Full-Virtualization on MIPS-based MPSOCs embedded
platforms with real-time support

Carlos Moratelli
Faculty of Informatics
PUCRS
Av. Ipiranga 6681
Porto Alegre, Brazil
carlos.moratelli@pucrs.br

Samir Zampiva
Faculty of Informatics
PUCRS
Av. Ipiranga 6681
Porto Alegre, Brazil
samir.zampiva@acad.

Fabiano Hessel
Faculty of Informatics
PUCRS
Av. Ipiranga 6681
Porto Alegre, Brazil

fabiano.hessel@pucrs.br

pucrs.br

ABSTRACT

Virtualization has emerged also as a feasible technique for
Embedded Systems, as it provides more secure platforms,
improves software design quality and reduces costs. How-
ever, real-time and memory constraints requires the devel-
opment of different techniques from that widely applied to
enterprise computing. Still, embedded processors area and
power consumption constraints has limited the large adop-
tion of hardware support for full-virtualization. In this pa-
per we present an embedded hypervisor designed to provide
full-virtualization and real-time execution of applications.
The hypervisor is running on a lightweight MIPS-based MP-
SOC platform improved to provide hardware-based virtual-
ization. Discussions about key aspects of the multiprocessor
hypervisor, such scheduling policies, real-time and overall
overhead are presented.

Categories and Subject Descriptors

C.3 [Special Purpose and Application-based Systems|:

Real-time and embedded systems

Keywords
Embedded Systems, Virtualization, Hypervisor.

1. INTRODUCTION

Virtualization has been widely adopted in enterprise com-
puting providing the integration of multiple systems on a
shared platform breaking the one-to-one correspondence be-
tween logical and physical systems [20]. Different software
systems coexisting on the same hardware platform allows
better software design quality, since, the systems can be de-
signed separately, better processor usage, greater security
levels while still reducing manufacturing costs. However,
virtualization does not fit directly on the Embedded System
(ES) field. These requirements are the same for ES design,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SBCCI ’ 14, September 01 - 05 2014, Aracaju, Brazil

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3156-2/14/09 ...$15.00.
http://dx.doi.org/10.1145/2660540.2661012 .

and a question arises: May I use virtualization techniques
in ES design? Of course the answer is yes, why not? Mod-
ern ESs are increasingly taking characteristics of general-
purpose systems [8], however, they must support real-time
applications which the current virtualization technology in
enterprise field does not support [19].

In despite of the challenges to bring virtualization to ESs,
some characteristics in its adoption are highly desirable.
However, typical embedded constraints still prevent its wide
adoption and much effort has been spent in order to demon-
strate that its usage can indeed be feasible in ESs [1], [6],
[16], [7], [5].- Heiser [9] highlights the need to run unmodi-
fied guest operating system (guestOS) and applications, be-
sides providing strong spatial isolation to improve security.
Armand [4] states that low overhead components are fun-
damental. Therefore, the biggest challenge lies in achieving
all of these characteristics at once, while respecting typical
ES’s constraints.

Moreover, as these conflicts has a strong relationship with
the hypervisor’s ! implementation, which in turn depends on
the underlying hardware, the challenge itself grows. Thus,
the architecture, and the characteristics of its Instruction-
Set Architecture (ISA), can make the implementation ei-
ther easier or harder [15]. Hardware-assisted virtualization
is widely adopted in interprise solutions using technologies
like Intel VT-x [11] aiming to keep the hypervisor simpler
and more efficient. In embedded systems, although differ-
ent architecture options are available, hardware support for
virtualization is rarely adopted. The embedded ARM archi-
tecture specifies virtualization extensions [3], but, just a few
manufacturers have implemented it in their cores.

Thus, this paper focus on a multiprocessor embedded hy-
pervisor that provides full-virtualization and real-time exe-
cution of bare-metal applications. We are running the hy-
pervisor on a MIPS-based MPSOC platform composed by
modified MIPS4K cores [18] with proper hardware support
to provide virtualization [2]. Our main contribution is to
provide virtualization in embedded multiprocessor environ-
ments where: (i) no GuestOS modifications are desired, and;
(ii) non-real-time GuestOSs need to coexist with real-time
applications.

