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S1 Molecules studied

[Mon+] (mM) [Mg2+] (mM) loading rate (pN/s) Molecules Total cycles
50 0 1.8 4 95
50 0 12.5 2 376
150 0 1.8 6 292
150 0 12.5 4 329
550 0 1.8 5 163
550 0 12.5 3 501
1050 0 1.8 9 185
1050 0 12.5 9 405
50 0.01 1.8 5 146
50 0.01 12.5 5 386
50 0.1 1.8 7 374
50 0.1 12.5 9 1434
50 0.5 1.8 2 112
50 0.5 12.5 2 533
50 1.0 1.8 4 205
50 1.0 12.5 6 2183
50 4.0 1.8 7 385
50 4.0 12.5 7 1112
50 10.0 1.8 7 190
50 10.0 12.5 3 1189

Table S1: Number of molecules and total cycles measured at each ionic salt condition.
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S2 Study of fraying

The phenomenon of “fraying” at the ends of DNA and RNA duplexes can potentially interfere with

both solution and single-molecule measurements of DNA and RNA stabilities, and it was previously

suggested that its e↵ects should be introduced in data analysis [1]. In order to check if fraying has

an important role in our sequence, we computed the released (absorbed) molecular extension �x
m

in

the unfolding (folding) process. This can be done using the expression:

�x
m

=
�f

k
e↵

(S1)

where �f is the force jump measured along the force-distance curve (FDC) and k
e↵

is its slope before

the transition. The change in the molecular extension is also equal to:

�x
m

= x
N

(f)� x
n

(f) (S2)

where x
N

(f) is the equilibrium end-to-end distance of the unzipped hairpin evaluated at the unfold-

ing/folding force (N = 20 in this case); x
n

(f) is the projection of the folded hairpin along the force

axis; and n denotes the number of open/frayed base pairs in the F state. Ideally, in the absence of

fraying, n = 0. However, in presence of fraying we should find the value n > 0 such that eq. (S1) and

(S2) give the same change in molecular extension.

From the FDC we obtain �f = 1.2± 0.1 pN and k
e↵

= 0.0625± 0.0146 pN/nm which, using eq.

(S1), gives �x
m

= 19± 2 nm for any salt concentration. On the other hand, we evaluate x
N

(f) and

x
n=0

(f) using the elastic properties summarized in Tables 1 and 2 at the measured unfolding/folding

forces. Using eq. (S2) for n = 0 we obtain that predicted values for �x
m

lie in the range between

18.2 and 19.7 nm. Therefore, we conclude that fraying is not important for the molecule under study

because the experimental evaluation of �x
m

(eq. (S1)) is in agreement with the estimation of the

released molecular extension for N = 20 and n = 0.

The e↵ect of fraying has been proved to play an important role in former single-molecule stretching

experiments, like in Woodside et. al. [1]. To understand when fraying is relevant in RNA or DNA

hairpins we can take a look to sequences at the beginning of the stem as a higher GC-content makes

the structure more stable. For instance, the RNA hairpin studied here starts with 5’-GCG-3’, whereas

most sequences studied by Woodside et al. [1] start with 5’-GAG-3’ (except two sequences that start

with 5’-TAT-3’ and 5’-AAG-3’). In Table S2 we compute the free energy di↵erence �G
1

(f) at 1 M

NaCl between the completely folded conformation (n = 0) and the frayed configuration with one open

distal base pair (n = 1) at di↵erent values of force for our RNA hairpin and molecule 20R55/4T in [1].

At zero force, �G
20R55/4T

1

(0) is below 3 k
B

T and consequently thermal fluctuations can overcome the

energetic barrier and the frayed conformation can take place. However, in the case of our hairpin �G
1

is too high for thermal fluctuations to overcome the energetic barrier. The same trend is observed at

10 pN. At 20 pN fraying is irrelevant because both molecules are in the unfolded state.

Motivated by solution measurements [2, 3], we also considered the possibility of fraying at the op-

posite end of the stem, on the base pairs closest to the loop. However, we found free energy di↵erences

of more than 10 k
B

T between these configurations and the closed configuration, and consequently we

conclude that these “frayed” configurations are not a↵ecting our results.

Based on these considerations, we conclude that fraying plays a rather minor role (if any) on the

thermodynamics and kinetics of folding/unfolding of the RNA hairpin and can be neglected.
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Force (pN) �G
20R55/4T

1

(k
B

T ) �GRNA

1

(k
B

T )

0 2.67 6.45
10 1.08 4.86
20 -1.34 2.45

Table S2: Free energy di↵erences between frayed (n = 1) and completely closed structures (n = 0) of
20R55/4T hairpin [1] and our RNA hairpin at 1 M NaCl and di↵erent forces.

