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†Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)

Porto Alegre, Brazil
leonardo.amaral@acad.pucrs.br,

{sabrina.marczak, fabiano.hessel}@pucrs.br

Abstract—During the past few years, with the fast develop-
ment and proliferation of the Internet of Things (IoT), many
application areas have started to exploit this new computing
paradigm. The number of active computing devices has been
growing at a rapid pace in IoT environments around the world.
Consequently, a mechanism to deal with this different devices
has become necessary. Middleware systems solutions for IoT have
been developed in both research and industrial environments to
supply this need. However, decision analytics remain a critical
challenge. In this work we present the Decision Support IoT
Framework composed of COBASEN, an IoT search engine to
address the research challenge regarding the discovery and
selection of IoT devices when large number of devices with
overlapping and sometimes redundant functionality are available
in IoT middleware systems, and DMS, a rule-based reasoner
engine allowing to set up computational analytics on device data
when it is still in motion, extracting valuable information from
it for automated decision making. DMS uses Complex Event
Processing to analyze and react over streaming data, allowing
for example, to trigger an actuator when a specific error or
condition appears in the stream. The main goal of this work
is to highlight the importance of a decision support system for
decision analytics in the IoT paradigm. We developed a system
which implements DMS concepts. However, for preliminarily
tests, we made a functional evaluation of both systems in terms
of performance. Our initial findings suggest that the Decision
Support IoT Framework provides important approaches that
facilitate the development of IoT applications, and provides a
new way to see how the business rules and decision-making will
be made towards the Internet of Things.

I. INTRODUCTION

The term Internet of Things (IoT) was coined in 1998 [1]
and defined as the computing paradigm that allows people
and things to be connected Anytime, Anyplace, with Anything
and with Anyone, ideally using Any path/network and Any
service [2]. In this sense, there are current market statistics
and predictions that demonstrate a rapid growth in computing
device deployments related to IoT environments. By 2020, it
is estimated that there will be 50 to 100 billion IoT devices
connected to the Internet [3].

According to experts from industry and research, the IoT
introduction into the manufacturing environment is ushering
in a fourth industrial revolution called Industrial Internet
of Things (IIoT or Industry 4.0). The adoption of several

computing devices (RFID, sensors, and actuators) in industrial
environments has improved manufacturing processes and their
outcomes (e.g., cost savings, greater efficiency and speed,
smarter products and services). These statistics and facts imply
that we will be faced with a vast amount of IoT devices. In
this way, the properly use of device data with the assistance
of automated decision support systems can help companies to
grasp the emerging opportunities from the IoT and improve
their competitive advantage.

A huge number of applications requires continuous and
timely processing of information as it flows from the per-
ception layer. Examples include intrusion detection systems
which analyze network traffic to identify possible attacks;
environmental monitoring applications which process raw data
coming from sensor networks to identify critical situations;
or applications performing online analysis to identify trends
and forecast future values. This requirement lead us to a
question: How information systems working with IoT data
will overcome the inherent complexity of device discovery
and data volume in order to provide useful decision support?

To make it possible, streams of data from devices need to be
defined through the selection of devices, as well as the data in
motion (storage operation adds a great deal of unnecessary
latency to the process) need to be constantly transformed,
fused, and observed to enable automated actions. In this sense,
the challenge and time-consuming task is to select devices that
best suits with the IoT application requirements, and allow to
IoT software engineers to define business rules for automated
decision making over the vast amounts of data flowing from
the perception layer (streams of data from millions of devices)
to the application layer.

By analyzing others IoT middleware systems and frame-
works we found that they do not provide methods to allow au-
tomated decision making based on device data stream. Trying
to fill this gap, we propose in this work a software framework
composed of a rule-based decision management system and
previous works (COMPaaS [4], and COBASEN [5]). The
framework allows IoT middleware user’s engineers who are
not aware of devices domain and middleware patterns to be
able to define data streams through the discovery and selection
of devices which are registered in the middleware, and use
these data streams to define business rules for automated978-1-5090-1314-2/16/$31.00 c©2016 IEEE



decision management.
The remainder of this paper is organized as follows: Sec-

tion II highlights some important concepts, describes our pre-
vious works COMPaaS (Cooperative Middleware Platform as
a Service) and COBASEN (Context-based Search Engine for
Industrial IoT), architectures and reviews relevant literature.
Section III presents our system approach. Section IV provides
implementation details including tools, software platforms,
and data sets used in this work, and our evaluation. Section V
discusses some important issues addressed during this work.
Section VI concludes the paper with final considerations and
prospects of future work.