"Hypervisor is the main controller of a virtualized platform
and can also be named as Virtual Machine Monitor (VMM).

2. RELATED WORK

Several studies discuss the use of virtualization in ESs [6],
[16], [7], [5]. However, we consider that virtualization on
ESs is an emergent technology that brings great benefits
and will be continually spread in the near future. Thus, this
section is focused on virtualized platforms with real-time
support.

Enabling real-time support on virtualized platforms cre-
ates a hierarchical scheduling problem. A hypervisor sched-
ules Virtual CPUs (VCPUs), and a guest RTOS over the
VCPU schedules its processes or tasks. Even ensuring real-
time characteristics in VCPU level, it is difficult to ensure
real-time execution to the tasks over the RTOS. Aiming to
deal with hierarchical scheduling problem Jin [19] suggests a
mechanism based on messages which returns the scheduling
information to the hypervisor level. The hypervisor support
two kinds of VCPUs: the normal VCPU and the RT-VCPU.
The hypervisor’s scheduler uses the information obtained
from the RTOS to map real-time tasks into RT-VCPUs. The
RT-VCPUs are scheduled in a fashion to keep the real-time
constraints. They implemented two ways to feed the hy-
pervisor scheduler with real-time information: before task
creation (at system design) and during task creation (with
use of hypercalls). The main drawback of this approach is
the requirement of a strong cooperation between the hyper-
visor and the RTOS, which means, both software layers must
be implemented or modified in order to attend the message
mechanism.

Kinebuchi et-al [12] proposed a lightweight virtualiza-
tion layer called SPUMONE. Using a para-virtualization
approach, the guest OSs are executed in privileged mode
minimizing the virtualization overhead and the amount of
modifications on the OS’s kernel. On the other hand, such
approach compromises the system’s dependability, since, in
privileged mode, a guest OS would interfere another guest
OS or hypervisor. SPUMONE allows a General Purpose
OS (GPOS) and a RTOS share the same physical CPU.
In order to cope with real-time constraints, the RTOS is
bounded to a VCPU with higher priority than the VCPU
bounded to the GPOS. Interrupt virtualization is a key fea-
ture of SPUMONE’s approach to deal with the hierarchical
scheduling problem. When the RTOS is idle, the GPOS is
executed. The RTOS restarts its execution when it receives
an interrupt. An interrupt for RTOS preempts the GPOS
immediately.

Lin [13] proposed a new architecture for SPUMONE, suit-
able for multi-core virtualization design. This new approach
still execute the guest OS and the hypervisor in privileged
mode. However, the authors use local memories such as
scratchpad to provide isolation among VMs, by physically
separating instances among physical cores. Their main in-
tent is to avoid that a failure in an SMP Guest OS affects
more than one VM. The main concern about this approach
is that the isolation among VMs is only achieved when they
do not share the same physical core.

To the best of our knowledge, all related works implement
para-virtualization approaches (changes are required to be
performed in the GuestOS). As we described, the main con-
tribution of our work consists in offering a hypervisor full-
virtualized with acceptable overhead even for real-time con-
straints. To do so, we use the concept of different types of
VCPU, similar to [19], and a hypervisor capable of deal-
ing real-time constraints through the EDF [10] scheduling

algorithm. The two level hierarchical scheduling problem
is avoided instantiating real-time applications which can be
scheduled directly by the hypervisor.

3. VIRTUALIZATION MODEL

Our virtualization model is depicted in Figure 1. At the
physical level, we assume a bus-based homogeneous MPSoC
along with a shared memory. On top of the CPUs, we exe-
cute our distributed hypervisor, responsible for the creation
and management of each Application Domain Unit (ADU).
The ADU is a logic arrangement responsible to associate the
guestOS with its VCPUs, besides, each ADU has its own
memory space controlled by the hypervisor providing mem-
ory isolation. Into an ADU, applications can be mapped
onto best-effort (non-real-time) and real-time Virtual CPUs
(VCPUs) according to its needs. In addition, an ADU can
use heterogeneous multiprocessors in the sense it can count
on multiple best-effort VCPUs (BE-VCPUs) and real-time
VCPUs (RT-VCPUs), as showed in the ADU element of
Figure 1. Thus, a guest GPOS with proper multiprocessor
support? can be used for the best-effort tasks. Besides, it is
responsible for instantiating an RT-VCPU for each real-time
application it desires to execute.

