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ABSTRACT
Embedded virtualization has emerged as a valuable way to
reduce costs, improve software quality, and decrease design
time. Additionally, virtualization can enforce the overall
system’s security from several perspectives. One is security
due to separation, where the hypervisor ensures that one do-
main does not compromise the execution of other domains.
At the same time, the advances in the development of IoT
applications opened discussions about the security flaws that
were introduced by IoT devices. In a few years, billions of
these devices will be connected to the cloud exchanging in-
formation. This is an opportunity for hackers to exploit their
vulnerabilities, endangering applications connected to such
devices. At this point, it is inevitable to consider virtualiza-
tion as a possible approach for IoT security. In this paper
we discuss how embedded virtualization could take place on
IoT devices as a sound solution for security.

CCS Concepts
•Security and privacy → Authentication; Software se-
curity engineering; •Computer systems organization→
Embedded software; •Software and its engineering
→ Embedded software;
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1. INTRODUCTION
The modern world is moving rapidly toward a connected

model where billions of electronic devices will be intercon-
nected through computer networks, especially the Internet.
This has defined a concept called the Internet of Things
(IoT). In this context, real objects are connected to the In-
ternet, uniquely identified and accessible through the net-
work. This results in a combination between the physical
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and the digital worlds expanding the Internet with new ser-
vices and intelligence [8]. There are many possibilities for
IoT applications, which include different domains like energy
distribution, agriculture, healthcare, and transportation [9].
In light of the inevitable adoption of IoT in the future, some
of its inherent problems will require attention. One of the
main issues to be addressed is the security holes that may
be introduced in private networks by the IoT devices. The
Internet of the future, with billions of connected devices, is
an attractive place for hackers to exploit security flaws and
endanger life and business. Thus, building more secure IoT
devices is a topic that requires further investigation.

A possible approach to improve security in the IoT field
is the use of virtualization. Virtualization technology be-
came a reality in modern embedded systems, motivated by
the increasing challenges to comply with the requirements
in this area. However, the intrinsic requirements of embed-
ded systems, such as small memories, application footprint
and tight real-time constraints motivated the appearance of
hypervisors especially designed for embedded virtualization
[13], [16] and [15]. This new generation of hypervisors was
followed by the adoption of hardware-assisted virtualization,
a set of processor features aiming to speed-up performance
and simplify the design of hypervisors. The main embedded
processor manufacturers have already designed virtualiza-
tion extensions for their processors, such as the PowerPC
[5], ARM [1], and MIPS [6] families of processors.

Among the goals specified during the design of embedded
hypervisors, two can be highlighted: to keep low memory
requirements and some level of support for real-time ap-
plications. These goals resulted in hypervisors with a low
memory footprint and runtime overhead. Some of these
hypervisors are small enough to fit IoT devices’ memory
and footprint requirements. Additionally, their capability
to support real-time operating systems (RTOSs) and bare-
metal applications make them a possible approach to build
more secure IoT devices. Moreover, all advantages of general
purpose virtualization will be inherited by IoT devices.

At first glance, virtualization on such resource constrained
devices may appear to be an overkill solution. However,
as we will show in this paper, the processing power and
the amount of memory on some modern microcontrollers is
enough to define virtualization as a feasible solution. We
will also show that the strong spatial and temporal separa-
tion provided by hypervisors can considerably improve the
security on IoT devices. The main contribution of this pa-
per is the description of a flexible architecture which aims
to improve security on IoT using virtualization.
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The paper is organized as follows: Section 2 describes the
main security flaws introduced by IoT devices and opportu-
nities for improvements. Section 3 shows how hypervisors
can improve the overall security on IoT devices. Section 4
describes a real-world application where a hypervisor is used
to provide security by separation. Section 5 analyzes related
works for IoT security solutions and some available hyper-
visors that are affordable for IoT virtualization. Finally,
Section 6 presents our conclusions and future work.

