settlers of Catan.

We also include technical details of our implementation,

including limitations and possible upgrades. Finally, we

detail how we developed our experiments and compare

results obtained in each experiment.

A. UCT Agent implementation

In this section, we describe the details of our base UCT

agent implementation for Settlers of Catan, and how we

designed it to deal with the game’s imperfect information
and stochastic moves, so it can play Settlers of Catan

without any modification or simplification of its rules. Our

Algorithm 2 Trade-optimistic search

1: var queue = empty

2: var canTrade = False

3: function GETBESTMOVE( s0 ) returns an action
4: if queue is not empty then
5: canTrade← size(queue) <= 1
6: return DEQUEUE(queue)

7: a← TRADEUCT( s0 , canTrade )

8: if a is trade-optimistic then
9: trades← GETTRADESNEEDED(p(s0), a)

10: ENQUEUE(queue, trades)

11: return DEQUEUE(queue)

12: else
13: canTrade← True

14: return a

15: function GETTRADESNEEDED( p, a ) returns a list
of actions

16: AT = empty

17: ΔR ← GETMISSINGRESOURCES(R(p), R(a))
18: for each resource r ∈ needed resources Δr

19: create trade action aT
20: with give(aT ) = random resource from

R(p)
21: and get(aT ) = random resource from ΔR

22: AT ← AT + aT
23: return AT

24: function TRADEUCT( s0 , opt ) returns an action
25: create root node v0 with state s0
26: if opt is True then
27: Aopt ← GETTRADEOPTIMISTICMOVES(v0)

28: A(v0)← A(v0) + Aopt

29: while within computational budget do
30: vn ← TREEPOLICY( v0 )

31: �← SIMULATIONPOLICY( s(vn) )

32: BACKUP( vn , � )

33: return a(BESTCHILD(v0))

34: function GETTRADEOPTIMISTICMOVES( v ) re-
turns a list of actions

35: p← GETCURRENTPLAYER(s(v))
36: Aopt = empty

37: for each action a ∈ legal actions AL from s(v)
38: if p can’t afford a and

∑
R(p) >=

∑
R(a)

39: Aopt ← Aopt + a
40: return Aopt

UCT agent was designed to be a standalone agent, capable

of playing Settlers of Catan matches in the JSettlers server

against humans or other agents through our JSettlers client.

In order to keep memory usage as low as possible during

the construction of the search tree, our agent serializes

the game state of new nodes added to the tree, and

deserializes them when necessary. Since the repeated seri-
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alization/deserialization process can take some processing

time, it also slows down the rollout response time. In

order to deal with this, we divided game states into two

categories: states that are deserialized when accessed and

states that are kept deserialized. A threshold value ΔS

controls states categories, if a node visit count is greater

than ΔS , its game state is kept deserialized, otherwise, it

is kept serialized. We found in our tests that ΔS = 20 is

a value that balance memory usage reduction and extra

processing time. With this addition, our agent memory

utilization dropped considerably, while maintaining rollout

response time.

Our agent keeps track of resources obtained by oppo-

nents during the game, until one of the following events

occurs to an opponent: it discards half resources; it steals

a resource; or it has a resource stolen. In these cases, our

agent labels that player’s resources as unknown. We use

this information to deal with imperfect information before

the UCT search: any unknown resource an opponent has

in its hand is determined at random at the root node:

unknown cards are given a random value. Since this

process of randomly guessing unknown cards can affect

the quality of the estimate made by the algorithm, we

also considered the possibility of using the Sparse UCT

approach of adding all possible resource combinations

for unknown resources to the tree. Nevertheless, given

the stochastic nature of the sampling performed by UCT,

adding all possible resources to the tree will increase the

tree branching factor, and our agent would consequently

need more rollouts to make strategic decisions.

We implemented Sparse UCT [14]to represent the

stochastic results of dice rolls, so that all possible dice roll

results are taken into account during the construction and

exploration of the search tree. Instead of using a uniform

random function to select dice results or expand nodes

from a dice roll, we use the same simulation of dice roll

used in our simulator, to correctly simulate dice results.

The only downside of implementing Sparce UCT in our

search tree is that each dice roll move spawns multiple

nodes, which increase the search tree’s branching factor

and, consequently, the amount of rollouts needed to make

strategic decisions.

B. Client and Simulator implementation

In order to test our agents with the JSettlers agent, we

implemented a client that is able to connect to the JSettlers

server and start a game with three other JSettlers agents.

Figure 4 shows the interface of the JSettlers server during

a match.

Our client sends and receives messages from the JSet-

tlers server: it updates the current game state with data

received from server, and sends our agent’s actions back

to the server. The JSettlers server don’t send all game

information to our client, imperfect information(i.e. other

player’s resources) are kept hidden in its messages.