o)
Application Domain
Unit (ADUn)

-
Application Domain
Unit (ADU1)

QuestOS RT-App

BE- RT- BE- BE-
VCPU1 § VCPU!1 VCPU1 | VCPUn

CPU2

| CPU+ |

b

| CPUs | | CPUn |

Shared Memory

Figure 1: Virtualization model and Application Do-
main Unit for multiprocessor embedded systems

Figure 2 shows the possible flexible mapping and par-
titioning model for virtualized architectures based in our
model. Each ADU has a given task-set associated with its
VCPUs. Since we are providing a bus-based virtualization
node, the CPUs can be represented as an array of physi-
cal processors available in the system. Thus, the separa-
tion provided by our virtualization model can deal with a
dynamic mapping of tasks among VCPUs (if supported by

2For a single GuestOS of a given ADU to manage multiple
VCPUs, there is no model imposed restriction. However,
this GuestOS must be implemented to support multiple pro-
cessing units.

the GuestOS), VCPUs among CPUs, and even tasks among
CPUs. Our approach to enable RT-VCPUs and meet timing
constraints is further described in Section 4.

=

Tasks

Tasks

Tasks

Tasks

I\"'
T T
\
\

Hypervisor

GuestOS

. Shared Memo

ADU

Figure 2: Flexible Mapping model for multiproces-
sor embedded systems with real-time support

4. MODEL IMPLEMENTATION

This Section discusses the implementation strategies for
the model described in Section 3 in terms of hardware and
software aspects of the platform.

4.1 Hardware aspects

Our platform is based on a typical MIPS 4Kc core mod-
ified to provide a lightweight virtualization support [2].
In this work we use a multiprocessor arrangement, where
each processor has a local scratchpad memory and access to
a shared memory, where the GuestOSs are located. Both
memories are connected to the processors by a 32-bit wide
bus. Still, a slave 32-bit wide bus is dedicated to peripherals,
which are limited to a UART for communication purposes,
and a Timer for time measurement. The UART is an IBM
PC 16550 peripheral, whilst the Timer is a Xilinx IP XPS
Timer Counter peripheral configured to the resolution of
1us.

Hardware support for virtualization. Since the MIPS
4Kc instruction set attend to the classic virtualization model
proposed by Popek [15], a hypervisor can be constructed
under it. However, the processor core contains fixed virtual
memory segments, which are differently used depending on
the mode of operation 3. The part A for the Figure 3 shows
the segmentation for the 4 GB virtual memory space ad-
dressed by a 32-bit virtual address for both User and Ker-
nel modes of operation. During reset or when an exception
is thrown the core enters into the Kernel mode where the
software has access to the entire address space, as well as
to all CPO registers. On the other hand, User mode ac-
cesses are limited to a subset of the virtual address space

3The processor can operate in both Kernel or User modes,
which gives different privilege levels.

(0200000000 to 0x7FFFFFFF) and can be inhibited from
accessing CPO functions. Still, while in User mode, virtual
addresses 08000 0000 to OxFFFF FFFF are invalid and
cause an exception whenever they are accessed.

l:‘ MMU Mappeble Memory l:‘ Direct Mapped Memory

User Mode Kernel Mode User Mode Kernel Mode

OXFFFF_FFFF
0XE000_0000

OXDFFF_FFFF
0xC000_0000

OXBFFF_FFFF
0xA000_0000

OX9FFF_FFFF
0x8000.0000

OX7FFF_FFFF

kseg3

kseg2

kseg1

kseg0

useg kuseg

0x0000_0000

I =]
™" Modified Mips 4K '
Flattened Memory

Orignal Mips 4K
Memory Segments

A B

Figure 3: MIPS 4K memory management for User
and Kernel modes of operation.