2. IOT SECURITY FLAWS
Security is one of the major concerns regarding the de-

velopment and adoption of the Internet-of-Things [9, 20, 7].
Due to the nature of some IoT applications (e.g, gathering
of valuable personal/business information) and the poten-
tially large number of connected devices, IoT may arguably
become a major target for hackers’ attacks. Apart from the
security flaws present in today’s Internet, additional ones
are expected to be introduced with the massive use of IoT
devices. This section will discuss the main security issues re-
lated to IoT as well as some opportunities for improvement.

The security of a IoT device can be compromised either
remotely or locally. Remote flaws may include the exploita-
tion of vulnerabilities via network. For geographically dis-
tributed IoT applications, the devices are expected to be
accessible via Internet. Since today’s Internet still uses the
TCP/IP protocol suite, such applications will require addi-
tional mechanisms to ensure confidently, authenticity and
availability. Local flaws may include modified/malicious
software (e.g., malwares, virus) or even malfunctioning ap-
plications.

Depending on the application, a compromised IoT device
can represent a serious danger for life and business. For ex-
ample, it may involve stealing private/sensitive information
(privacy/confidently); modifying information (authenticity);
or causing the malfunctioning of the device itself or other de-
vices controlled by it (availability and resilience to attacks).
Moreover, it can even introduce security holes to get access
to private networks.

Some IoT devices are expected to be deployed in unat-
tended outdoor scenarios, which may allow one to have phys-
ical access to it. In this case, it is necessary to ensure that
the device cannot be tampered in order to extract sensitive
information or install any modified/malicious software.

2.1 Opportunities for Security Improvements
In this context, there are many opportunities for security

improvements. In this paper, we argue that a large portion
of the security issues in IoT can be solved by employing
techniques of separation (spatial and temporal) combined
to trust mechanisms.

The first step in order to improve the security of a em-
bedded system for IoT is to ensure that all running code is
cryptographically signed [14]. IoT devices must be designed
to only boot up if the bootloader software is signed by an
authorization entity (e.g., the device vendor). This may in-
volve specialized hardware to verify that signature at the
startup and put a trusted bootloader to run. This enables a
Root of Trust (RoT) that can be used to ensure the integrity
of running code.

At a higher level, a trusted hypervisor plays a key role
in the IoT security. As mentioned before, a hypervisor for
embedded systems consists on a small footprint piece of priv-
ileged code that manages the system-on-chip resources and
allows for creating multiple isolated execution domains and

defining access policies for them. In other words, it is pos-
sible to run multiple guest OSes and/or bare-metal applica-
tions that have limited privileges. The hypervisor protects
guest OSes from each other and also protects itself.

One of the main benefits of using separation is to avoid
that exploitable defects in one virtualized domain (e.g., guest
OS) propagate to adjacent virtual domain, or to the physical
platform, which makes the system more resilient to attacks.
Spatial separation can be used to improve privacy by allow-
ing IoT devices to securely collect and process sensitive data,
even if one of the virtual domains is compromised (a exam-
ple of use case will be presented in Section 4.1). Temporal
separation can be used to ensure fair resource sharing among
the virtualized domains, which may also improve availability
and resilience. Take for example the case where one of the
virtualized domains suffers a resource-intensive attack, such
as a Distributed Denial-of-Service (DDoS) attacks – which
is very common in today’s Internet. In this case, the other
domains will continue to work regardless the misbehavior of
the compromised one. The Section 3 describes how security
by separation can be implemented in IoT devices.

3. SECURITY BY SEPARATION FOR IOT
DEVICES

The trend of multi-core processors being increasingly used
in embedded designs reinforced the necessity of separation.
The simplest way to guarantee separation is to use more
than one processor and physically separate address spaces.
The communication between processors would require an
interconnection network and a message passing protocol,
because they are separated by hardware. Yet, the adop-
tion of modern hardware, including multi-core processors,
means that everything is connected and sharing a common
memory. However, developers still want to keep the sep-
aration between their applications. Virtualization is the
best technology to guarantee spatial and temporal separa-
tion between applications. This separation is required even
in single-core environments. The hypervisor can create this
separation by making the software execute in the virtual ma-
chines (VMs) completely unaware of other software running
on other VMs even if they are being performed on the same
physical hardware. Hereafter, we explore how hypervisors
can provide spatial separation (Section 3.1) and temporal
separation (Section 3.2).