We also implemented an very efficient Settlers of Catan

simulator in our client to perform the UCT rollouts. It

represents game states and simulates the game through

Figure 4. Screenshot of a match between our agent playing a game
against 3 JSettlers agents in a JSettlers server.

an action system, each action represents a move in the

game and its used by the simulator to modify game

states. Games are simulated by selecting legal actions at

random from a given state and applying them to that state,

repeating this process until a terminal state is reached.

Our agent utilizes this simulation method to perform UCT

rollouts, using our move pruning method to prune legal

moves.

Our simulator is able to simulate approximately 65

games per second in a modern PC, which in our exper-

iments was an Intel i7-4702MQ CPU, with 4 cores at

2.2Ghz, and 16 Gigabytes of RAM. Our Ensemble UCT

agent with 1,000 rollouts is almost as fast as the JSettlers

agent. However, we found in our tests that running 10,000

rollouts per UCT search can be very slow, especially

without the Ensemble UCT parallelization. Therefore, we

decided to limit rollouts to 10,000 for our agent.

C. Experiments and results

We tested various different agent configurations in

games where our agent plays against three JSettlers agents.

We carried experiments on the following agent configura-

tions:

• PlainUCT: Default UCT algorithm without any

heuristic.

• VW-UCT: UCT algorithm with virtual wins, like

described by [6].

• MP-UCT: UCT using our move pruning heuristic.

• MP-EnsembleUCT: Ensemble UCT using our move

pruning heuristic. This agent runs n rollouts divided

to a number of parallel UCT trees p, where each tree

runs its share of the total rollout count.

• MPT-EnsembleUCT: This agent is the same as the

MP-EnsembleUCT, but its capable of trading via our

trade-optimistic search method.
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Since previous work [6] shows that seating order can

introduce an unknown bias to the agents performance,

we randomized seating order for all tests to mitigate any

seating bias.

1) Pruning heuristics comparison: First, we compared

the win rate of PlainUCT, VW-UCT, and MP-UCT, using

1,000 rollouts with: 0; 0.25; 0.5; 0.75; and 1.0 as the

exploration value Cp. PlainUCT use no heuristic to prune

or select moves, and serves as a baseline for the other two

agents. Figure 5 illustrates the results of this experiment

with the error bars showing the standard deviation of win

rate over 100 matches against three JSettlers agents.

Figure 5. Comparison between agent win rates in games against three
JSettlers agents, with varying exploration values.

Our results show that all three agents benefit from more

exploitation, with exploration values between 0 and 0.25.

For the following experiments, we used 0.25 exploration

value for all agents, since both MP-EnsembleUCT and

MPT-EnsembleUCT are based on our MP-UCT, which had

better win rates with Cp = 0.25.

These results also show that, compared to the virtual
wins heuristic used by the VW-UCT agent, our MP-UCT
agent can achieve superior win rates in games against 3

J-Settlers agents: with Cp = 0.25, our agent have about

10% more wins than the VW-UCT agent with the same

configurations. With about 26% win rate, the MP-UCT
agent with 1,000 rollouts per search has roughly the same

playing strength of a JSettlers agent, since at this win rate,

it has won about as much games as its three JSettlers

opponents.

The performance of the VW-UCT agent in our results is

slightly different than that observed in previous work [6],

with about 10% less wins. We believe that this difference

is due to the different settings in our test: their tests

were made on Settlers of Catan with rule changes (i.e. no

imperfect information), while our tests were conducted on

games with complete rules. There are also implementation

differences that might led to slightly different results.

2) MP-UCT variations comparison: The following ex-

periments focus on the different variations of our MP-

UCT agent: MP-EnsembleUCT and MPT-EnsembleUCT,

capable of trading. We compared these agents performance

in matches against three JSettlers agents, and the results

of these matches are summarized in Table I: with win rate

expressed in percent ± at a 95% confidence interval. We

compared the three agents with 1,000 rollouts and 10,000

rollouts. The first column of Table I shows what agent was

tested, followed the number of rollouts used by that agent,

and the win rate of that agent in our experiments. For the

ensemble agents, we used parallel UCT count p = 10, so

it runs 10 parallel UCT searches of 100 rollouts for 1,000

rollouts, and 10 parallel UCT searches of 1,000 rollouts

for 10,000 rollouts, to make the ensemble tree. All agents

were tested using Cp = 0.25.