Such fixed memory map means that only the first 2GB of
the virtual memory will be available to the virtual machines.
A Guest OS running in the User mode will not be able to
address virtual memory above 2GB. The second - and very
critical - limitation can represent a major barrier to achieve
virtualization in the MIPS 4K core: the fixed-mapping of
kuseg0 and kuseg! segments. In this case, the hypervisor
needs to register its exception routine under the Exception
Vector address (at 028000 0000) in order to take the control
of the execution of privileged instructions by the Guest OS,
as well as hardware interrupts and other system conditions.
On the other hand, a Guest OS will try to register its own
exception handler routine, what conflicts with the hypervi-
sor and possibly with other Guest OSs. Since the Exception
Vector is located at a fixed-mapped address, the hypervisor
is not able to move the virtual address 0x8000 0000 to a
different physical address attending the Guest OSs’ needs.
The same scenario description can be applied to the ksegl
segment, when the hypervisor tries to virtualize a given de-
vice. In this case, providing virtualization in a system un-
der such circumstances implies in complex modifications in
the Guest OS, in a technique named as para-virtualization.
However, we aim to build a full-virtualization system where
no software efforts on the Guest OS are required whatso-
ever. Therefore, aiming to support full-virtualization on a
MIPS 4Kc core, we proposed two main modifications on the
processor’s core:

e removing the all virtual memory segments, specially
the fixed-address segments (kseg0 e ksegl), and;

e disabling the Memory Management Unit MMU when
the Kernel mode is active.

Part B of the Figure 3 shows the resulting flattened mem-
ory. Now, the hypervisor has total control of the memory

when using the MMU. However, once the MMU has been
turned on there is no way to turn it off again. This is neces-
sary to return to the hypervisor code after a VM execution.
Thus, we modified the MIPS 4Kc core in order to turn off
the MMU when the Kernel mode is active. More details
about the hardware support for virtualization on the MIPS
4ke can be found in [2].

4.2 Software aspects

Figure 4 depicts a general view of our hypervisor com-
posed of the following modules: (i) Hardware Abstraction
Layer (HAL), used to isolate layers, such as domain and
scheduler from the further hardware details. It merges drivers
interface, along with device drivers implementation, besides
handling the VCPUs abstraction. The exception handler
and other low level facilities are implemented directly in as-
sembly aiming to obtain optimal performance; (ii) Memory-
Mapped 1/0 (MMIO), which manages the memory-mapped
devices, including the hypercalls’ subsystem; (iii) ADU Con-
trol Layer dealing with the ADUs; (iv) Real-time and Best-
effort schedulers, responsible to implement the EDF (for
real-time constraints) and best-effort scheduling policies; (v)
Dispatcher, responsible for dispatching the chosen VCPU to
the physical CPU; and (vi) Toolkit that reunites a collec-
tion of software facilities, such as linked-list manipulation
procedures.

Hypervisor

Dispatcher

Best-Effort

Real-time Scheduler Scheduler

ADU Control Layer

HAL
Drivers interface

| Hypercall " Timer " UART ” Xil;?g

s 1P
S

Exception Handler

Hardware

Figure 4: Hypervisor block diagram

Hypercalls. The hypervisor implements the hypercall
concept to allow an ADU to instantiate RT-VCPUs. Hy-
percalls are widely used in para-virtualization based ap-
proaches, where the GuestOS needs to be modified to in-
voke hypercalls instead of use privileged instructions. In
our case (full-virtualization) we use the hypercalls concept
exclusively to perform proper RT-VCPUs instantiation. It is
important to highlight that our technique does not require
any modification of the OS to be virtualized, thus saving
engineering efforts and time-to-market. However, if the sys-
tem designers wish to enable real-time support for a certain
guestOS, they may choose to implement our hypercall sub-
system, giving to the guestOS the ability to start real-time

tasks in a bare-metal setup. We choose do not support dy-
namic instantiation of BE-VCPU, since, its behaviour is ana-
logue to a task instantiated by a multi-processed guestOS in
the sense both are best-effort.

Global Best Efort Queue

BE- BE- BE- BE- BE-
VCPU1 VCPU2 VCPUs VCPUs VCPUs

\
/! CPUo0 CPU1 CPUn \
/ local RT_QUEUE local RT_QUEUE local RT_QUEUE

)
/
/
/

- Best-Efort VCPU

\ /
\ g - Real-Time VCPU
\

--- Best-Efort Scheduler

\
/
ﬁ CPUo | | CPU1 || CPUn | —— Real-Time Scheduler

Figure 5: Real-time and best-effort multiprocessor
scheduler.

