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Abstract

In order to optimize the user experience and solve logistical
and security issues, many systems require the physical location
information from objects and people. Indoor positioning
systems (IPSs) based on more than one technology can
improve localization performance by leveraging the
advantages of different technologies. This work proposes a
hybrid IPS able to estimate the item-level location of
stationary objects using off-the-shelf equipment. By using
RFID technology, machine learning approaches based on
artificial neural networks (ANNs) and support vector
regression (SVR) are proposed. A k-means technique is also
applied to improve accuracy. A computer vision (CV)
subsystem detects visual markers in the scenario to enhance
RFID localization. To combine the RFID and CV subsystems,
a fusion method based on region of interest (ROI) is proposed.
We have implemented our system and evaluated it using real
experiments. The localization error is between 9 and 29¢m in
the range of 1 and 2.2m scenarios. In a machine learning
approach comparison, ANN performed 31% better than SVR
approach.
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1. Introduction

Localization of objects and people in indoor environments
has been widely studied mainly because of security and
logistical issues. Indoor environments have a high density of
obstacles and interference phenomena in a reduced space,
which makes them more complex than outdoor environments.
Due to these reasons, localization systems focused on indoor
environments bring new challenges for the future of
communication systems [1,2].

Many applications require more precise information on the
location of smaller objects (item-level). For example, item
retrieval is a natural extension of traditional inventory systems.
In this application, a human or robot needs to find the location
of a given item, whereas the location must be accurate enough
for the item to be collected properly even if there are nearby
objects or any other type of interference.

The motivation of this work is to propose a low-cost and
high-accuracy IPS that can be used in a large amount of items
(as we have in logistics/distribution centers). The current IPSs
do not meet these requirements and, nowadays, companies
choose to manufacture again goods that are lost in distribution
centers, increasing their production costs. There are few
researches on low-cost IPSs with item-level accuracy applied
to stationary objects. This work proposes a new IPS to meet
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these requirements. To achieve a better accuracy, the proposal
also aims to define a new hybrid mechanism based on RFID
and computer vision (CV). This work presents a hybrid IPS
able to perform item-level localization of stationary objects
using off-the-shelf equipment.

Our contribution to the state of indoor positioning systems
are novel machine learning models and a sensor fusion method
able to perform item-level localization of stationary objects
using off-the-shelf equipment. A novel multi-frequency
technique is proposed to allow the use of off-the-shelf RFID
equipment. Besides that, passive RFID tags and a cheap
camera are used, which represents reduction in the cost of
infrastructure. Additionally, while many IPSs work only under
dynamic scenarios, our system is able to localize objects on
stationary environments.

The remainder of this paper is organized as follows:
Section 2 presents a summary of related work. An overview of
the proposed system is provided in Section 3. Sections 4 and 5
discuss the offline and online phases of the proposed system,
respectively. Experiments and results are presented in Section
6 and finally, Section 7 contains the conclusion.

2. Related Work

Technologies used in IPSs have different costs and
performance. For instance, usually the cost of a RFID passive
system is lower than systems based on technologies like active
RFID, ultrasound, infrared and UWB. Another systems, like
WiFi and ZigBee, are not so expensive but they have low
accuracy (2 m to 3 m) or require a large infrastructure (i.e. a
large number of antennas) to achieve an item-level
performance [3, 4]. In literature, there are surveys that
compare the state-of-art of [PSs from distinct technologies [5].

In our previous work [6], a machine learning model based on
support vector regression (SVR) is proposed for localization of
stationary objects using off-the-shelf equipments. This model
learns RSSI fingerprints during an offline phase and then predict
tags locations in an online phase, where no reference tags are
needed. Experiments were performed in four different places
inside a laboratory where tags were attached on a whiteboard,
which is 1.5 m in width and height. This technique presented a
location error between 17 and 31 ¢cm in 2.25 m? area coverage.

Wille et al. [7] presents a support vector regression (SVR)
localization model for a medical navigation system. In order to
train and run the SVR model, the RFID phase difference is used
as a nondeterministic indicator. Phase data were collected by
applying grids with 5 and 10 mm step sizes. The results show
an accuracy between 0.6 and 6.6 mm.

