A Hypervisor Approach with Real-time Support to the
MIPS M5150 Processor

Samir Zampiva, Carlos Moratelli, and Fabiano Hessel
Faculty of Informatics - PUCRS - Av. Ipiranga 6681, Porto Alegre, Brazil
Email: {samir.zampiva, carlos.moratelli} @acad.pucrs.br, fabiano.hessel@pucrs.br

Abstract—Embedded software has become a major concern
in current embedded systems. Recent embedded products include
dynamic software features that are driven by the users’ needs.
Still, real-time applications are required to execute along non
real-time applications as both of them can be part of a bigger
and more complex software system. Virtualization has emerged
as a feasible technique for embedded systems as it provides
more secure platforms, improves software design quality and
reduces costs. Nevertheless, real-time and memory constraints
require the development of different techniques from those widely
applied to enterprise computing. However, distinguished vendors
have designed virtualization extensions for their processors and
a few manufacturers have adopted them. This work presents a
hypervisor implementation approach with real-time support to
the MIPS MS5150 processor which supports hardware-assisted
virtualization. The results show that the implementation allows
full-virtualization and communication among virtual machines
with minimal overhead while providing strong spatial and tem-
poral isolation between virtual machines.

Keywords—Embedded Systems, hardware-

assisted virtualization, real-time.

Virtualization,

I. INTRODUCTION

The growing processing power of the embedded systems
(ES) induced its software becomes larger and more complex
to develop and maintain. Aiming to reduce the hardware cost
and complexity, the system designers may choose to integrate
different embedded software systems on a shared device. A
technical solution for hardware sharing are virtualization tech-
nologies. Widespread for enterprise and server applications,
virtualization has recently being used for ES [1]. Although
server virtualization is a well-known and mature technology
widely applied for commercial use, ES virtualization has its
application restrict to a few scopes. The main restriction to
the broad use of virtualization for ES is that its requirements
differ from server and enterprise systems. Most notably, time
constraints and limited resources are the main concerns around
ES virtualization.

One important use case for embedded virtualization is
that of running several operating systems (OS) on the same
processor. The growing number of functionalities in ESs make
many of them similar to general purpose computers, e.g. smart
phones [2]. This kind of equipment requires that a general
purpose operating system (GPOS) with rich set of functionali-
ties is kept along a typical real-time operating system (RTOS)
responsible for real-time support. A common solution is to
execute the RTOS on a secondary processor dedicated to
it. Virtualization can break the one-to-one correspondence
between logical and physical system decreasing costs [3],

978-1-4799-7581-5/15/$31.00 ©2015 IEEE

since, it allows the execution of both OSs at the same physical
processor.

The coexistence of different systems on one platform
requires that its functionalities cannot interfere with each other
or lead to a failure of a functionality or the whole system
[4]. Thus, it is essential to keep a strong spatial and temporal
isolation between systems [5]. Spatial isolation means that
a system cannot interfere in the memory area of another
system. Temporal isolation means that each system has its
execution time reserved, and it is not allowed a system use
the processor time reserved for another system. A hypervisor
may be designed to overcome these problems. Usually, spatial
isolation is achieved using processor’s Memory Management
Unit (MMU) while temporal isolation requires a carefully
designed process scheduler.

In this paper, we will demonstrate an implementation
approach for a hypervisor with real-time support for the MIPS
M5150 processor core. Several approaches are used to improve
the real-time capabilities in ES virtualization. A common
approach consists to give to the RTOS the highest priority,
and thus, the RTOS can preempt the execution of a GPOS
[6]. However, this brings the hierarchical scheduling problem.
A hypervisor schedules Virtual CPUs (VCPUs) and a guest
RTOS over the VCPU schedules its processes or tasks. Even
ensuring real-time characteristics in the VCPU level, it is
difficult to ensure real-time execution to the tasks over the
RTOS. Although hierarchical scheduling analysis is a well-
known technique, it requires that both schedulers are modeled
accordingly [7] requiring modifications in the guest OS (vir-
tualized OS). Our approach avoids the hierarchical scheduling
problem allowing that real-time tasks are scheduled directly
by the hypervisor. This is accomplished by implementing
real-time and communication facilities as extended services
available to the guest OS'. An extended service is exposed
to the guest OS as hypercalls?, thus, our virtualization model
mix full- and para-virtualization.