Scheduler. The hypervisor implements both Earliest
Deadline First (EDF) [10] and best-effort (round-robin)
policies to deal with RT-VCPUs and BE-VCPUs, respec-
tively. For the BE-VCPUs implementation, a single global
best-effort queue is managed, while RT-VCPUs are kept in
local individual queues per processor. The EDF is the main
hypervisor’s scheduler and it has higher execution priority
over the best-effort scheduler, which will not suffer from
starvation since we use time reservation for it. Figure 5
presents this two-level scheduling scheme, where RT-VCPUs
and BE-VCPUs are placed in different positions (global and
local individual queues). The EDF scheduler requires dead-
line, period, and capacity real-time parameters which are
received from the guestOS during the hypercall invocation
for a RT-VCPU instantiation.

Scheduling strategy. This sample will illustrate our
scheduling strategy where both EDF and best-effort sched-
ulers cooperate on a multiprocessor platform aiming to in-
crease the CPUs utilization. Assuming two physical CPUs
for the execution of 2 BE-VCPUs (kept in the global BE
queue) and 4 RT-VCPUs (0 and 1 assigned to CPU 0 and
2 and 3 assigned to CPU 1), the following real-time param-
eters*: (period p and capacity ¢): (i) RT-VCPU 0: p =5
and ¢ = 3; (ii) RT-VCPU 1: p =4 and ¢ = 1; (iii) RT-VCPU
2: p=5and c=2; (iv) RT-VCPU 3: p =4 and c = 1; and
the following best-effort parameters: (v) BE-VCPU 0: pri-
ority 1, and; (vi) BE-VCPU 1: priority 4. Figure 6 depicts
this scheduling scenario during 20 time slices (ticks). Each
RT-VCPU is scheduled according to the EDF policy on the
physical CPU where it was previously designated. However,
the BE-VCPUs can migrate among CPUs aiming to increase
the utilization of the idle CPUs. The circle 1 in the figure
indicates the BE-VCPU 0 executing on CPU 1, since, the
RT-VCPU 2 and 3 are waiting for their release time. For the
circle 2 we have the same scenario, but, the circle 3 shows
the BE-VCPU 0 executing on CPU 0. Finally, in the circle
4 and 5 the BE-VCPU 0 turns to CPU 1. Similarly, the
BE-VCPU 1 migrate among the physical CPUs.

4For sake of simplicity we are assuming period and deadline
values to be the same.

Deadlines signalized by thicker marks

]

RIVCPUO T T T ¢ T T v T v 111

| [Lt L !

LI G0 o o o e s o e B -t e e e |
L Y e ey cPuo

BEVCPUO | T T T T T T 111

I S R N I R EAT A I B R

BEVCPUl | T Tt 11

[}
RT_VCPU 3 'H_ﬂ } JI { | Jl_ |
1) 2) 4) 5) CPU1
O R | I O T I I |
F———— F——t——+—————t
0123456 7 89 1011121314 1516 17 1819 20

—l
_Time Slice

BE-VCPU 1

Figure 6: Real-time and best-effort multiprocessor
scheduling example.

Time Reservation. To avoid starvation of BE-VCPUs,
we adopted a time reservation strategy where the designers
must indicate the system load capacity for real-time pur-
poses desired for each ADU. For example, on a system with
1 CPU and 2 ADUs, the designers may attribute upto 30% °
of the CPU time for each ADU to use for real-time purposes,
resulting in 40% of CPU time available to BE-VCPUs. From
the ADU point of view, this share of the system’s entire ca-
pacity is seen as its own entire real-time capacity. All the
RT-VCPUs created by this ADU share its slice of the entire
system’s capacity. If an ADU tries to allocate more than
its maximum real-time capacity, new RT-VCPUs will fail to
be created as they will not succeed through the admission
control algorithm. In this case, the guestOS will receive an
error message from the hypercall subsystem.