In [8], a back-propagation network (BPN) model is fused
with the LANDMARC system. First, LANDMARC uses
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measured RSSI values to calculate target tag coordinates. Due
to the dynamic relationship between RSSI and distance, the
BPN adjusts the calculated coordinates to improve location
accuracy. Results show a 56 cm error rate when reference tags
are 30 cm apart from each other. Contrary to our approach,
reference tags must be present during the online phase, which
can hamper the system’s deployment and maintenance.

An RFID localization system combined with other
technologies such as optical, inertial and ultrasonic systems is
a growing trend in the field. Nick et al. [9] presents a tracking
system for trolleys carrying boxes leaving or coming into a
mail distribution center. Using a RFID reader and four
antennas attached to the ceiling, the relations between the
RSSI and different measured distances are stored and later
estimated. In the CV system, sample images from the target
object are captured, and thresholding and morphological
operations are then applied to recognize the object in the
image. Sensor data fusion is performed by a constrained
unscented Kalman filter (CUKF) technique. Localization
errors were 26cm and 36cm for stationary and moving
scenarios, respectively.

3. System Overview

This IPS proposal is applied to a scenario where RFID tags
and visual markers are attached to objects we need to locate.
The RFID tag and its visual marker uniquely identify each
object in the scenario. In this work, each pair of RFID tag and
visual marker is simply referred as a marker. Thus, the IPS
must be able to estimate the position of each marker present in
the scenario.

The proposed system is divided into two subsystems. The
first employs machine learning models to predict the location
using RFID technology, while the second uses a camera and
CV algorithms to enhance the predictions estimated by the first
subsystem. The IPS works in two phases, online and offline.
The offline phase is performed only once for the chosen
scenario. The online phase is run as often as necessary for each
target object we need to locate. Figure 1 illustrates the two
subsystems, processes, phases and the flows between them.

4. Offline phase

The proposed RFID subsystem predicts the position of
each tag through RSSI values. As a probabilistic model is
proposed, data collection from reference tags is needed. In this
step, reference tags are uniformly distributed in the
environment. On the experiment test bed, tag positions were
evaluated in diagonal mesh and simple grid scenarios. For the
rest of this work, diagonal mesh design (Figure 2) was chosen
due to its better performance.

After initial configuration, reference tag positions are
stored in the system. Spatial coordinates (z,y) are translated
to coordinates of a virtual grid over a scenario picture (Figure
2a).

Reader antenna position plays a critical role in IPS accuracy.
For each axis of the virtual grid, antennas were arranged such
the RSSI values decrease as the distance increases. Thus, at
least two antennas are needed in a 2D scenario (z axis and y
axis).
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Figure 1: Block diagram of system design. The inputs are the
RFID readings and the camera picture. The output is the target
object position.

After the configuration steps, the RFID reader is turned on
for a fixed time range, and the system gathers the following
information: the frequency in MHz, the antenna ID that senses
the tag, the RSSI, and the position (x, y) of the reference tags
present in the scenario.

4.1 Multi-frequency

In meeting federal regulations like ANATEL (Brazil) and
FCC (USA), UHF RFID equipment cannot stay on the same
frequency for more than 0.4seconds in a 10second
range [10, 11]. Addressing this requirement, RFID readers hop
on to each available 250 KHz channel, limiting the ability of
running on a fixed frequency. If off-the-shelf equipment are
used in IPSs, this feature can be a constraint. For instance,
RSSI values trained at frequency 915.25 MHz may have
significant variation from values measured in the online phase
at frequency 923.25 MHz.

To overcome these constraints, we propose to partition the
data collected in both phases by operation frequency. Thus, in
the offline phase, machine learning models for each detected
frequency are designed and trained. Accordingly, in the online
phase, each model uses data from the respective frequencies to
predict objects’ location. Figure 3 illustrates an example of
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(a) Virtual grid. (b) RFID components position.
Figure 2: Virtual grid over a picture captured from the training
scenario (a) and positioning of reference tags and antennas over

the diagonal mesh design (b).

this technique. This method intends to partition RSSI values of
distinct frequencies, avoiding the aforementioned constraints.
In this way, statistical localization systems can use equipment
that complies with federal regulations.

4.2 ANN model

Data gathered in the offline phase feed the ANN (Artificial
Neural Network) training process. All data are used, and any
aggregation or data removal is performed at this step. As stated
in Section 4.1, the data are partitioned by operation frequency,
and a neural network model is created for each frequency. RSSI
values for each antenna are the network inputs, and the virtual
grid coordinates (z, y) of each reference tag are the target output
data.