Our main contribution is to present an innovative hy-
pervisor implementation to a recently released processor: the
MIPS M5150 [8]. The M5150 is the first released MIPS pro-
cessor implementing the MIPS Virtualization Module (MIPS
VZ). This module adds hardware support for virtualization on
the MIPS architecture. By the best of the authors’ knowledge
this is the first time that an implementation with performance
measurement using the MIPS hardware virtualization support
is published. The hypervisor supports full-virtualization of the

'Guest OS is a virtualized instance of an OS.
2Hypercall is a software call from a VM to the hypervisor. It is extensively
used in the para-virtualization approach.

16th Int'l Symposium on Quality Electronic Design

CPU and mix para-virtualization to provide extended services
to the virtualized platform as communication among virtual
machines (VM) and real-time support.

This work is organized as follows: Section II presents the
related works. Section III brings a brief description of our
virtualization model. Section IV describes in details the hyper-
visor’s implementation for the M5150 processor. Performance
results and measurements are showed in Section V. Finally,
Section VI brings the conclusion and discussions.

II. RELATED WORK

There are several hypervisors designed for ESs with dif-
ferent purposes. Such variety of approaches is expected due to
the large amount of applications were ESs are required. This
section presents the most relevant hypervisors implementation
available for ESs and how our implementation differentiate
from them.

The OKL4 is a virtualization layer that adopts the mi-
crokernel® approach, thus, being called Microvisor. It was
developed targeting mobile devices and currently supports
Linux, Android, Symbian and Windows Mobile OSs. OKL4
powered the first commercial virtualized phone in 2009, named
Motorola Evoke QA4, executing two VMs on top of the OKL4
Microvisor: a Linux VM to handle user interface and a RTOS
to the BREW (Binary Runtime Environment for Wireless).
The microvisor is the only software layer that executes in
privileged mode while GPOSs, bare-metal applications and
even device drivers executes in unprivileged mode. It has the
ability of execute several GPOSs and bare-metal aplications
concurrently. With OKL4 is possible to execute both GPOS
and a real-time environment on a single ARM processor, while
providing high performance communications between them.
Such scheme eliminates the need for a second ARM processor
reducing the final cost and design complexity.

Crespo et. al. [10] presents XtratuM, a type 1 * hypervisor
specially designed for real-time embedded systems aiming to
achieve temporal and spatial requirements of safety critical
systems. In order to meet real-time constraints, XtratuM was
developed the following set of requirements: a) data struc-
tures are static which allow better control over the resources
being used; b) XtratuM code is non-preemptive making the
code simpler and faster; c) all hypercalls are deterministic;
d)peripherals are rather managed by the VMs and; e) interrupt
occurrence isolation meaning that when a VM is executing
only its interrupts are enabled. Initially developed over x86,
nowadays, XtratuM supports LEON2, LEON3, LEON4 and
ARM processor architectures. On XtratuM, each VM is named
partition and each partition supports an RTOS or a bare-metal
application. There are two types of partitions: normal and
system. Normal partitions have restricted functionality while
system partitions are allowed to manage and monitor the state
of the system and other partitions.XtratuM virtualizes not just
CPU and interrupts, but, some specific peripherals using para-
virtualization. If there is no need to share a peripheral between

3The microkernel concept consists in to reduce the OS kernel code to
fundamental mechanisms, and implement the remainder system services in
user level [9].

4On a type 1 virtualization model the hypervisor executes directly on the
CPU opposed to the type 2 model where the hypervisor is a process executing
in an OS.

two or more partitions, it is directly mapped to a specific
partition. When a peripheral needs to be shared between
partitions, XtratuM implements a device driver responsible to
serialize the access and the guest OS must be modified in order
to implement hypercalls to the device driver.

The VHH (Virtual Hellfire Hypervisor) [11] is a type
1 hypervisor designed for the MIPS 4Kc processor and it
implements full-virtualization of the CPU. It has temporal
and spatial isolation among domains. Each domain can run
a guest OS. The VHH support real-time applications using
a para-virtualization approach. Any guest OS can instantiate
a real-time application, which is then directly scheduled by
the VHH real-time scheduler and is run independently of
the guest OS. The MIPS 4Kc doesn’t have hardware support
for virtualization. In order to achieve full-virtualization of
the CPU, some modifications were made in the processor
architecture. All virtual memory segments were removed and
the TLB-translation disabled when kernel mode is active.
The processor kernel operation mode is exclusively used by
the hypervisor. The guest OS and it’s applications run on
the user operation mode enabling the hypervisor to isolate
the domains from each other. This modifications, however,
create some limitations. The core modifications breaks the
software compatibility with the existing OSs, i.e, despite their
hypervisor provide full-virtualization, the OS must be ported
to support the modified core.