3.1 Spatial Separation
The most common way to provide memory isolation be-

tween processing elements in a system is through a mem-
ory management unit (MMU), a hardware block which pro-
vides virtual memory abstractions to the system. A typical
MMU allows for the OS to implement memory isolation be-
tween processes. The OS translates virtual addresses (VAs)
to physical addresses (PAs) using its page table to config-
ure the processor’s translation lookaside buffer (TLB). In
a virtualized environment, the hypervisor must keep mem-
ory isolation between VMs while the OS is still able to keep
isolation between processes. Thus, VAs are translated to in-
termediate physical addresses (IPAs) that are managed by
the hypervisor. Without proper hardware-assisted virtual-
ization, the management of the IPA needs to be emulated
through a technique that makes use of a shadow page table.
This table keeps the correct translations from IPA to PA in
an intermediate page table, and its management increases
the hypervisor overhead and complexity.

Hardware-assisted virtualization implements a second stage
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Figure 1: Virtual memory organization view on a virtualized
system.

MMU translation in hardware. Essentially, the hardware
performs the translation from IPA to PA without software
intervention. The hypervisor still manages its page table by
mapping an IPA to a PA in a second stage MMU. The guest
OS manages the first-stage of address translation in exactly
the same way as on a non-virtualized system. The result-
ing PA is generated by the hardware combining both TLBs.
This mechanism drastically decreases the number of hyper-
visor exceptions and also the complexity of such hypervisor.
Figure 1 depicts this scheme in case the hypervisor keeps
the VM’s in contiguous physical address space.

3.2 Temporal Separation
The temporal separation guarantees the correct distri-

bution of processor time between the virtual CPUs (VC-
PUs) according their execution priorities. The hypervisor’s
scheduler implements algorithms that are used to schedule
VCPUs. Many different authors have addressed the hy-
pervisor’s scheduler as a way to improve temporal separa-
tion and to honor real-time constraints, as seen in [3] and
[19]. Some hypervisors distinguish between best-effort VC-
PUs (BE-VCPUs) and real-time VCPUs (RT-VCPUs). RT-
VCPUs have priority over BE-VCPUs and follow the same
policy of some known real-time scheduling algorithms, such
as EDF. BE-VCPUs are scheduled by a best-effort schedul-
ing algorithm that is invoked when there are no RT-VCPUs
ready to execute. For example, RTOSs can be mapped to
RT-VCPUs while Linux instances can be mapped to BE-
VCPUs, because a general purpose OS aims to improve fair-
ness over other metrics.

In a system with such hibrid characteristics, virtualization
implies in the hierarchical scheduling problem, also known
as two layer scheduling problem. A hypervisor schedules
VCPUs, and a guest OS executing in a given VCPU sched-
ules its processes or tasks. Even when the correct timing is
ensured by the scheduling at the VCPU level, it is a difficult
task to ensure timing constraints to the tasks which execute
in a RTOS. However, if both VMs and the hypervisor make
use of proper real-time algorithms, the system can be mod-
eled as a hierarchy of schedulers, and real-time performance
of each individual virtual system can be evaluated by using
hierarchical scheduling analysis techniques [4].

System interrupts require attention since they interfere
directly on the VCPU’s execution. The interrupt subsys-
tem must be designed as part of the hypervisor’s scheduler.
Thus, the hypervisor can implement different interrupt de-

livery policies according to the application needs. For ex-
ample, when an interrupt occurs during the execution of
another guest OS, the hypervisor must decide between: i)
keep the interrupt masked and delay its delivery or; ii) inter-
cept the interrupt and reschedule the guest OSs. This allows
the implementation of different priority policies for interrupt
control and making the temporal separation between guests
possible.