Reference tag data are divided into three subsets: training,
validation and testing, randomly divided into the ratio of 0.7,
0.15 and 0.15. The training set is used for computing the
gradient and updating the network weights and biases. The
validation set ensures that there is no overfitting in the final
result. Testing set error is useful to indicate a poor division of
the data set.
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Figure 3: ANN models for each frequency.
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A feedforward backpropagation network with four layers is
modeled, which consists of n neurons in the input layer, 24
neurons and 12 neurons in each hidden layer, and 2 neurons in
the output layer. The number of neurons in the input layer
must be equal to the number of antennas in the scenario.
Figure 3 shows the network configuration. The hidden layer
numbers have been chosen because beyond or below these
numbers, the performance does not improve and
computational time increases considerably. The
Levenberg-Marquardt backpropagation algorithm was used to
update weight and bias values. The mean square error (MSE)
(also known as the validation error) was used to measure the

performance of the network.

4.3 SVR model

Support vector machine (SVM) is a supervised learning
algorithm for classification. It has been modified to be applied
in non-linear regression models, becoming known as support
vector regression (SVR) [7, 12]. The localization problem of
this work is a regression problem instead of a classification
problem. As aforementioned in Section 4, the target marker
location is given by spatial coordinates rather than by region or
proximity.

In our proposal, we use a Matlab implementation [13] of
SVR with a wavelet kernel [14]:
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where x, z and a are the wavelet dilation and translation
coefficients. More details and concepts about SVR can be
found in Cristianini [15] and Smola [12].

SVR is modeled similar to ANN, where the RSSI values
sensed by each antenna is presented as training datasets and
the virtual grid coordinates of each reference tag are the output
data. In SVR, only one target value is possible for each
calculus, so we create one SVR model for each target
coordinate x and y. The multi-frequency technique (Section
4.1) is also applied. We cross-validated values for SVR
coefficients, and based on the results, they were set as
€ = 0.00025, ¢ = 40000 and a = 4 (wavelet).

5. Online phase

In this phase, a sensor fusion approach is proposed. Sensor
fusion seeks to improve accuracy and precision by integrating
many location or positioning systems to form hierarchical and
overlapping levels of resolution [16]. This phase runs the
RFID and visual subsystems to determine the final location of
the target object. RFID subsystem estimates target object
positions using the trained models and the k-means method. In
this phase, the RFID subsystem aims to detect regions of
interest (ROIs), which will later be used by the visual
subsystem to estimate a more accurate location of the target
object. A ROI can be defined as an area of limited size,
smaller than the size of the complete scenario. Because other
localization techniques can be applied to this small area, a
better performance in the global localization can generally be
achieved.

In the online phase, no reference tags are needed in the
scenario, and an unknown RFID tag is read during a fixed
period of time. The RFID reader collects the following data:
antenna ID, frequency and RSSI. The multi-frequency
technique (Section 4.1) is also applied in this phase.

Once the network has been optimally trained, data from an
unknown tag are presented to estimate its location. For each
frequency, a respective ANN model is automatically chosen,
and RSSI data from each antenna are presented as input to the
network. Tag location (virtual grid coordinates) is predicted and
presented as the network output.




In the SVR approach, the online procedure is very similar
to that of the ANN model. The trained SVR model receives
RSSI values from an unknown tag, and tag location is estimated.
In SVR, each output coordinate has its own SVR model. In
this way, each respective model is evaluated in order to predict
coordinates x and y.

5.1 K-means

As the RFID reader gathers dozens of readings for each tag,
some technique is needed to provide the final position of the
target object. An initial evaluation shows that a simple mean of
the predictions would not bring about the desired results. Thus,
the k-means technique is used to merge these predictions and
provide a reasonable location.

In our approach, the estimated tag locations, obtained by
the machine learning technique, are observations of the
k-means model, and the squared Euclidean is the measured
distance. Since predicted locations from models of a given
frequency may be different from models at other frequencies,
the variable £ is defined as £ = d — 1, where d is the number
of detected frequencies. In this way, the predicted values from
noisy frequencies are more likely to be grouped in their own
clusters.