The presented hypervisors implement para-virtualization of
the CPU with some of them supporting full-virtualization on
ARM processors. To the best of the authors knowledge, the
VHH was the first hypervisor supporting full-virtualization on
MIPS processors. However, it requires modifications on the
MIPS architecture making it not applicable to existing MIPS
processors. Para-virtualization is widely used on virtualized
ES but it requires the guest OS to be modified increas-
ing its development and maintenance costs. Our hypervisor
overcomes this limitations by using hardware virtualization
support now present on the MIPS architecture. It implements
full-virtualization of the CPU without any modifications on
the MIPS architecture. Another important difference of our
hypervisor is when dealing with real-time applications. The
OKL4 and XtratuM hypervisors support RTOSs and schedule
them on a VM level. They do not take in consideration the
individual parameters of the tasks running inside the RTOSs. In
our approach the developer can use a special real-time VM that
schedule its tasks directly over VCPUs avoiding the two levels
scheduling problem. The VHH can also directly schedule real-
time tasks, however, these real-time tasks are created by the
GPOS’ tasks and lack spacial and temporal isolation among
them.

III. VIRTUALIZATION MODEL

Figure 1 depicts our type 1 virtualization model. In the
hardware level, it is assumed a bus-based homogeneous MP-
SoC along with a shared memory. The main elements of the
model are: hypervisor, Real-Time Virtual Machines (RT-VM),
Best-Effort and Real-Time VCPUs and Extended Services.

The hypervisor is responsible for the creation and manage-
ment of each VM. It provides a logic arrangement responsible
for associating each VM to its VCPUs, besides, each VM has

Application
Layer

Unprivileged Mode

05 Kernel
Layer

Kernel Mode

Hypervisor
Soitware Layer

Supervisor Mode

ripherals
[]
Shared Memory

The overall view of our virtualization model.

Fig. 1.

its memory space controlled by the hypervisor providing mem-
ory isolation. Still, the hypervisor implements the extended
services that are special services available to the guest OSs
through hypercall mechanism. Typical services may be real-
time tasks instantiation or communication mechanism among
VMs. Note that our model allows full-virtualization although
hypercalls are used to extend the guest OS capabilities result-
ing in a mixed virtualization approach.

Real-Time Virtual Machines (RT-VM) is a special VM
designed to provide a strong temporal isolation between real-
time services and GPOSs. The RT-VM does not support
RTOSs. Instead, it implements the called Real-Time Manager
(RTM) which supports communication facilities and primary
user libraries. The RTM has the ability of map its tasks directly
onto the hypervisor scheduler, i.e., it does not implement a
scheduler on its level avoiding the hierarchical scheduling
problem and improving performance.

Best-Effort and Real-Time VCPUs (BE-VCPU and RT-
VCPU, respectively) allow a strong temporal isolation between
VMs. RT-VCPUs are kept in a per CPU queue and scheduled
according an EDF policy. Otherwise, BE-VCPU are kept in a
global queue and are scheduled according a best-effort policy.
Thus, BE-VCPUs can be executed at any idle CPU providing
load balancing among the CPUs. However, aiming to guarantee
temporal isolation the RT-VCPUs are pinned to a single CPU.
GPOSs are mapped to one or more BE-VCPUs’ while real-
time tasks are mapped directly to RT-VCPUs by the RTM.

Direct communication among VMs is possible using shared
memory areas. Still, extended services can be implemented
to allow message passing mechanisms using the hypervisor
as communication arbiter. Nevertheless, the model is flexible
enough to support typical sockets style [12] communication
among VMs. Thus, when communication with the external

SFor multiprocessing OSs.

RT VM 1

RTM
Direct Mapping

VM 1
GPOS Scheduler
N to N mapping
BE- BE-
VCPU1 VCPUn
VAL

NtoN Hypervisor
} mapEng scheduler
: .

Fig. 2. Flexible Mapping model for multiprocessor embedded systems with
real-time support.

world is desired, the hypervisor may virtualize a network
adapter emulating network capabilities to the platform.

Figure 2 shows the possible flexible mapping and partition-
ing model for virtualized architectures based in our model. A
GPOS schedules its tasks according its policies to the available
BE-VCPUs. The hypervisor will schedule the BE-VCPU to
any idle CPU in a N-to-N fashion. The RT-VM does not
implement a scheduler; otherwise, it maps the real-time tasks
directly over RT-VCPUs. During the RT-VCPU instantiation,
the hypervisor inserts the RT-VCPU to the local queue of one
available CPU. Thus, the RT-VCPUs are scheduled in N-to-1
fashion (N RT-VCPUs over 1 CPU).