II. BACKGROUND AND RELATED WORK

In this Section we briefly describe IoT middleware and
IoT search engine systems focusing on our previous works –
COMPaaS [4], COBASEN [5]. We also present definitions and
methods for stream processing.

A. IoT Middleware Systems

IoT ecosystems are based on a layered architecture style
and use this view to abstract the integration of objects and
to provide services solutions to applications [6]. In IoT high-
level system layers as the application layer are composed of
IoT applications and middleware system, which is a software
layer interposed between the infrastructure of devices and
applications, and is responsible to provide services according
to devices functionality [7]. IoT middleware systems have
evolved from hiding network details to applications into more
sophisticated systems to handle many important requirements,
providing support for heterogeneity and interoperability of
devices, data management, security [8], etc.

Many researchers have proposed the use of semantic
middleware to interoperate the different classes of devices
communicating through different communication formats [9].
The semantic model typically uses XML and ontologies to
establish the metadata and meaning necessary to support
interoperability [10], [11], [12], [13]. Like the semantic web,
semantic middleware seeks to create a common framework
that enables data sharing and exchange across distributed
devices, applications and locations.

Several proposed system architectures for IoT middleware
systems comply with Service-Oriented Architecture (SOA).
This approach allows each device to offer its functionality as
standard services. Moreover, SOA architecture refer to enables
interoperability in various domains, like industry, environment,
and society, and supports open and standardized communi-
cation through all layers of web services. The IIoT can use
a SOA-based IoT middleware in order to meet applications
needs, providing infrastructure abstractions to applications and
offering multiple services [14].

In this sense, in a prior work we described COMPaaS [4].
COMPaaS is a SOA-based IoT middleware which provides
to IoT software engineers a simple and well-defined infras-
tructure of services. Behind these services there is a set
of system layers that deals with the users and applications

Fig. 1. Example of data stream specification report to collect data from two
thermometer devices.

requirements, for example, request and notification of data,
management of computing devices, communication issues, and
data management.

COMPaaS architecture is composed of three main cooperat-
ing systems: API, Middleware, and Logical Device. The API
provides methods to be used by applications that desire to use
middleware services. Middleware is the system responsible for
abstracting the interactions between applications and devices
and hides all the complexity involved in these activities. Log-
ical Device is the system responsible for hide all complexity
of computing devices and abstracts their functionality. These
systems are based on “Subscribe/Notify” communication pat-
tern.

In order to get data from devices using COMPaaS, we
describe here the necessary interactions and exchange of
data [4]:

• The application uses the API to get access to middleware
web service interface (SOAP) to subscribe its specifica-
tion. In the specification is defined which will be the
devices used, and operators. An example of data stream
specification report are shown in Fig. 1.

• Middleware interprets the application specification and
creates the respective collection cycles.

• Middleware uses each Logical Device web service inter-
face (REST) to subscribe and start the devices involved
in the collection cycles.

• Each Logical Device provides the requested data to the
Middleware.

• Middleware processes the data according to the specifi-
cation parameters and, at the end of each cycle, sends the
reports to the application. At the end of the entire cycle,
Middleware stops and unsubscribes the devices.

B. IoT Search Engines

A search engine is a system that aims to create an index of
objects and use this index to respond queries from users. In
the IoT, the role of the search engines is to act as a meeting



point for IoT context producers to register the availability of
their devices, and IoT context consumers to discover them. In
this sense, the next works are related to device discovery.

Objects in the IoT will be mobile, dynamic, and will
generate massive amounts of frequently changing information.
Thus, there is a need for IoT search engines capable of identify
smart objects, discovery their services and interact with those
objects [15], as well as an IoT search engine that is capable
of searching the rapidly changing information generated by
IoT-enabled objects [16].