4. PRPL-HYPERVISOR - A HYPERVISOR
FOR IOT DEVICES

The Hellfire Hypervisor [18] is a small type-1 hypervi-
sor specially designed for embedded devices. It was ported
to an IoT platform (see Section 4.1) and renamed prpl-
HypervisorTM. The prpl-HypervisorTM is part of a security
framework maintained by the prpl Foundation, which is an
open-source, community-driven, non-profit foundation tar-
geting and supporting MIPS architecture. Thus, the prpl-
HypervisorTM is open-source1 and has a very permissive
software license that allows for its deployment in both aca-
demic or commercial applications. The original Hellfire Hy-
pervisor was developed targeting the MIPS M5150 processor
with the MIPS-VZ architecture, which is the virtualization
extension architecture for MIPS. The M5150 supports the
second-stage MMU translation (as explained in Section 3.1)
allowing the hypervisor to easily manage the memory sep-
aration between guests. Additionally, the hypervisor keeps
spatial separation between the guest kernel and guest ap-
plications while protecting itself. This protection is possi-
ble because processors implementing the MIPS-VZ module
support a third level of execution (supervisor mode) with
higher privilege designed for the hypervisor. Therefore, the
hypervisor is protected from the actions of malicious or mis-
behaving guest OSs, and the guest OSs are protected from
their applications. It is important to highlight that embed-
ded hypervisors designed for processors without proper vir-
tualization assistance cannot distinguish the memory space
between the guest kernel and applications, since the entire

guest executes in the processorâĂŹs unprivileged mode [21].
The temporal separation is guaranteed through a round-
robin scheduler algorithm and interrupt delivery policies as
established in [11]. Finally, the hypervisor enables the im-
plementation of the para-virtualization concept to provide
extended services to the guest OSs. These services are use-
ful to expand the virtualization functionalities, i.e., to im-
plement functions that do not exist in a purely virtualized
system, such as inter-VM communication.

This separation enabled the adoption of MIPS-VZ and re-
sulted in security improvements. Yet, that is not the only
advantage introduced by hardware-assisted virtualization.
Hardware features, such as second stage MMU translation
and the third level of execution simplifies the overall hypervi-
sor design. As a result, the prpl-Hypervisor has a small foot-
print. The storage requirement is around 40 kilobytes while
the RAM requirement is 20 kilobytes. Thus, the overall foot-
print is only 60 kilobytes, making the prpl-HypervisorTM a
attractive choice for IoT virtualization. Section 4.1 presents
proof of concept of virtualization for an IoT platform.

4.1 Proof Of Concept Of Virtualization for IoT
Platorms

The PIC32MZ EF series is a microcontroller family target-
ing IoT and embedded markets. It is powered by the MIPS

1https://github.com/prplfoundation/prpl-hypervisor
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Figure 2: prplSecurityTM framework as a proof of concept of IoT virtualization.

M5150 processor core. The PIC32MZ EF can run up to
200MHz resulting in 330 DMIPS and 3.28 CoreMarks/MHz.
It supports up to 2 MB of flash memory (for program and
data storage) and 512 KB of RAM. It has a wide diversity of
connectivity peripherals including a 10/100 Ethernet MAC,
Hi-Speed USB MAC/PHY, and dual CAN ports. An op-
tional crypto engine is also available with a random number
generator for high-throughput data encryption/decryption.
These features, associated with the hardware-assisted virtu-
alization provided by the M5150 processor core, make the
PIC32MZ EF microcontroller family a optimal choice for
IoT virtualization. We ported the Hellfire Hypervisor to the
PIC32MZ Embedded Connectivity with FPU (EF) Starter
Kit development board (PIC32MZ2048EFM144) [10] renam-
ing it prpl-HypervisorTM. This board has 2 MB of flash and
implements the Ethernet and USB peripherals. Addition-
ally, it exposes SPI, UART, and several I/O pins.

As proof of concept for IoT virtualization, an embedded
application was implemented to control the movement of a
robotic arm connected through the Internet. Beyond the
cited PIC32MZ EF board, the application uses an OWI-535
robotic arm, which is controlled through the USB interface.
The board must be connected through the Ethernet port to
a router or directly to a laptop (for test purposes). Figure
2 shows this scenario.