IV. HYPERVISOR IMPLEMENTATION

This section describes in details the implementation of our
virtualization model to the M5150 processor. Subsection IV-A
brings a brief description of the M5150 processor. Subsection
IV-B shows the hypervisor’s software architecture.

A. M5150 processor

The M5150 processor was released by the end of 2013
and was one of the first core based on the MIPS32 Release
5 (MIPS32r5) specification. It is a MIPS processor fully
synthesizable designed for embedded applications. The main
features of the processor are: single-core, 5-stage pipeline, 32-
bit address and data paths, MIPS32 and microMIPS ISA [13],
16 or 32 dual-entry joint Translation Lookaside Buffer (TLB)
with variable page sizes, Multiply/Divide Unit, Floating Point
Unit (FPU), upto 16 General Propose Registers (GPR) shadows
sets ® and Virtualization Module Support (VZ). Still, as part
of the virtualization module, the core has two instances of the
COPO: one for the guest OS and the other exclusive to the

6Shadow sets are copies of the normal GPR allowing to avoid the need to
save and restore GPRs on entry to high-priority interrupts or exceptions.

hypervisor. In the M5150 terminology, the COPO state for the
guest OS is named Guest Context while the COPO state for
the hypervisor is named Root Context of the processor.

B. Software Architecture

The source code of our hypervisor was written mainly in C
programming language, but some Hardware Abstraction Layer
(HAL) parts were written in Assembly programming language.
All source code has 6072 lines of code (LOC), where 3648
LOC were written in C language, and 2424 LOC were written
in Assembly language for the MIPS32r5 ISA. At this point,
the hypervisor can virtualize the Hellfire OS [14] and deal with
the RT-VMs. In order to validate our implementation we used
the MIPS Instruction Accurate Simulator (IASim), which is a
hardware simulator for MIPS processors able to simulate an
entire platform. It performs fast simulation aiming to deliver a
virtual platform for embedded software development without
the need of the real hardware platform.

Figure 3 shows the hypervisors block diagram composed
by the following modules: (i) Hardware Abstraction Layer
(HAL) which implements the low level Application Program-
ming Interface (API) used to isolate higher layers from further
hardware details. Some HAL parts were written in Assembly
due to necessity of use specific COP0O access, TLB or cache
control instructions. After reset, the M5150 processor starts
the instruction fetch at address OxBFCO0_0000 in the ksegl
memory segment (non-cacheble). The boot init code is placed
at this address being the first code executed after reset. It must
configure the processor accordingly and copy the hypervisor
code to a cacheable memory area, in this case, the kseg0
memory segment. (ii) Real-time and Best- effort schedulers, re-
sponsible for implementing the EDF (for real-time constraints)
and best-effort scheduling policies; (iii) Dispatcher, responsible
for dispatching the chosen VCPU to the physical CPU; (iv)
The Instruction Emulation module is needed to emulate some
instructions that cannot be directly executed by the guest OS,
e.g., write to specific bits of the COPO that changes the overall
processor behavior as the Reduced Power mode bit in the
status register; (v) VM Instantiation is used to configure and
startup the VMs during system initialization; and (vi) Toolkit
that reunites a collection of software facilities, such as linked-
list manipulation procedures.

Hypercalls. The hypervisor implements the hypercall con-
cept to provide extended services to the guest OSs. Hypercalls
are widely used in para-virtualization based approaches, where
the guest OS needs to be modified, invoking hypercalls instead
of using privileged instructions. However, we use the full-
virtualization technique, where the guest OS does not need
to be modified in order to be virtualized, although it must
use hypercalls to take advantage of our extended services,
e.g., real-time services and communication among VMs. It
is important to highlight that our technique does not require
any modification of the OS to be virtualized, thus saving
engineering efforts and time-to-market. Table I resumes the
hypervisor extended services available through hypercalls. The
services are divided into three different groups: i) VM identi-
fication which is a unique identification number issued by the
hypervisor during startup. A VM can check its identification
number using the respective hypercall as describe in Table I. ii)

Dispatcher

MMU Controlier M
Instruction Instantiation

Emulation

Realtime | Best-Efiort
Scheduler | Scheduler

,_—x =00

HAL

exception handler

VCPU
| Hypercall bopt
init

Timer

exceptionfinterrupt entry TLB || cix

Fig. 3. Hypervisor’s software block diagram.

TABLE 1. HYPERCALLS AS HYPERVISOR’S EXTENDED SERVICES.

Extended Service Hypercall Description

Return the VM ID.
RT app. Instantiation.
RT app. launch.

RT app. delete.

Send messages.
Receive messages.