Table I shows that MP-EnsembleUCT agent has about

7% higher win rates than the base MP-UCT agent at

1,000 rollouts, and roughly 3% higher win rates at 10,000

rollout count. We believe that this advantage shows that by

combining various independent UCT searches, each with

different trajectories through the search tree, the ensemble

tree have less variance then a single UCT tree with only

one set of trajectories [9]. We believe that this difference

is more pronounced with fewer rollouts, and as rollout

count rises, the trajectories of the separate search trees

tend to converge to a similar path. The major advantage

of MP-EnsembleUCT comes with the agent’s response

time: MP-EnsembleUCT with p = 10 and 10,000 rollouts

was about 3 times faster than the base MP-UCT agent

with 10,000 rollouts in our test machine. Precise speed

advantages were not measured as they can vary from one

machine to another.

Our results also show that with 10,000 rollouts, these

three agents are clearly superior to the JSettlers agent.

Our trading agent MPT-EnsembleUCT, in particular, have

an expressive superiority, winning 58.2% of all games

played with 10,000 rollouts. Even at a low rollout count,

with 1,000 rollouts, this agent was able to win 40% of all

games, a slightly better result than the 38.4% win rate

of the base MP-UCT agent with 10,000 rollouts. This

shows that our trade-optimistic search method did boost

the playing strength of the MP-UCT agent considerably.

It should be noted that against players that don’t consider

trading, the MPT-EnsembleUCT agent’s playing strength

will be the same as the MP-EnsembleUCT agent, since

the trading capability is the only difference between both

agents.

Finally, Figure 6 illustrates the win-rates of every agent

configuration in games against three JSettlers agents, using

1,000 rollouts per search and exploration value Cp = 0.25.

In this comparison, it becomes clear that our heuristics

can greatly improve the base UCT agent playing strength,

even at the low rollout count of 1,000, specially MPT-
EnsembleUCT, that has a great advantage over the others,

since it is the only variation that considers trading.

V. CONCLUSIONS AND FUTURE WORK

We developed two domain-dependent heuristics, the

move pruning, that uses domain knowledge to prune the
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Table I
AGENT WIN RATE COMPARISON IN GAMES AGAINST THREE

JSETTLERS AGENTS.

Agent UCT rollouts Win Rate
MP-UCT 1, 000 26.1%± 7.14%

MP-EnsembleUCT 1, 000 32.8%± 6.31%
MPT-EnsembleUCT 1, 000 40.0%± 6.81%

MP-UCT 10, 000 38.4%± 8.64%
MP-EnsembleUCT 10, 000 41.3%± 7.66%

MPT-EnsembleUCT 10, 000 58.2%± 7.09%

Figure 6. Comparison between agent win rates in games against three
JSettlers agents, with 1,000 rollouts per search.

game tree, and the trade-optimistic search that utilizes

the UCT algorithm in order to trade in Catan. These

heuristics provide substantial improvements to MCTS-

based methods for the Settlers of Catan Game without

rule changes.

Previous work found that UCT could effectively play

Settlers of Catan with rule changes (i.e. with no imperfect
information) and that heuristic strategies (virtual wins),

could improve an UCT agent performance in-game. Our

results show that in games without rule simplifications (i.e.

with imperfect information: unknown opponents resource

cards and development cards), our own move pruning
heuristic strategy outperforms the virtual wins strategy.

However, our move pruning strategy is very restrictive

and there are cases were it leads to suboptimal moves,

especially near the end of the game. If the agent is com-

peting for the largest road with another player and both

are tied with eight or more victory points, this strategy

will favor cities and settlements over roads, leading our

agent to lose the largest road points. We intend to develop

a less rigid heuristic in the future as well as to increase the

number of games that our simulator is able to execute per

second, so that our agent can execute more rollouts per

UCT search. We also intent to find the exact exploration

value that maximizes our agent’s win rate. In our tests, we

set the exploration value Cp = 0.25, but the real optimum
value could be different. Our results show that this value

is between 0.0 and 0.25.

In our experiments, the Ensemble UCT agent had

slightly better win rates compared to the regular UCT

agent, while having better response times. Because of this,

we find that this version of UCT is better suited for Settlers

of Catan than the base UCT algorithm. In future work, we

intend to investigate how to reach an optimal configuration

of this algorithm for this game, such as the number of

parallel trees p for 1,000 and 10,000 rollouts.

Finally, our results show that our trade-optimistic search

heuristic increases the competitive strength of our agent

against JSettlers agents, increasing our agents win rate

and average points per game. These results show that an

effective trading strategy can have significant impact in

an agent gameplay capabilities and is fundamental for the

game of Settlers of Catan. There are features, such as

making counter-offers, that could be implemented into our

heuristic, and we intend to further develop this heuristic in

the future. We also intend to investigate the performance

of this trading strategy against other agents and human

players in future work.
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