COBASEN addresses the research challenge regarding the
discovery and selection of IoT devices available in IoT mid-
dleware systems. The main features of COBASEN can be
summarized as follows: (1) Observe the middleware and gather
the devices context provided by the IoT context providers; (2)
Index the devices received from the Context Module using an
Inverted Index strategy; (3) Enable the search, and selection of
devices; (4) Guide the user in the definition of the data stream
specification report (i.e., file which is defined how the data
streams will be composed, grouped, fused, etc.); (5) Generate
and send additional files to the middleware.

Linked Sensor Middleware (LSM) [17] [18] provides lim-
ited searching functionality such as selecting devices based
on location and device types. Nevertheless, all the searching
capability uses SPARQL query language. GSN [19] is another
IoT middleware similar to LSM and address the challenges
of device data integration and distributed query processing. In
short, GSN lists all devices available in a combo-box, which
is used by the user to select the desired device. Xively [20]
(formely known as COSM) is another approach that connects
and collects data from devices to provide real-time control and
data storage. Xively offers only keyword search. Microsoft
SensorMap [21] only allows users to select sensors by using
a location map, by sensor type and by keywords.

There are already some pioneers works in real-time retrieval
of sensor data with some prototype systems developed (e.g.,
Snoogle [22], Microsearch [23], and MAX [24]). All these
systems require that the sensors to be searched have a textual
description attached so that they can be searched through
keyword matches.

Grosky et al. [25] proposed a method to express sensor
locations in meta-data and to support current-location-based
searches. However, the work mainly supports static locations
while for moving sensors, only the latest locations can be
retrieved.

Dyser is a search engine proposed by Ostermaier et al. [16]
for real-time IoT, which uses statistical models to make
predictions about the state of its registered devices. When
a user submits a query, Dyser pulls latest data to identify
the actual current state to decide whether it matches the
user query. Prediction models help to find matching sensors
with minimum number of sensors data retrievals. It support
constraints based on the latest states of sensors, but historical
states can not be retrieved. A hybrid search engine is proposed
in [26], it is a search engine for effective multimodal query
processing to obtain data generated by things in real time.

C. Complex Event Processing (CEP)

CEP has enhanced the capacity of data analysis in in-
formation systems, it is still a big challenging task since
events are rapidly increasing in the Internet of Things [27].
Meanwhile, CEP is not a new terminology, as Luckham first
introduced [28]. It has been exploited during the past years
mostly in big data analytics [29] RFID [30], Internet of
Things (IoT) [31], failure prediction systems [32], real-time
grid monitoring [33], and healthcare [34]. There are some
instances that they adopt CEP engines in their applications,
while others design new event processing engines and system
architectures [33], [35], [31], [32], [36] with evaluation to
show the usefulness and scalability.

Appropriate CEP engines (also know as inference engines)
already exist for complex event processing, such as Storm [37],
Drools [38], Jess [39], and Esper [38], [40]. It play useful
roles in formulating machine-readable rules for determining
the trigger sequences of events for a particular activity or
process.

Storm is a free and open source distributed real-time
computation system, which makes it easy to reliably process
unbounded streams of data in real-time processing by batch
operations [37]. Drools [38], and Esper [41], [40] are CEP
engines which include a module providing native support for
events evaluation and temporal logic analysis in a single work
node.

Drools uses natural-language-based rule set, editing, and
development (drl and dsl files), whereas Jess requires specific
syntax to represent rules (JessML or CLIPS). Drools and Jess
both support facts that can be expressed in standard Java class
and methods. They both follow the Java Bean approach to
insert Java objects in working memory. With respect to Drools,
facts are objects (Java beans) from the application that are
being asserted into the working memory. The fact that Drools
and Jess both support the JSR-94 standard is an asset that
provide the potential for more easily interchanging these tools
in the future, for research purposes.