Figure 4 shows clusters with samples from four operation
frequencies between 923 and 924 MHz. These samples were
extracted from a set of estimated positions for a given tag.
Cluster A has more similar locations and it is the best weighted
cluster.
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Figure 4: K-means clustering applied to predicted locations
over virtual-grid coordinates (z, y).

If the system is running in RFID-only mode, the centroid
location of the best weighted cluster is defined as the final
target location. Otherwise, centroids and weights from all
clusters are given as ROIs for localization enhancement using
CV, presented in the next section.

5.2 Computer Vision for fine localization

To refine the results obtained by the RFID subsystem, we
propose a sensor fusion based on RFID estimates and CV
recognition. This work proposes a multiple ROI approach,
where ROI is a small image extracted from the scenario
picture that will be analyzed using CV. As the RFID
subsystem estimates more than one location, CV method
explores multiple regions in order to find a visual marker.

Figure 5: GetVisualMarkerLocation(img, C)

input: img, photo captured from scenario

input: set C, k-means clusters positions (C?) and weights (C'*)
output: Final marker location

1: bestWeight < 0, M < (,i < 0

2: foreach cluster in C do

3 subI'mg < Croplmage(img, cluster?)

4: S < DetectShapesPos(subImg)

5: foreach shapePosition in S do

6: MY + GetlmagePos(shapePosition)

7 M* «+ cluster™

8
9

P14+ 1
: if cluster®™ > bestWeight then
10: bestWeight <+ cluster™
11: end if
12: end for
13: end for

14: if M # () then > Visual markers found
15: B <+ {indexes(M™) | M = bestWeight}

16: F <« {M?|i€ B}

17: return (L S2I=TEF LSSy

18: else

19: return C7, where i = max(C"))

20: endif

> No markers found (RFID-only)

We use a simple visual marker represented by a black
square on a white background. Each side of the visual marker
is 4.5 cm long. Some advantages of this type of marker are its
easy creation, low cost, fast detection and good accuracy.
Because the marker is black and white, ambient lightning
issues also tend to be reduced. This kind of marker also
facilitates the adoption of another visual marker and CV
algorithm as they do not need to be uniquely identified.

The Algorithm in Figure 5 shows the sequence of
operations in the visual subsystem. For each k-means cluster, a
small image of the scene is cropped, creating a sub-image. The
center of the sub-image is based on the k-means cluster
centroid location and its size is between 15% and 30% of the
original scenario photo.

To detect the square shape in the sub-image (Alg. 5, Line 4),
a canny edge detector is employed. The threshold value is set
to 180, and the edge linking value is 120. From the canny edges
image, polyline contours are detected and shapes whose angles
are between 80 — 100 degrees are selected. If square shape area
is bigger than a configurable minimum size, it is recognized as a
visual marker. We used EmguCV (.NET wrapper to OpenCV)
[17] to implement this subsystem.

Finally, the target location is given by the position of the
visual marker detected in the better weighted cluster position
(Alg. 5, Lines 15-16). If more than one visual marker is
detected in this cluster, the simple centroid of all finite points
is calculated. If no visual marker is detected, the RFID-only
location is given.

6. Experiments and Results

The experiments were performed in a laboratory (10 m x
7m). Markers (tag and visual) were attached to a whiteboard,
which is 1.5m in height and width (2.25m? area). In the
offline phase, reference tags were placed in diagonal mesh
over the board and antennas positioned on each side, as stated
in Section 4. Each reference tag was placed at 28cm
equidistant from each other, diagonally.

The RFID reader operation frequency was defined to use
the follow values: 923.25, 923.75, 924.25 and 924.75 MHz.
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Reader power was set to a maximum value of 32.5dBm. For
visual localization, an inexpensive off-the-shelf camera with
1.3 megapixels (1280x960) and a 1/4” sensor was used. This
type of camera was used to demonstrate that the system is able
to operate with low-cost equipment and low-resolution images
that allow fast CV analysis.
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Figure 7: Cumulative error distance for both machine learning
approaches.

The system was evaluated in four scenarios: S1, S2, S3 e
S4. In each scenario, the distance between camera and markers
was 100, 140, 180 and 220 cm, respectively. RFID reader
antennas were positioned under and to the right side of the
whiteboard. During the offline phase, 13 reference tags were

used, and the RFID reader remained on for 10s. The number
of samples gathered to feed the models was 500 on average.

