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Abstract. A social norm describes a standard of behavior expected to
be followed by agents in a given society, and failure to comply results
in sanctioning and loss of utility for the violating agent. Agents need to
take existing norms into account when generating plans to achieve their
goals, to either forestall potential violations if an agent wants to be fully
norm compliant, or understanding the effects on its utility if violations
are acceptable. In this paper we model a normative system in terms of
classical planning, and develop two norm formalizations: the first con-
cerns actions in a given context; while the second concerns sequences of
states and is based on Linear Temporal Logic. We use these norm formal-
izations to develop different planning approaches that take into account
such norms, and empirically evaluate the algorithm’s performance.
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1 Introduction

Multi-agent systems allow the design of complex behavior in terms of multiple
autonomous agents that interact in a shared environment, e.g. e-commerce sys-
tems [17, Ch. 24]. As the agents are assumed to be self-interested, conflicts may
arise, due to agents performing actions that do not consider the impact on other
agents or on the system, which in turn can lead to undesirable system behav-
ior [5]. In this context norms can be used to enforce desirable system behavior by
encoding expected individual agent behavior, whose failure to comply leads to
negative incentives, i.e. sanctions [14, Ch. 14]. Such norm systems aim to max-
imize individual agent autonomy, as norms can be violated, but require agents
to reason about the consequences of their actions in terms of norm-compliance.

Much effort has been made towards developing norm-driven reasoning in the
context of agents driven by a plan library [8,9,13,1,11,10], however behavior
generation using plan libraries substantially limits the flexibility of an agent’s
behavior to what is explicitly encoded in the library [7]. By contrast, gener-
ating behavior using first principle planners allows greater freedom to achieve
goals by exploring the state-space of the environment rather than the space of
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plans described in the plan library [7]. Relatively less effort has been made to
develop agents capable of performing first-principles planning while taking into
account the impact of such plans relative to the norms in an environment [16, 15].
Behavior generation via first principles planning poses, in practice [4], a more
computationally intensive problem. Consequently, computing the normative con-
sequences of behaviors generated in such a way is a much harder problem.

In this work we develop a first-principles planning algorithm that takes into
account the consequences of actions in terms of norm compliance and violation®.
We model the system in terms of classical planning, and present two norm for-
malizations. Using these formalizations we describe two approaches for planning,
one using the well-known Graphplan algorithm and the other based on a forward
state-space search. We evaluate these approaches in a simple illustrative domain
and in the blocksworld domain, and discuss the algorithms with related work.

2 Formalization

In this section we describe the formalization used to describe our problem. We
first we give an overview of classical planning, in order to model the system; and
then formalize two alternative types of norms.

2.1 Classical Planning

We use the classical planning formalism to represent the environment in which
the agent reasons about norms. Specifically we use the Planning Domain Def-
inition Language (PDDL) [6] formalism to describe the domain and the cor-
responding problems. A PDDL domain consist of the available predicates and
actions, while a PDDL problem specifies the initial and goal states, as well as
the objects in the environment. The planning process in this context consist of
finding the sequence of actions that leads the agent from the initial to the goal
state. Subsequent versions of the PDDL allows the attribution costs to actions;
however, in this work, we will assume that all action costs are one.

2.2 Normative Model

Norms specify expected behavior of agents in a system. There are many different
ways to formalize norms and most of them use deontic logic modalities to express
a norm type, i.e. if a norm is an obligation, a permission or a prohibition. In
our work we support two different types of norm formalization. The first one is
adapted from [12], shown in Definition 1.

Definition 1 (Conditional Norm). A conditional norm is a tuplen = {u, x, p, C),
where:

— u € {obligation, prohibition} represents the norm’s modality;

! Source code and data set available at github.com/guilhermekrz/KPlanning.



— X 1s a set of ground predicates that represents the context to which a norm
applies, i.e. a norm is applicable in state s if s = x;

— p is an action, representing the object of the norm’s modality;

— C is the penalty (cost) incurred to an agent when this norm is violated.

Example 1. The following conditional norm requires an agent to drive on the
left side of the road if they are in England.

en = (obligation, at(England), driveLeft(a, b), 20)
Definition 2 describes when a conditional norm is violated by an agent.

Definition 2 (Conditional Norm Violation). 4 norm n = {(u,x,p,C) is
violated in state s by an agent a iff s = x and agent a either: executes action
p in state s and p = prohibition; or does not erecute action p in state s and
u = obligation.