III. SYSTEM APPROACH

The goals of our system framework are to allow IoT
software engineers to define device data streams through the
discovery and selection of devices that best suit the application
requirements and to allow software engineers to define busi-
ness rules and use data from devices when it is still in motion,
extracting valuable information from it through CEP, allowing
automated decision making through event-based reports. The
Decision Suport IoT Framework is complied with any SOA-
based middleware solution that supports the Subscribe/Notify
communication pattern, as well as data requesting mode using
XML and Web Services.

A. Decision Management System (DMS)

For many people big data is, erroneously, synonymous with
the Hadoop framework [42]. But Hadoop does not have the
ability to deal with streaming data, as is the case with IoT
data. While IoT data has similar characteristics as big data,



Fig. 2. Decision Managment System architecture.

IoT data is much more complex. One of the characteristics of
IoT data is that it is “dynamic”, in terms of “data in motion”
as opposed to the traditional “data at rest”. In this sense, DMS
uses device data when it is still in motion, extracting valuable
information from it through CEP to support decision making.

B. DMS Architecture

DMS architecture is an extension of COMPaaS (Sec-
tion II-A) and COBASEN (Section II-B) architectures. DMS
uses CEP to meet the needs of advanced users. It enables
to trigger sophisticated reports to applications and enhance
automation and efficiency in ubiquitous environment. To build
an efficient and scalable system, a rule engine Drools [43]
(mentioned in Section II-C) is used to quickly and reliably
send notifications based on the business rules.

The heart of the system as shown in Fig. 2, is the Rule-based
Reasoner Engine (RARE). RARE is responsible to load rules
that are stored on the Rule Repository. The Rule Name and
the specifications IDs are extracted from the rule base. The
Facts Collector is used by the RARE to load the specifications
on the COBASEN Specification Repository, and uses it to
gather all the facts through COMPaaS. When all facts are
collected, RARE uses the CEP engine to match the IF part
of each rule against each asserted fact, executing the THEN
part when a positive match occurs. When a positive match
happens, Subscription Manager notifies all applications which
are subscribers of that rule.

In this phase of the process (when a positive match occurs),
in addition of feeding the application with the output data,
DMS could take actions such as: acting through actuators
registered in the middleware. However, for this work we

are not managing the devices writing cycles, and this will
be addressed in a future work. The system interactions are
presented in Fig. 2. Each part of the DMS is described and
explained bellow.

C. Rule Construction and Methods

As previously mentioned, RARE uses Drools Engine. Thus,
the rule needs to follow its rule language. Moreover, in
this section is described how the User Engineer can use
the specifications previously created in COBASEN and some
particular methods as the responsible to send the notification
to the application.

The specification attributes that can be used in the rule is
the specification ID and the specification value. The attribute
ID is related to the ID given in the creation of the specification
through COBASEN. The attribute value is the value that the
Facts Collector module assigns to this specification ID. An
example of the utilization of the specification attributes can
be seen in Fig. 3.

The name of the rule is important and it will be used by the
application to subscribe it (e.g., in Fig. 3 the name of the rule
is “Temperature Room 02 is higher than Room 01”). When
the User Engineer understands that the application needs to be
notified when the rule is executed, the Subscription Manager
needs to be used calling the method notifyApp in the THEN
part of the rule. This method takes as parameter a string, and
it can be used to describe the event or data related to the
specifications. An example of its utilization can be seen in
Fig. 3.

Let’s try to explain it in a simple scenario where the User
Engineer would like to his application be notified when the



Fig. 3. Use of the data streams specifications in a rule.

temperature of the Room 2 is higher than the Room 1. For
that, consider that he already selected all temperature devices
from the Room 1 and Room 2, and generated the data streams
specifications through COBASEN. In this case, let us consider
that the COBASEN defined the specification ID for the Room
1 as 1, and for the Room 2 as 2. The resulted rule for this
scenario is shown in Fig. 3.

D. User Engineer Interface

Users Engineer Interface is a User Interface (UI) which
enables Users Engineers to upload rule files (.drl). As shown in
Fig. 2, the rules are stored in the Rule Repository. This module
also allows to the user engineer to manage the uploaded rules.

Prior to storing the rules is performed a validation to
verify if the specifications IDs which were used in the rule
are found in the COBASEN Specification Repository. In this
way, the user can not deploy rules which uses data streams
specifications which are not previously created.