Admission Control. Whenever an ADU requests the
creation of a new RT-VCPU, the admission control algo-
rithm checks if there are enough available physical resources
that can satisfy the RT-VCPU requirements. In the partic-
ular case of multiprocessor systems, even if there is enough
free capacity in the entire system, this may not guarantee
the new RT-VCPUs allocation since this capacity is actu-
ally fragmented among several physical CPUs. Thus, there
is indeed an efficiency issue regarding the local CPU queues
in the real-time scheduler. However, our model utilizes a
shared memory where is possible to move RT-VCPUs among
CPUs aiming to reduce this problem.

Inter-domain communication. Direct communication
among ADUs is not possible since our model imposes mem-
ory isolation between them. However, our proposal is flexi-
ble enough to support typical sockets style [17] communica-
tion among ADUs. Thus, the hypervisor may implement a
network layer in order to route Internet Protocol (IP) data-
grams [17] between ADUs. Still, when communication with
the external world is desired the hypervisor may virtualize a
network adapter providing network capabilities to the plat-
form. Nevertheless, in the embedded system context, the
sockets communication scheme can be expensive in terms of
system overhead. Aiming to provide a lightweight communi-

®The designers must determine the amount of CPU time
needed to attend the ADU’s real-time constraints, in this
example, 30% for each ADU.

cation subsystem among ADUs we implemented a message
passing scheme where the hypervisor is responsible for per-
forming a copy from the sender ADU’s memory area into the
receiver’s ADU’s area. Whenever a guestOS desires take ad-
vantages of the proposed architecture it must implement a
proper driver that conforms to our communication protocol.

5. RESULTS AND DISCUSSION

In order to validate our platform we used OVP [14], which
is a hardware simulator for MPSoCs, instruction-accurate
and able to simulate an entire platform. OVP offers a large
open-source model database of IP cores, supporting several
processor families (such as MIPS, ARM and PowerPC) be-
sides many peripherals. Still, it performs fast simulation
aiming to deliver a virtual platform for embedded software
development without the need of the real hardware platform.

In our knowledge, the scheduler jitter and the standard de-
viation are the most important time aspect to measure the
hypervisor overhead. The scheduler jitter is the undesired
deviation time from the exact moment that a VCPU should
execute, caused by the new software layers imposed by the
hypervisor, resulting in an execution delay. This delay af-
fects the total execution time available to the VCPU, conse-
quently, impacting in the system performance. For real-time
purposes is important to keep the jitter as small as possible.
Still, for a good predictability of the system behaviour the
jitter must be constant as well.

Our experiment consists in measurement of the jitter for
RT-VCPUs scheduling in 3 different system configurations
composed by 1, 2 and 4 physical CPUs. For each config-
uration, we varied the number of RT-VCPUs in execution,
for 1, 2 and 4. For all tests, a ADU, executing onto a BE-
VCPU, is responsible to start the RT-VCPUs remaining idle
(without affecting the behaviour of other VCPUs). The OS
running in the ADU is a simple OS, called BareOS, which
was designed by us in order to validate the hypervisor. The
BareOs is able to initialize the CPU (VCPU in case it is
virtualized) and implements several facilities to the applica-
tions, in special, communication subsystem, device drivers
and the hypercall for instantiation of RT-VCPUs. Each in-
stantiated RT-VCPU execute the same application, called
RT-App, which is responsible to measure the jitter. It is
important highlight that in our virtualization model, a RT-
app does not suffer influences from the best-effort OS (in
this case the BareOS), since, it is running onto a RT-VCPU
wich will be scheduled directly by the hypervisor’s sched-
uler. OVP was configured to simulate the rate of 100 MIPS
(Millions of Instructions Per Second). Since the 4Kc core
implements a load/store architecture with single-cycle ALU
operations, it is possible to approximate the core frequency
to 100MHz.

The jitter was obtained calculating the time difference
from the exact moment the RT-App should start to exe-
cute to the moment it effectively started. When scheduled,
the RT-App reads the current time from the hardware timer
determining the jitter and outputing the result through the
serial port for analysis. The average jitter was calculated in
microseconds from 1000 scheduling rounds.