The second type of norm uses a subset of Linear Temporal Logic formulae
expressed using modal operators of PDDL3 described by Gerevini et al. [3], and
formalized in Definition 3.

Definition 3 (LTL Norm).

An LTL norm is expressed using one of the following modal operators, all
implicitly representing an obligation, where ¢ and Y are atomic formulae and t
is a number?:

(at end ¢) - ¢ must be true in the final state

(always ¢) - ¢ must be true in all states in the plan

(sometime ¢) - ¢ must be true in at least one state in the plan
(at-most-once ¢) - ¢ must be true in at most one state in the plan
(sometime-after ¢ ) - whenever ¢ is true in a state s, there must be a state
s’ equal to or after s where 1 is true

— (sometime-before ¢ 1) - whenever ¢ is true in a state s, there must be a
state s’ before s where 1 is true

(always-within t ¢ 1) - whenever ¢ is true in a state s, there must be a state
s’ at most t steps after s where 1) is true

Although modal operators can be nested, in the current work we simplify the
expressivity of the language consider only flat operators. An LTL norm is violated
if its interpretation is not true in a given plan.

These two norm formalizations have different complexities. While the first
one can be checked in a single state, the second one needs to be checked along
a path (i.e. a sequence of states, a finite trajectory). The next section describes
different methods to find solutions given these norm formalization.

2 For brevity, we use semi-formal descriptions for the modal operators adapted from
PDDL3; for the full formal definitions we refer to [3]



3 Planning with Norms

A planner is responsible for finding a sequence of actions that leads from the
initial to the goal state. When considering norms, this solution can be either
norm-compliant or norm-violating?; the planner can also find solutions that min-
imize the cost of both actions and penalty costs relative to norm violations. In
the next subsections we first present a scenario to motivate our problem, and
then describe approaches based on the Graphplan algorithm and using forward
state-space search to find such norm-driven plans.

3.1 Scenario

In this section we describe an example of a scenario with norms in order to
provide a motivation for this work; we call this scenario drinkdriving, and use it
to perform our experiments. In this scenario agents can move between locations;
in some locations there are bars available, where agents can enter, exit, or become
drunk; agents can sleep to become sober again. In order to avoid car crashes due
to agents driving while drunk, there is a norm forbidding agents perform such
behaviors, and an associated arbitrary sanction.

3.2 Graphplan

The Graphplan algorithm [2] uses a planning graph data structure to perform
its planning process. The planning graph is a leveled graph, interleaving levels
of predicates and levels of actions; the algorithm uses this graph in order to
perform a backward search. It also encodes information about mutual exclusion
relations between predicates and between actions, which provides information
to prune partial solutions that do not lead to a valid solution.

The simplest way to modify the Graphplan algorithm is to discard solutions
if they violate (do not violate) the norms in the case of norm-compliant (norm-
violation) planning. In order to do this we perform the solution extraction phase
of the algorithm to find all possible solutions at the current level; we then iterate
through each solution checking for norm compliance or violation.

The solution as outlined above does not take advantage of the fact that it
is possible to prune partial solutions during the backward search phase, which
improves the planning process efficiency. Algorithm 1 shows the solution extrac-
tion phase of the Graphplan algorithm, modified to backtrack when the partial
solution cannot be a solution in relation to the set of norms.

In Line 8 of the algorithm we check if we can ascertain if the partial solution
violates a norm; we are able to determine a norm violation if we can check the
truth value of its context. As we only have partial information, the newGoal set
of literals must include the literals of the norm context. For conditional norms,
this is trivial; a norm violation can be checked at a single state, and we can

3 Agents may want to violate norms, for example, to collect information of the sanc-
tions of the existing norms when entering in a system.



propagate this information while doing the backward search. However, for LTL
norms, a complex mechanism to keep track of the current norm status is required;
we would need to keep track of the norm activation and deactivation conditions,
propagating this information backwards and backtracking when necessary. The
Graphplan structure and its backward search makes this tracking complex, and
the resulting solution time and space consuming; therefore Algorithm 1 does not
check LTL norms, and in the next section we present another planning approach
based on a forward state-space search which is more suitable to plan with respect
to this type of norm.