The training set MSE of neural network was 1.14 cm. Figure
6 shows the test bed environment and all system components.

In the online phase, the experiment’s aim was to locate six
target markers distributed in the environment, of which three
were in locations already used in the offline phase, and three
were in unknown locations. For each tag, RFID reader remained
active for 3s. Minimum area of the visual marker was 40 px.
ROI size was defined to 30, 22, 17 and 15% for scenarios S1,
S2, S3 and S4, respectively.

Three validation tests were performed. The first was
RFID-only, i.e., visual markers were not present. In the dense
test, 16 markers were attached on the whiteboard. In this test,
the camera captured an image with all visual markers
simultaneously. In the last test, referred to as the “clean” test,
just one visual marker was present in the environment at each
run.

Typically, localization error is given by the Euclidean
distance between estimated and actual locations. The
cumulative distribution functions (CDFs) of the error distance
for the ANN and SVR models are presented in Figures 7a and
7b, respectively.

CDF results show the localization error is O cm for most
experiments. For ANN model, 75% of the clean tests show an
optimal accuracy (0cm) and both hybrid tests do not exceed
40cm error. The hybrid system did not detect the visual
marker in 20% of the clean tests. In this case, RFID-only
location is used as output. In dense test, the system detected a
wrong visual marker in 25% of the experiments, most of them
on long distances scenarios. To summarize the localization
accuracy for each scenario, the root mean square error
(RMSE) is calculated as the difference between the predicted
and actual location (Table 1).

Table 1: Localization performance (RMSE in cm) for each
scenario, validation test and machine learning approach.

ANN SVR
Seenaie RFID-Only Denileybrlglean RFID-Only DenI;Ieybng lean
S1 12.1 12.2 9.4 17.6 284 16.8
S2 17.3 13.6 9.1 18.2 14.1 19.7
S3 333 23.7 229 30.2 26.8 28.4
S4 12.1 13.0 10.0 30.9 293 26.5
RMSE 20.6 16.3 14.1 25.0 254 233

In comparison between ANN and SVR approaches, the
ANN model has better performance than SVR in most
scenarios and tests. Overall results show that the ANN model
performs 31% better than the SVR approach on average.

The results for the ANN approach show a localization error
between 9 and 29 cm in the range of 1 and 2.2 m scenarios.
Scenario S3 has the worst performance, mainly because RFID
subsystem did not have a good accuracy due to multipath
effects and interferences present in online phase.

Focusing in the ANN model, the hybrid system has better
results than the RFID-only approach. Localization is improved
by 21% and 32% for dense and clean tests, respectively. This



demonstrates the effectiveness of the improvement brought
about by the integration of the visual subsystem, even using
simple visual markers and low-cost equipments.

The overall RMSE in dense and clean tests are 16.3 and
14.1 cm, respectively. Scenarios where the distance between
camera and markers are shorter have the best results. These
results demonstrate the system can be applied to item-level
localization. However, the approach still has some limitations
in scenarios where many items are close to each other.

In comparison to related works, in [7] the target scenario is
very small (millimeter scale) and a direct comparison is not
reasonable.  However, when considering the same ratio
between accuracy and reference tags distance, our system is
33% more accurate. The proposed hybrid system performs
40 cm better than a neural network RFID-based approach [§],
where the distance between reference tags is similar to our
work. Also, our IPS decreased the localization error in 45%
than other stationary hybrid system [9].

7. Conclusion

We present a hybrid system for item-level localization
focusing on stationary objects using off-the-shelf equipment.
From objects with RFID tags attached, the system locates them
precisely with the aid of visual markers. To achieve this goal,
we propose machine learning models that learn the RSSI
fingerprints and estimate the markers location. A
multi-frequency approach is proposed to overcome the
off-the-shelf RFID equipment limitations. To enhance the
localization a k-means technique and computer vision
algorithms were used.

Real-world experiments were performed to evaluate the
localization performance and to compare the machine learning
models.  Results demonstrate a 32% improvement over
RFID-only localization and a precision of 9.1cm in the
best-case scenario.

This system could provide in-depth distance to objects, if
extended to 3D scenarios. In future work, experiments in large
environments using multiple readers and cameras will be used
to test the system scalability.
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