VM identification HCALL_INFO_GET_ID
HCALL_RT_CREATE_APP
HCALL_RT_LAUNCH_APP
HCALL_RT_DELETE_APP
HCALL_IPC_SEND_MSG

HCALL_IPC_RECV_MSG

RT-VCPU Manag.

Commun. Services

RT-VCPU management are a group of three hypercalls respon-
sible to manage the RT-VCPUs. iii) Communication services
are composed by two hypercalls designed for communication
purposes. Altogether, six different hypercalls are supported and
may be implemented by a guest OS when needed.

Hypervisor’s initialization and execution. Figure 4 shows
a view of the hypervisor’s software structures after its ini-
tialization for a system configuration with two GPOSs and
two real-time applications at an RT-VM. The developers, at
design time, determine the number of VM instances even
as the real-time services available to the guest OSs. During
the boot, the hypervisor’s initialization code instantiate and
allocate the BE-VCPUs to the global (be_vcpu_list_ready)
queue. The RTM is executed, and the RT-VCPUs are cre-
ated using the respective hypercall and kept at an idle list
(rt_vcpu_rt_inactive). An RT-VCPU enters in execution when
the hypercall HCALL_RT_LAUNCH_APP is invoked from
a GPOS. In this moment, the RT-VCPU is moved to the
rt_vepu_list_ready list. If a VCPU is in waiting state for
some reason, e.g., /O purposes, it is moved temporarily
to the waiting list. In despite the M5150 be a single core
processor, the RT-VCPUs are still kept in a separate queue
for optimization purposes.

The hypervisor uses the GPR shadows banks intensively
to avoid the need to save the GPR state during context
switching. On start-up, the hypervisor checks the amount of
shadows available on hardware and reserve the highest shadow
page for itself. Thus, any exception or interrupt directed to
the hypervisor will be handled in the highest page being
unnecessary to save the GPR state for the hypervisor execution.
Still, if there are enough available shadows, each VCPU is

HYPERVISOR

be_vopu_list_ready

EE BE
VCPUZ il voPUl

rt_vopu_list inactive

VM1 VM 2 RTVM 1

GPOS

app 1] app 2|
BE BE RT RT

[VCPU 1| |[VCPU 2 VCPU 1| |[VCPU 2

shadow|shadow 5 shanw shanw
PR PR e P

M5150

Fig. 4. Hypervisor’s initial state after boot.

pinned to a different shadow page. During a context switching
the hypervisor checks where the VCPU is pinned and con-
figures the processor to use that page during guest execution.
When there is not enough free pages to allocate all VCPUs,
the hypervisor will save the GPR state before the context
switching. Still, in the Figure 4, is possible to see the BE-
VCPUS at VM 1 and 2 pinned to the GPR 0 and 1 respectively.
The GPRs 2 and 3 are reserved to the RT-VCPU 1 and 2.
Finally, the hypervisor reserved the GPR 157 for its exception
handler.

Interruptions. The MS5150 supports interruption pass-
through meaning that certain interrupts may be directly han-
dled by the guest OS without hypervisor intervention. Our
implementation uses this technique to the guest OS timer in-
terrupt. Thus, there is not additional overhead during guest OS
context switches. However, specific interrupts may be shared
among VMs (shared interrupts) which requires hypervisor
intervention. A typical example is a shared network interface
requiring the hypervisor to receive incoming messages and
routing among VMs. Still, it may be needed to insert interrupts
to the guest OS (virtual interrupts). As the M5150 supports
virtual interrupts our hypervisor uses this technique to imple-
ment the communication services as further explained.

Communication Services. The hypervisor implements a
message passing mechanism to allow communication among
VMs. When a guest OS desires to support communication
it must implement the extended services for communica-
tion as describe in Table I. Once the guest OS triggers
the HCALL_IPC_SEND_MSG or HCALL_IPC_RECV_MSG
hypercalls the hypervisor acts as an arbiter between the com-
municant VMs. Each VCPU implements its own incoming
message queue as a circular buffer, statically allocated for
performance purposes. A message destined to a determined
VCPU will be copied to its queue and the hypervisor will
insert a virtual interruption to the VCPU. The next time that
the VCPU is executed it will attend the virtual interrupt and

TFor a core with 16 GPR shadows.

call the hypercall to retrieve the message. The hypervisor uses
the VM identification number to route the messages among
the VMs. The hypervisor requires the address, size and ID
destination in order to route a message, which are discovered
during the hypercall. Thus, the hypervisor does not do any
assumption respecting the message formatting; this is an entire
responsibility of the communicant guest OSs. For example,
if a multi-task guest OS needs to demultiplex [12] incoming
messages among different tasks, it may add a header to the
message indicating the origin and destination task id. In this
case, different guest OSs must agree about the header format.