Having the information that a partial plan partially violates a norm, we can
stop searching and begin to backtrack in two situations. The first, when we are
searching for a norm compliant plan, is when it already occurred a violation
(Line 9). The second, related to norm wviolation planning, is when we reached
the first level and it has not occurred any violations; in this situation we could
not have backtracked before because a partial plan that has no violations is still
a candidate solution to norm wiolation planning, as this violation can occur at
a later step (Line 3).

Algorithm 1 Solution Extraction Phase of the Normative Graphplan

1: procedure SOLUTIONEXTRACTION(goal,level,isViolationPlan,type)
2: if level=0 then
3: if type = NormViolating and not isViolationPlan then backtrack

return solution
for each literal in goal do
nondeterministically choose an action to achieve literal
if set of chosen actions are mutex then backtrack
newGoal < preconditions of chosen actions
newls ViolationPlan < isViolation(chosen actions, newGoal)
if type = NormCompliant and newlsViolationPlan then backtrack

10: Solution Extraction(newGoal, level — 1, newlsViolationPlan, type)

3.3 Forward state-space search

The second way in which we perform norm-aware planning is using forward
state-space search. We use a Uniform-Cost Search (UCS) as a base algorithm,
and modify it to take norms into consideration; this allows us, for example, to
return solutions that minimize the combined cost of actions and penalties for
norm violations. We choose UCS over A* because it does not need any heuristics
for its planning process; calculating heuristics in norm-aware planning is harder
than in classical planning because it has to take into account norm penalties.
Algorithm 2 shows our modifications of the UCS algorithm. To guarantee
norm-compliant or norm-violation solutions, we need to check if the partial plan
violates a norm before testing if the node is a goal node (Lines 5 - 12) and before



Algorithm 2 Uniform-Cost Search with Norms
1: function UCS(problem,type)

2: frontier <— add node with initial state
3 while frontier.hasElements() do
4: node < frontier.pop()
5 if isGoal(node) then
6: if type = NormCompliant and node is not current violation then re-
turn solution(node)
T else if type = NormViolating and node is current violation then return
solution(node)
8: else if type = MinCost then
9: if node has already the correct cost then return solution(node)
10: else
11: node.cost < cost from actions and norm violation penalties
12: frontier.put(childN ode)
13: explored.add(node)
14: for all applicable actions in node do
15: childNode < node.apply(action)
16: if childNode is not in frontier and explored or childNode is in frontier
with higher cost then
17: if type = NormCompliant and childNode is not absolute violation
then
18: frontier.put(childN ode)
19: else if type = NormViolating then
20: frontier.put(childN ode)
21: else if type = MinCost then
22: if childNode is absolute violation then
23: childNode.cost < cost from actions and norm violation penalties
24: frontier.put(childNode)

adding the childnode to the frontier (Lines 16 - 24). For this, we introduce two
concepts: absolute violation and current violation, which refer to partial plans.
The first one indicates that there is no possibility that the current partial plan
will be norm-complaint again, and the second one means that it is currently
violating some norm, but there is a possibility that, in the future, it will no longer
violate the norm. An example for the first concept is a partial plan where an
atomic-formula ¢ from a LTL norm (at-most-once ¢) is true in two intermediate
states; an example for the second is a partial plan where ¢ from a LTL norm
(sometime ¢) is not true in any intermediate states so far.

If we are interested in norm-compliant plans, we discard nodes whose partial
plans are absolute violations (Line 17); furthermore, current violation nodes are
added to the frontier (Line 17), but they cannot be tested for goal condition
(Line 6). For norm-violation plans, all nodes are added to the frontier (Line 19),
but only current violation nodes are tested for goal condition (Line 7).

Finally, if we want plans that minimize cost (from actions and norm viola-
tions), we add absolute violation nodes to the frontier with the cost from actions



plus the cost of the penalty of the violated norms (Line 23). Note that the cost of
current violation norms are not counted when adding the respective node to the
frontier, because then the returned solution would not necessarily be optimal; as
these norms can be fulfilled at a later time, we cannot assume their penalties yet.
The cost of current violation norms are indeed counted if they are a goal node;
in this case, this node is added back to the frontier with its cost updated with
the norm penalties (Lines 11 - 12). For example, if there is a goal node ¢ in the
frontier with pending current violations, its cost is updated to take into account
the norm penalties, and this node is added back to the frontier. If another goal
node h, with no pending violations, has less cost than node g, then node h is the
final solution with minimal cost; otherwise, node g is removed again from the
frontier, this time without pending violations, and is the final solution. In this
way, the algorithm guarantees the return of the solution with minimal cost.