The software architecture consists of three separate VMs,
see Figure 2. Each VM runs a bare-metal application. To
enable communication, a small open-source TCP/IP stack
called picoTCP was developed and is maintained by Altran
and supported on VM1. PicoTCP uses a hypercall inter-
face to send/receive network datagrams through the hyper-
visor. The VM2 implements the prplPUFTM API developed
by a company called Intrinsic-ID that authenticates incom-
ing requests. The VM3 has the arm control software that
sends/receives data through the PIC32MZ EF’s USB con-
troller to the OWI-535 robotic arm.

The system has various parallel functions. During boot
time, the VM2 generates a unique key from the hardware
fingerprint that can be recreated at every reboot and doesn’t
need to be stored in the system. Once connected to a net-
work, a TCP server on VM1 keeps listening for incoming
connections. Every client connection is verified using the
VM2’s authentication services. The VMs communicate with

each other using the hypervisor’s inter-VM communication
tools. If a client is successfully authenticated, it can send
start/stop commands to VM1 that are relayed to VM3 to
control the arm’s movement.

As the three VMs are completely separated by the hyper-
visor, even if VM1 (the only VM exposed to the network)
security is compromised the attacker cannot take control of
the robotic arm, since it needs the key on VM2.

5. RELATED WORKS
Puliafito et al. [2] propose using container virtualiza-

tion. Their approach can be used as a lightweight alter-
native to hypervisors, while still addressing most embed-
ded virtualization application needs. Although an effec-
tive approach, container virtualization is based on system
calls. More specifically, the proposed implementation relies
on Linux Container Virtualization (LCV), requiring a rel-
atively powerful hardware platform in terms of processing
power and memory.

The work presented in [12] defines the idea of temporal
separation using virtualization for criticality mixed real-time
systems. The authors explore the coexistence of different
critical functionalities on a multicore platform for avionics,
by using virtualization to tackle security and safety failures
in the system. Their model is based on temporal isolation
using PCIe I/O virtualization.

Several approaches regarding the potential of hardware-
based IoT security are discussed in [17]. The authors per-
form a series of case studies that advocate the use of stable
PUFs, hardware obfuscation, and digital PPUFs for a range
of security protocols.

In [20] different emerging security threats and counter-
measures for IoT are investigated. The authors evaluate
threats in a large, unreliable, and pervasive computing en-
vironment, where sensitive and private information is ex-
changed between objects. They apply several conventional
security approaches such as authentication schemes to en-
sure the confidentiality and integrity of data.

A virtualization approach for applications is presented in
[16]. The work is based on the Xtratum hypervisor and
aims to support the virtualization of applications with dif-
ferent levels of criticality on heterogeneous multi-processor
embedded systems. The goal is to have these applications
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interacting with each other and co-existing in the same plat-
form. Yet, guaranteeing that certification of such applica-
tions is still possible because of the isolation. The proposed
hypervisor is based on a para-virtualization technique to ac-
complish spatial and temporal isolation among VMs, secu-
rity, confidentiality, predictability, resource allocation, and
fault isolation. The architecture is based on a shared mem-
ory heterogeneous multi-core composed of x86 and LEON3
cores. The use of para-virtualization and complex cores such
as proposed in the work impose several limitations to the ap-
plicability of the model in the IoT field, where energy con-
sumption, memory size, and processing power are limiting
factors.

6. CONCLUSION AND FUTURE WORK
In this paper we showed that embedded virtualization is

a valid approach to improve IoT security through separa-
tion. Additionally, it was demonstrated that specially de-
signed embedded hypervisors can be small enough to fit IoT
devices, enabling all of their virtualization advantages. A
real-world application involving network communication and
hardware control was developed as a demonstration of virtu-
alization on IoT platforms. As future work, we will explore
root-of-trust and secure-boot mechanisms for virtualized en-
vironments on IoT devices.
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