V. HYPERVISOR OVERHEAD MEASUREMENTS

In order to validate our virtualization approach and evaluate
its performance we used IASim [15], which is a hardware
simulator for MIPS processors, instruction-accurate and able
to simulate an entire platform. Still, it performs fast simulation
aiming to deliver a virtual platform for embedded software
development without the need of the real hardware platform.
The guest OS is the HellFire OS [14] ported to the M5150
processor. Such OS was primarily designed for small ESs with
strong restrictions for memory and processing power. Still,
the OS supports real-time models when executing natively.
Once virtualized, due to the two levels scheduling problem it
does not respond accordingly to real-time. Thus, just its best-
effort scheduler was used for virtualization purposes. However,
we implemented the hypercalls for extended services aiming
to support real-time and communication as explained in the
Subsection IV-B. This section presents some performance
results of our hypervisor implementation. It is organized in
two subsections as follows: Subsection V-A evaluates the addi-
tional overhead caused by context switching among VMs, and
Subsection V-B shows overhead penalty for communication
between VMs.

A. Context Switching Overhead

Experiment 1. Aiming to determine the context switching
overhead imposed by the hypervisor it was measured the num-
ber of instructions performed by a native execution of a guest
OS versus its virtualized execution. We ported a benchmark
application to the guest OS named ADPCM (Adaptive Differ-
ential Pulse Code Modulation) algorithm from WCET (Worst-
Case Execution Time) project [16]. The ADPCM benchmark
performs an adaptive differential pulse code modulation al-
gorithm used for analog/digital conversion and was chosen
because it does not requires any extended service, i.e., real-
time or communication. Thus, it is possible to measure the
additional overhead imposed by the virtualization layer when
using exclusively full-virtualized services. The hypervisor is
executing one instance of the guest OS. However, the guest
OS still will be preempted at the end of each scheduler
quantum, since, the hypervisor must perform the scheduler to
check if another VM is ready to execute. Three experiments
were conducted where the hypervisor scheduler quantum was
configured to 1, 5 and 10ms, respectively. The guest OS
scheduler quantum was kept in 10ms for all experiments.

The Figure 5 shows the percentage overhead imposed by
the hypervisor virtualization layer for a scheduler quantum of
1, 5 and 10ms. The overhead percentage is terminated using
the increased number of instruction from the native to the

ra

=
<]

. ..Mqﬁ

=T = o

=] =] %] B oo
Overhead(%)

=]
T

\\\\\ww

(=]
ka

- 0
0 5000000 10000000 15000000 20000000 25000000
Instructions

+ QUANTUM = 1 + QUANTUM = 5 QUANTUM = 10

Fig. 5. Overhead for 1, 5 and 10ms quantum.

virtualized execution. At the initial execution, the overhead
is 0, since, the hypervisor’s scheduler was not performed yet.
After a short period, the overhead starts to increase. However,
the overhead converges to 1.74% for the 1ms quantum with
the increasing number of instructions. For a 5ms scheduler
quantum the overhead converges to 0.34% meaning five times
less overhead. Such behavior is expected since the scheduler is
performed five times less frequently than using 1ms quantum.
Still, when analysing the scenario to a scheduler quantum
of 10ms the overhead converges to 0.17%, i.e., ten times
less overhead when compared to a 1ms quantum. Thus, the
overhead decreases linearly with quantum steps.

Experiment 2. A second experiment was conducted to
determine the overhead imposed by an increasing number
of guest OSs being virtualized concurrently. In this scenario,
we are using the same guest OS running the ADPCM ap-
plication, but, adding up to eight virtualized instances. The
hypervisor scheduler quantum was kept in 1ms. In order to
determine the overhead against native execution, we accounted
the total number of instructions performed during the tests.
For example, the total number of instructions performed to
execute one instance of the virtualized OS was compared
to the total number of instructions of the native execution.
However, the M5150 is a single core being impossible to
execute two native instances concurrently. In this case, the
same instance was executed twice sequentially, and the amount
of instructions was accounted becoming possible to compare
with two virtualized instances. Thus, we conducted tests for
1, 2, 4 and 8 virtualized instances aiming to determine the
overhead impact when adding VMs. The Figure 6 shows that
there is not overhead impact to the hypervisor’s scheduler
when executing up to 8 VMs concurrently. Since, the overhead
was around 1.7%, the same overhead showed in the Figure 5
for one VM and scheduler quantum of 1ms.