In this paper we propose two methods to check if a node is absolute violation
or current violation. The first method builds the current partial plan from the
chosen actions from each node; with this partial plan we can check for norm-
violation. The second method keeps track of norm-violation information in each
node; when a new node is created, we update it with the current action. While
the first approach does not keep information, and always has to rebuild the
partial plan for each node, being more CPU intensive, the second approach
keeps information, and thus it is more memory intensive.

4 Experiments and Results

We performed experiments in the blocksworld domain, from the International
Planning Competition, and in the drinkdriving domain, described previously. We
ran each planner on problems of increasing complexity and number of norms.
In this section we refer to the first version of the planer using Graphplan in a
normative context described in Section 3.2 as Naive Graphplan, and Graphplan
for the second solution described in Algorithm 1; for the forward-state space
planners, described in Algorithm 2, we refer as Forward 1 and Forward 2 the
planners using the first and second method to check node violation.

In Figure 1 we show the results for the four implemented planners, in the
blocksworld domain, considering conditional norms and trying to find norm-
compliant solutions*. Around problem number 50, all but the Graphplan planner
failed to return solutions, either due to timeout or memory constraints. The
Graphplan planner has a relatively low running time compared to the other
approaches, only increasing its time for the largest problems.

In the drinkdriving domain, shown in Figure 2, we obtained different results.
The forward planners® remained with a lower running time than both Graphplan
planners. There are two possible explanations for this difference: the blocksworld

4 The figures show smoothed results, using a sample of 100 data points interpolated
using splines

5 Forward 2 has a similar time performance than Forward I, and was omitted for
clarity
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domain lends itself more to parallelization than the drinkdriving domain or the
problems used in our experiments for the drinkdriving domain are less complex
than the problems from the blocksworld domain.



Figures 3, 4 and 5 show the results of experiments using LTL norms. Naive
Graphplan failed to return solutions for all but the small problems in the blocksworld
domain. The Forward 1 and Forward 2 planners achieved a similar time perfor-
mance result, with an advantage to the Forward 2 planner on large problems.
As our hypothesis is that the second forward approach uses more memory than
the first one (in order to have a better time performance), we measured the total
memory allocated by each planner and obtained results showing that the second
approach is more memory intensive. However, these results are not conclusive, as
this measure is only approximate, and the data obtained exhibited high variance.

5 Related Work

Previous work have considered the problem of planning in a normative environ-
ment. In Panagiotidi et al. [16] they formalized norms with activation, deactiva-
tion, maintenance and repair conditions; in order to find a plan they introduced
a special action responsible to check norm compliance at each intermediate state.
In this way, they take advantage of the well-established PDDL language and can
use existing planners to find norm-compliant plans. The main drawback of this
work is the use of the forall command in PDDL to iterate through each pos-
sible combination of predicates in order to check norm compliance; this makes
the number of possible combination of predicates scales exponentially for larger
problems, and thus make the proposed approach feasible only for small problems.

In Panagiotidi et al. [15] norms are specified in Linear Temporal Logic (LTL),
and they use TLPlan as their base planner. As in the above work, the resulting
planner is only able to return norm-compliant plans and lacks the ability to
minimize violations in case no norm-compliant plan is possible.

6 Conclusion

In this work we developed different approaches to plan in a normative system;
more specifically, two based on the Graphplan algorithm and two based on for-
ward state-space search. The normative system consists of classical planner and
either conditional norms or norms based on Linear Temporal Logic. We per-
formed experiments using two domains, with different problems and norms, and
analyzed the results. While existing work performs norm-compliant planning, our
approach is also able to perform norm-violating and minimizing cost planning.

For future work we intend to perform experiments with more complex prob-
lems, to get a better understanding of the advantages and disadvantages of
our approaches. We want to support more expressive norms, e.g. LTL norms
with nested operators. We also intend to investigate whether a Graphplan-based
approach can support the full spectrum of LTL-based norms, and to propose
modifications on different search algorithms, e.g. Iterative deepening depth-first
search or A*. Finally, we aim to develop a translation schema to compare our
approach to the related work of Panagiotidi et al. [16,15].
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