The Tables 1, 2 and 3 show the individual average jitter
(A.J.) and the standard deviation (S.D.) for each one of the
RT-VCPUs for the system configuration of 1, 2 and 4 CPUs,
respectively. For the Table 1, we can identify that the jitter
slightly increased associated with the the number of RT-

Table 1: Hypervisor versus Number of RT-VCPUs
for 1 CPU.

#RT-VCPUs RT-VCPUID A.J. (us) S.D. (us)
1 1 163.99 1.00
9 1 165.01 1.05
2 164.98 0.57
1 166.94 0.57
4 2 166.95 1.93
3 166.97 0.98
4 166.98 0.60

VCPUs. With 1 RT-VCPU the average jitter is 163.99us
and with 4 the smallest average jitter is 166.94us to the RT-
VCPU 1. This small increase associated to the number of
RT-VCPUs is expected because more RT-VPCUs add more
complexity to the EDF scheduler. However, all RT-VCPUs
executing on the same CPU are likewise affected, since, for
4 RT-VCPUs the average jitter is about 166.9us. Consider-
ing that our scheduler quantum is 10ms a jitter of 166.9us
represents a overhead of 1.67% introduced by the hypervi-
sor. Still, the standard deviation help us to understand how
predictable our real-time scheduler is. The worst stantard
deviation was 1.93 ps to the RT-VCPU 2 in the 4 RT-VCPUs
scenary. Such small standard deviation shows that our sys-
tem is very predictable for 1 CPU even when the number of
RT-VCPUs increase.

Table 2: Hypervisor versus Number of RT-VCPUs
for 2 CPUs.

#RT-VCPUs RT-VCPUID A.J. (us) S.D. (us)
1 1 316.51 19.47
) 1 378.85 30.53
2 378.60 24.66
1 323.92 27.00
. 2 323.97 30.90
3 324.02 33.25
4 323.88 24.99

Results for 2 CPUs presented on Table 2 shows that the
average jitter increase. This happens due to data contention
in the hypervisor shared structures. Although the hypervi-
sor uses a local memory to keep data for each processor,
there are common subsystems that are shared among all
CPUs. However, similar to the results in the Table 1, the
RT-VCPUs are likewise affected, for example, whith 4 RT-
VCPUs the smallest average jitter is 323.92us to the RT-
VCPU 1 and the worst is 324.02us to the RT-VCPU 3. The
worst average jitter of 378.85us represents a hypervisor over-
head of 3.78%, which we consider very optimistic. Still, the
addition of a second CPU increased the standard deviation
substantially being 33.25us in the worst case suffered by the
RT-VCPU 3 on the 4 RT-VCPUs scenary. A decrease in the
system predictability is the onus to obtain more processing
power.

Finally, the results for 4 CPUs showed in Table 3 presents

Table 3: Hypervisor versus Number of RT-VCPUs
for 4 CPUs.

#RT-VCPUs RT-VCPUID A.J. (us) S.D. (us)
1 1 314.51 42.41
9 1 299.54 28.27
2 299.72 28.33
1 297.57 6.03
4 2 297.58 4.36
3 297.94 5.99
4 297.78 6.24

an average jitter close to the Table 2 for 2 CPUs system,
but, lightly smaller. In this case the worst average Jitter is
314.51us to the 1 RT-VCPU configuration and the smaller
is 297.57us to the RT-VCPU 1 in the 4 RT-VCPUs scenary.
The standard deviation in almost all cases is close or smaller
then in the 2 CPUs system, except in the case of 1 RT-VCPU
which achieved 42.41us.

From the overall results we can conclude two main points
about our hypervisor: i) it is highly predictable for mono-
processor platforms and presents a low overhead. ii) it is
scalable in multiprocessor systems, although, the system
will suffer a penalty in terms of overhead and predictability.
However, we believe that our hypervisor’s scheduler can be
optimized for multiprocessor systems in order to decrease
the overhead and improve the predictability.

6. FINAL REMARKS AND FUTURE WORK

In this paper we presented a virtualization model intended
for multiprocessor embedded systems with real-time con-
straints where no change in the GuestOS is required and
hardware support for virtualization is possible. The main
advantages of our approach are: (i) the absence of required
GuestOS’s changes; (ii) the strong secure domain offered
when hiding the hypervisor’s memory from virtual machines
and the virtual domains’ memories among themselves; and
(iii) real-time support through a typical real-time schedul-
ing policy (EDF). Results were taken aiming to measure the
hypervisor’s real-time responsiveness and predictability as
well the overhead introduced by the hypervisor itself. Fu-
ture works include the study of techniques to decrease the
average jitter and the standard deviation in the hypervisor’s
scheduler for multiprocessor systems.