The optimistic performance results found in experiments 1
and 2 are partially due to the use of the GPR shadows banks.
Since, the hypervisor fixes each VM to a different GPR shadow
it is not necessary to save/restore the GPR during context-
swiching. Of course, if the number of VMs is greater then
the number of the available GPR shadows the hypervisor will

3000000000 3000000000
1,74%
2500000000 2500000000
@ 2000000000 2000000000
=
1500000000 1,72% 1500000000
s
E
E 1000000000 1000000000
= 1,73%
500000000 1,74% 500000000
. 1R .
1 2 4 8
Number of VCPUs
W Native B Virualized

Fig. 6. Comparative overhead for up to 8 VMs.

save/restore the GPR increasing the overhead. This restriction
can be improved if GPR shadow banks are recycled based
on a LFU (Last Frequently Used) scheme. Other important
hardware optimization is the interrupt pass-through that allow
the timer interrupts to the guest OS trigger directly the OS’s
exception handler avoiding the hypervisor interference.

B. Extended Services Overhead - Communication

In order to determine the overhead imposed by the commu-
nication subsystem, we conducted an experiment to measure
the number of instructions needed to deliver a message from
a VM to another. The experiment consists in to execute
two communicant instances of the guest OS with a synthetic
application that exchange messages of different sizes: 20, 40,
60, 80 and 100 bytes long. It was measured the overhead to the
HCALL_IPC_SEND_MSG and HCALL_IPC_RECV_MSG
hypercalls. Still, the overhead amount to deliver a message
consisting in to invoke the HCALL_IPC_SEND_MSG by
the sender and schedule the receiver guest OS that invokes
the HCALL_IPC_RECV_MSG to complete the deliver was
determined. The guest OS implements the extended services
for communication as explained in the Subsection IV-B. Such
OS is a multi-task one which means it must demultiplex
the incoming messages among different tasks. As explained
before, the hypervisor does not do any assumption about the
message formatting; its goal is to deliver a message to the
destination VM using the VM ID (see Section IV). Thus, the
OS can implement any message formatting as necessary. In
this case, the OS implements a message header to hold the
necessary information for demultiplex purposes. The header is
six bytes long and it is composed by the following fields: i)
target_cpu: Destination VCPU (2 bytes long); ii) source_cpu:
Source VCPU (2 bytes long); iii) target_task: Destination task
(1 byte long); and iv) source_task: Source VCPU (1 bytes
long).

Table II shows the results. In order to send a
message, the guest OS must invoke the hypercall
HCALL_IPC_SEND_MSG (see Table I). Such hypercall
will trigger the hypervisor copying the message from the

TABLE II. OVERHEAD OF EXTENTEND SERVICES FOR

COMMUNICATION.

Message Size (#bytes)
Experiment 20 40 60 80 100

HCALL_IPC_SEND_MSG 1420 1485 1550 1615 1680
HCALL_IPC_RECV_MSG 1042 1107 1172 1237 1302
Message delivery 2594 2724 2854 2984 3114

source buffer to the VCPU’s incoming queue and inserting a
virtual interruption on it. As showed in Table II, the overhead
to send a message increases slightly with the message size.
This was expected, since, the message is copied from the
source buffer to the VCPU’s incoming queue. However,
with just 1680 instruction is possible to deliver a message
with 100 bytes long which is very optimistic. The MIPS32
implements a load/store architecture with single-cycle ALU
operations, which means that the core at 100MHz performs
roughly 100 millions of instructions per second. Thus, 1680
instructions represents 0.00168% of CPU time during 1
second. Aiming to receive a message the guest OS must
handle the virtual interrupt inserted during the sending
process. In the interrupt handler, the guest OS must invoke
the hypercall HCALL_IPC_RECV_MSG which will trigger
the hypervisor copying the next message available in the
incoming queue to the destination buffer. After that, the guest
OS will use the information in the header to deliver the
message to the correct destination task. Again, the overhead
increase slightly with the message size. However, all this
process requires just 1302 instruction for a 100 bytes long
message which is very optimistic. Finally, we measured the
overhead for message delivery, i.e., the number of instructions
needed to send and receive the message in the destination
guest OS. Table II shows that a message delivery requires
slightly more instructions to be completed than just the send
or receive process, e.g., a 100 bytes long message requires
1680 instructions to be sent and 1302 to be received, but 3114
to complete the delivery. This is expected since a message
delivery requires context-switching between the communicant
VMs. As expected the overhead increases slightly with the
message size due to intermediate buffer copies.