It is not the intend of this work to provide any kind of rule
editor, debugger or validator. The Drools Expert User Guide
includes all background related to the Drools Rule Language
and also presents some IDEs, APIs and Guided Editors that
can be used to edit, debug and to validate the rules.

E. Subscription Manager

Subscription Manager is an interface that allows applica-
tions to subscribe and to unsubscribe the DMS rules. It also
is responsible to notify the application.

To subscribe to DMS the application needs to sends a
collection of names of the rules that it wants to subscribe,
and the address of the Websocket that will be used to send
back the notification. A rule can be subscribed by more than
one application. In this way, when the method notifyApp is
executed, all subscribers of the specific rule are notified.

To unsubscribe the application needs to sends a collection
of names of the rules that it wants to unsubscribe and the
Websocket address. Subscription Manager also is responsible
to create in RARE the Rule Lifecycles. It is better explained
in Section III-G.

F. Facts Collector

Facts Collector is responsible to gather all required facts to
be inserted into the CEP engine working memory. Thus, when
RARE sends a collection of data stream specifications IDs,
Facts Collector creates a Fact Lifecycle for each ID. In this
way, each Rule Lifecycle contains multiples Fact Lifecycles
(according to the number of specifications used in the rule).

Moreover, when a Fact Lifecycle is started, it loads the
related stored data stream specification in the COBASEN
and starts the Gathering Process. The gathering process uses
the specification and behave as an ordinal application that
subscribes in the COMPaaS middleware to receive data (facts).
The entire duration of the gathering process is assigned based
on the highest specification duration.

The entire process is invalidated if any Fact Lifecycle was
not successfully gathered its respective specification. In this
case, RARE sends a report to application.

The following steps compose the Gathering Process using
COMPaaS middleware: (1) create a connection (Web Socket)
to receive back the data; (2) observe the connection to detect
when receives new data; (3) send the specification XML
defining which (devices) and how is desired the data; (4)
makes the subscribe to starts receiving data.

When all Fact Lifecycles have completed the gathering
process, then all facts are sent back to RARE.

G. Rule-based Reasoner Engine (RARE)

When all facts related to a rule are collected, RARE inserts
them into the working memory. When all facts are inserted, it
match the WHEN part of each rule against each asserted fact,
executing the THEN part when a positive match occurs for all
premises. The inference process continues until no more rules
can fire.

An important case to reinforce, as explained in Sec-
tion III-C, is that the User Engineer needs to declare the
method notifyApp in the THEN part of the rule if, in this
cases, he wants his application to be notified.

In the RARE is found the core of the system, the main
Lifecycle. Each rule is related to a Rule Lifecycle. When an
app subscribes a rule, the Subscription Manager creates a Rule
Lifecycle, adds the application as observer, and starts it. In this
way, there are a list of Rule Lifecycles and for each which is
contained therein, there are a list of observers (used to know
who needs to be notified when the notifyApp is fired). The Rule
Lifecycle is responsible to coordinate all activities related to
the inference process. That includes the cooperation with the
Facts Lifecycle and others modules of the system.

H. DMS Sequence Flow

As previously mentioned, DMS architecture is an exten-
sion of COMPaaS and COBASEN architectures. The systems
interaction are presented in Fig. 2. The steps (arrows) with
letters “U” and “D” correspond to the DMS system. The steps
with letter “C” are related to COBASEN (device discovery,



selection and data stream specification management). The
steps with letter “S” correspond to COMPaaS middleware.

The U1 step, shown in Fig. 2, represents the user selecting
the rule file. Only “.drl” files are allowed to be selected and
uploaded. In U2 step, prior to storing the rules a rule validation
is performed to verify if all the specifications IDs used in the
rule file are found in the COBASEN Specification Respository.