7. REFERENCES

[1] Mesovirtualization: lightweight virtualization
technique for embedded systems. Software
Technologies for Embedded and Ubiquitous ..., 2007.

[2] A. Aguiar, C. Moratelli, M. Sartori, and F. Hessel.
Adding virtualization support in mips 4kc-based
mpsocs. In Quality Electronic Design (ISQED), 2014
15th International Symposium on, pages 84-90, March
2014.

[3] ARM. Virtualization extensions - arm.
http://www.arm.com/products/processors/
technologies/virtualization-extensions.php, Accessed,
August 2013, 2013.

[4]

[15]

[16]

F. Armand and M. Gien. A Practical Look at
Micro-Kernels and Virtual Machine Monitors. In
Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, 2009.

M. Asberg, N. Forsberg, T. Nolte, and S. Kato.
Towards real-time scheduling of virtual machines
without kernel modifications. Emerging Technologies
& Factory Automation (ETFA), 2011 IEEE 16th
Conference on, 2011.

J. Brakensiek, A. Droge, M. Botteck, H. Hirtig, and
A. Lackorzynski. Virtualization as an enabler for
security in mobile devices. ITES ’08: Proceedings of
the 1st workshop on Isolation and integration in
embedded systems, 2008.

A. Cohen and E. Rohou. Processor virtualization and
split compilation for heterogeneous multicore
embedded systems. Design Automation Conference
(DAC), 2010 47th ACM/IEEE, 2010.

G. Heiser. The role of virtualization in embedded
systems. In Proceedings of the 1st workshop on
Isolation and integration in embedded systems, IIES
'08, pages 11-16, New York, NY, USA, 2008. ACM.
G. Heiser. The role of virtualization in embedded
systems. ... on Isolation and integration in embedded
systems, 2008.

W. H. Hesselink and R. M. Tol. Formal feasibility
conditions for earliest deadline first scheduling.
Technical report, 1994.

Intel. Hardware-assisted virtualization technology.
http://www.intel.com/content/www/us/en/
virtualization/ virtualization-technology/hardware-
assist-virtualization-technology.html, Accessed,
August 2013, 2013.

Y. Kinebuchi, W. Kanda, Y. Yumura, K. Makijima,
and T. Nakajima. A hardware abstraction layer for
integrating real-time and general-purpose with
minimal kernel modification. In Future Dependable
Distributed Systems, 2009 Software Technologies for,
pages 112-116, 2009.

T.-H. Lin, Y. Kinebuchi, H. Shimada, H. Mitake,
C.-Y. Lee, and T. Nakajima. Hardware-Assisted
Reliability Enhancement for Embedded Multi-core
Virtualization Design. Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2011
IEEE 17th International Conference on, 2011.

O. OVP. Open virtual platforms.
http://www.ovpworld.org/, Accessed, June 2012,
2012.

G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures.
Commun. ACM, 17(7):412-421, 1974.

D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang.
SmartVisor: towards an efficient and compatible
virtualization platform for embedded system. [IES
’09: Proceedings of the Second Workshop on Isolation
and Integration in Embedded Systems, 2009.

A. S. Tanenbaum and D. J. Wetherall. Computer
Networks. Prentice Hall, 5th edition, 2011.

M. Technologies. Processor core family software user’s
manual.
http://www.usrmodem.ru/files/adsl/mips.pdf,
Accessed, June 2012, 2012.

(19]

20]

Y. Wang, J. Zhang, L. Shang, X. Long, and H. Jin.
Research of real-time task in xen virtualization
environment. In Computer and Automation
Engineering (ICCAE), 2010 The 2nd International
Conference on, volume 1, pages 496-500, 2010.

S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: Towards
real-time hypervisor scheduling in xen. In Embedded
Software (EMSOFT), 2011 Proceedings of the
International Conference on, pages 39-48, 2011.