The message passing mechanism implemented by the hy-
pervisor introduces extra overhead due to the required copies
of the messages from a VM to another. Mechanisms like shared
memory can delivery messages directly from a VM to another.
However, message passing provides stronger spatial isolation
among VMs, since, the hypervisor manages the message
copies. Still, our implementation allows to queue the incoming
messages in the destination VCPU. Thus, the VCPU can
deal with multiple incoming message from different senders
without requiring additional synchronization using semaphores
or spinlocks.

VI. CONCLUSION

In this paper, we presented an implementation approach
for a hypervisor to the M5150 processor with virtualization
extensions. Such implementation supports full-virtualization of
the CPU, communication facilities and real-time capabilities.
The implementation was based on a virtualization model
that offers real-time support and communication as extended
services. The extend services consists in hypercalls that may be

implemented by a guest OS if it desires to use the hypervisor’s
communication or real-time capabilities, otherwise, it can be
virtualized unmodified. Thus, the hypervisor mix full- and
para-virtualization in a mixed-approach. The implementation
relies on hardware features to improve performance using ex-
tensively the GPR shadows, interruption pass-through among
other hardware facilities. Results were measured in the number
of instructions to determine the imposed overhead of the vir-
tualization layer. Such results are optimistic and show that the
hardware support was essential to improve the performance. As
future work, we are aiming to support the Linux Kernel and
conducting performance evaluation in the development board
to the M5150.

REFERENCES

[1] K. Sandstrom, A. Vulgarakis, M. Lindgren, and T. Nolte, “Virtualization
technologies in embedded real-time systems,” in Emerging Technologies
Factory Automation (ETFA), 2013 IEEE 18th Conference on, Sept 2013,
pp. 1-8.

[2] G. Heiser, “Hypervisors for consumer electronics,” jan. 2009, pp. 1 -5.

[3] M. Asberg, N. Forsberg, T. Nolte, and S. Kato, “Towards real-time
scheduling of virtual machines without kernel modifications,” Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Confer-
ence on, 2011.

[4] D. Muench, M. Paulitsch, and A. Herkersdorf, “Temporal separation for
hardware-based i/o virtualization for mixed-criticality embedded real-
time systems using pcie sr-iov,” in Architecture of Computing Systems
(ARCS), 2014 27th International Conference on, Feb 2014, pp. 1-7.

[5] T. Nakajima, Y. Kinebuchi, H. Shimada, A. Courbot, and T.-H. Lin,
“Temporal and spatial isolation in a virtualization layer for multi-
core processor based information appliances,” in Design Automation
Conference (ASP-DAC), 2011 16th Asia and South Pacific, Jan 2011,
pp. 645-652.

[6] T.-H. Lin, H. Mitake, and T. Nakajima, “Improving gpos real-time
responsiveness using vepu migration in an embedded multicore virtu-
alization platform,” in Computational Science and Engineering (CSE),
2013 IEEE 16th International Conference on, Dec 2013, pp. 693-700.

[71 T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting temporal con-
straints in virtualised services,” in Computer Software and Applications
Conference, 2009. COMPSAC °09. 33rd Annual IEEE International,
vol. 2, July 2009, pp. 73-78.

[8] “M-class mSlxx core family,” http://www.imgtec.com/mips/wa
rrior/mclass.asp, 2014, online; accessed 25-August-2014.

[9] G. Heiser and B. Leslie, “The OKL4 microvisor: convergence point
of microkernels and hypervisors,” APSys '10: Proceedings of the first
ACM asia-pacific workshop on Workshop on systems, 2010.

[10] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded archi-
tecture based on hypervisor: The xtratum approach,” in Dependable
Computing Conference (EDCC), 2010 European, April 2010, pp. 67—
72.

[11] A. Aguiar, C. Moratelli, M. Sartori, and F. Hessel, “Adding virtualiza-
tion support in mips 4kc-based mpsocs,” in Quality Electronic Design
(ISQED), 2014 15th International Symposium on, March 2014, pp. 84—
90.

[12] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, Sth ed.
Prentice Hall, 2011.

[13] Imagination Technologies Ltd, “MIPS Architecture For Programmers
Volume I-B: Introduction to the microMIPS32 Architecture,” Tech.
Rep., 9 2013.

[14] A. Aguiar, S. Filho, F. Magalhaes, T. Casagrande, and F. Hessel,
“Hellfire: A design framework for critical embedded systems’ applica-
tions,” in Quality Electronic Design (ISQED), 2010 11th International
Symposium on, March 2010, pp. 730-737.

[15] Imagination Technologies Ltd, “Navigator ICS Getting Started Guide,”
Tech. Rep., 1 2014.

[16] “Wcet project / benchmarks,” http://www.mrtc.mdh.se/projects/
wcet/benchmarks.html, 2014, online; accessed 29-August-2014.