The next steps are presented in Fig. 2: (D1) Application
subscription; (D2) Subscription Manager creates the Rule
Lifecycle, adds the application as observer, and starts it; (D3)
RARE extracts the specifications IDs used in the rule; (D4)
RARE sends a collection of specifications IDs to the Facts
Collector; (D5) Facts Collector creates the Fact Lifecycles
and each of it loads its related specification XML at the
COBASEN; (D6) Fact Lifecycles gathers the facts; (D7) When
all facts are collected, Facts Collector sends it back to RARE;
(D8) RARE inserts these facts into the working memory and
fire the rules. If the THEN part of some rule are executed
and the notifyApp method are declared in it, the Subscription
Manager notifies the subscribers.

IV. IMPLEMENTATION AND EVALUATION

We have developed a Java-based implementation of DMS,
and its architecture is SOA. The Drools engine [38] version
6.3.0.Final was used as the rule-based reasoning component.
We made experiments and analyzed the following features
of the system: (A) Time taken to validate and extract the
specifications IDs; (B) Time taken to start and load the system
lifecycles in scenarios with different numbers of rules and
specifications; and (C) How much DMS decreases the amount
of messages transmitted over the network. We used a computer
with AMD FX-8350 (8 core) 4.0GHz and 16GB RAM to
evaluate DMS. The experiments were conducted in order to
analyze the DMS performance, and each it were conducted 30
times and averages were considered in the results.

To perform the experiments we have defined a test plan with
24 different scales rule files. Each rule file has distinct scales
in number of rules and number of conditions (IDs) per rule.

TABLE I
RULE VALIDATION FUNCTION EXECUTION TIME (MILLISECONDS).

Rule/IDs 5 10 20 30
3000 44 46 51 56
6000 77 79 94 106

12000 116 124 147 152
24000 129 133 158 190
48000 190 203 246 298
94000 351 348 434 485

A. Rule Validation

This experiment has been performed in order to test the rule
validation process (step U2 shown in Fig. 2), which occurs
after the upload of rule file (mentioned in Section III-D). The
tests results are presented in Table I. The first column shows
the number of rules contained in the rule file and the first row
shows the number of conditions per each rule in the rule file.

Fig. 4. DMS Overall Performance (milliseconds).

B. Overall System Performance

This experiment has been performed in order to verify and
validate the steps D2, D3, D4, D5, and D7 of the system
(steps presented Fig. 2). The time taken to gathering data
though COMPaaS (step D6) is validated in [4], in this way,
the gathering time is not taken into account. Moreover, in
each test round we forced some applications to subscribe
to all DMS rules. Thus, in a test round which the rule file
contains 3000 rules and each rule contains 5 conditions per
rule, the DMS was forced to react to all of it. In this case,
the Subscription Manager was forced to create 3000 Rule
Lifecycles, and for each of it the Facts Collector was forced
to create 5 Fact Lifecycles, load these specifications in the
COBASEN, subscribe these 5 specifications in the COMPaaS,
and so on. The results of this experiment are presented in
Fig. 4. The first column shows the number of rules contained
in the rule file and the first row shows the number of IDs used
in the conditions of the rule file.

The time taken to read the rule base only occurs in the initial
charging of the system, and it are not taken into account in
this experiment. However, it is presented in Table II.

TABLE II
RULE BASE (RB) READING TIME AND RULE BASE SIZE

Rules RB Reading Time (ms) RB Size (bytes)
3000 16514 762,589
6000 35657 1,530,471

12000 77145 3,076,478

C. Network Exhaust

This experiment aims to verify how much DMS decreases
the amount of messages transmitted over the network. Thus,
we defined an IIoT scenario in which physical sensors were
responsible to gather data readings from the field. The col-
lected device data would allow the optimization of an industry
process.



For that, an IoT software engineer has defined two data
stream specifications containing six thermometer devices each.
Thus, each middleware report was composed of the average
of all six devices output and it had about 1,2KB. A new report
was sent to the application every 1000 milliseconds.

There are two different scenarios in this experiment:
• Scenario 1: The user engineer uses COBASEN to search

and select the desirable devices and create the data stream
specification. The user engineer uses these specifications
to gather the data directly on COMPaaS, and locally
perform analytics.

• Scenario 2: The user engineer uses COBASEN as in the
case 1, but in addition, he also defines a rule for this
situation and subscribe to it in DMS. The rule is defined
as follows: WHEN the resulted value of the specification
one is higher than 35 C◦, AND the resulted value of the
specification two is higher than 30 C◦, THEN notify the
application.

To be able to evaluate the difference between these two
scenarios we define three temperature variation ranges related
to the industrial field: (1) Small variation: temperature ranges
from 20 C◦ to 40 C◦; (2) Medium variation: temperature
ranges from 10 C◦ to 50 C◦; (3) High variation: temperature
ranges from 0 C◦ to 60 C◦.

We have used an algorithm that simulates the temperature
changes based on the pre-defined variations (low, medium, and
high). For each experiment execution we have monitored the
messages flow for 600 seconds.

Table III presents the number of messages needed to fulfill
the scenario described above. The scenario 1 (2nd row)
presents the number of messages towards the variations using
COMPaaS directly communication. The scenario 2 (3th row)
presents the number of messages towards the variations using
DMS.

TABLE III
NETWORK EXHAUST EVALUATION

Scenario Low Range Medium Range High Range
1 600 600 600
2 211 125 98

V. DISCUSSION

Today’s device-driven world is forcing analytics to occur
as fast as the data is generated. In this way, an important
requirement for stream processing systems is to process mes-
sages “in-stream” as they fly by, without any requirement to
store them to perform any operation or sequence of operations.
Storage operations adds a great deal of unnecessary latency to
the process (e.g., committing a database record requires a disk
write of a log record).

DMS follows the straight-through processing paradigm,
and incorporate event-driven processing capabilities. It avoid
applications to continuously poll for conditions of interest, re-
moving additional latency to the process, because (on average)
half the polling interval is added to the processing delay [44].

By making use of validated architectures as COBASEN and
COMPaaS, DMS provides improvements in the IoT appli-
cation development process. The utilization of COBASEN,
allows to inherits all its benefits related to discovery and
selection of devices. On the other hand, COMPaaS is who
are directly connected and interacting with devices, and also
is responsible to collect data. More than that, DMS allows
to apply immediate analytics insights from streams of data of
devices into IoT applications.

As shown in Fig. 4 and Table I, DMS can operate with an
inordinate number of rules. We verified that the system time
grows more by the increase of rules than the increase of the
number of conditions. In this way, in cases where the number
of Fact Lifecycles are the same (e.g., 12000 rules each of it
containing 5 conditions, and 6000 rules each of it containing
10 conditions, both requires 60000 Fact Lifecycles). In these
cases, time has increased more for the scenario that has more
rules, since higher number of rules require more processing to
manage subscribers, among other functions.

Regarding results presented in Table III, DMS can reduces
application processing overhead (i.e., application does not
need to locally manage events) and makes it receives only
relevant data. Furthermore, even in a scenario wherein the
temperature is kept varying, and close to the rule condition,
DMS reduces networking exhaust. The number of events and
messages increase when the variation range occurs near the
rule condition values. In this experiment, we have observed
that DMS decreases 73,9% on average the amount of mes-
sages that are sent over the network from middleware to the
application. DMS also prevents to store data that ultimately
have no real value for future operations.

VI. CONCLUSIONS AND FUTURE WORK

With the fast proliferation of the IoT, things that seemed
like science fiction 20 years ago are approaching the market.
It means that the world around us will become filled with
devices. We identified through literature that there are sig-
nificant amount of middleware systems solutions for device
data management, and integration. However, IoT becomes
unfeasible without a support system to help us in the matter
of how will we discover, identify, and interact with the IoT
devices. The same occurs to stream analytics, to make the IoT
devices useful, we need a system that support Analytics of
Things.

The framework experimental results demonstrated that it is
able to be used as an decision support system for streaming
analytics towards scenarios with large numbers of devices,
rules and facts. Further, it can reduces application process-
ing overhead and networking exhaust. DMS allow streaming
analytics and intelligence automated action on fast-moving
data towards the pre-selection of “Things”. The framework
provides a new way to see how the business rules and decision-
making will be made towards the Internet of Things.

In the future we are planning to expand DMS capabilities,
going beyond send sophisticated reports to applications. In this



way, we are planning to start to work with devices writing
cycles (e.g., actuators devices).
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