S3 Derivation of the e↵ective barrier B

KT

e↵

(f)

Here we derive the analytical expression for the e↵ective barrier of a one-dimensional free energy

landscape based on the work by Hyeon and Thirumalai [4].

V (x)

xba

⌧

Figure S1: Brownian particle in a double well potential.

Suppose the system sketched in Fig. S1, where a Brownian particle is subject to the one dimensional

potential V (x). The time evolution of the probability density function (pdf) p(x, t) to find the particle

at the position x at time t follows the Fokker-Planck equation [4, 5]:

@p(x, t)

@t
= D

@

@x


@

@x
+

1

k
B

T

dV (x)

dx

�
p(x, t)

= D
@

@x


e
�V (x)

k

B

T

@

@x
e

V (x)

k

B

T

�
p(x, t)

= L
FP

[p(x, t)] (S3)

Where D is the di↵usion coe�cient and L
FP

is the Fokker-Plank operator. If we suppose that the

particle initially is located at x = a, p(x, 0) = �(x� a), the formal solution of equation (S3) is:

p(x, t) = etLFP �(x� a) (S4)

We want to evaluate the average time ⌧ it takes to the Brownian particle to jump the kinetic barrier

located at x = b. In order to simplify the following calculations, we suppose that there are absorbing

conditions at x = b: once the particle reaches the maximum sketched in Fig. S1 it always goes to the

right well. The probability to find the particle in the left well of the potential V (x) (x 2 [�1, b]) at

time t, also known as the survival probability S(t), can be defined as:

S(t) =

Z
b

�1
dx p(x, t) (S5)

The time derivative of the survival probability is equal to the time survival pdf ⇢(t), that is, the
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pdf of the time it takes to the Brownian particle to cross the barrier located at x = b.

S(t+ dt)� S(t) = �⇢(t)dt ) ⇢(t) = �@S(t)

@t
(S6)

Therefore, the mean first passage time ⌧ can be calculated as:

⌧ =

Z 1

0

dt t ⇢(b, t)

=

Z 1

0

dt S(b, t)

=

Z 1

0

dt

Z
b

�1
dx p(x, t)

=

Z 1

0

dt

Z
b

�1
dx etLFP �(x� a)

=

Z 1

0

dt

Z
b

�1
dx �(x� a)etL

†
FP 1

=

Z 1

0

dt etL
†
FP 1 (S7)

In order to obtain this expression we integrated by parts and used that the adjoint operator satisfies

f(x)L [g(x)] = g(x)L† [f(x)]. If we apply the adjoint Fokker-Plank operator L†
FP

at both sides of

equation (S7) we obtain:

L†
FP

⌧ =

Z 1

0

dt L†
FP

etL
†
FP 1

=

Z 1

0

dt
detL

†
FP

dt
1

= �1 (S8)

Which gives a di↵erential equation for the survival time ⌧ that depends on the adjoint Fokker-Plank

operator.

It can be demonstrated that:

L†
FP

= De
V (x)

k

B

T

@e
�V (x)

k

B

T

@x

@

@x
(S9)

and we can write the following di↵erential equation:

L†
FP

⌧(x) = De
V (x)

k

B

T

@

@x

⇣
e
�V (x)

k

B

T

⌘ @

@x
⌧(x) = �1 (S10)

In order to solve eq. (S10) we use the absorbing boundary condition ⌧(b) = 0 and the reflecting

boundary @⌧

@x

|
x=a

= 0.

⌧(x) =
1

D

Z
b

x

dy e
V (y)

k

B

T

Z
y

a

dxe
�V (x)

k

B

T (S11)

Once we have evaluated the average survival time of the Brownian particle, we want to evaluate

the e↵ective barrier of the potential V (x). Using the phenomenological Arrhenius approach [6] that
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considers that the survival time depends on the exponential of the barrier we can write:

⌧ ' e
B

eff

k

B

T ) B
e↵

= k
B

T log (⌧/⌧
0

) (S12)

B
e↵

= k
B

T log

 
1

⌧
0

D

Z
b

x

dy e
V (y)

k

B

T

Z
y

a

dxe
�V (x)

k

B

T

!
(S13)

⌧
0

is related to the di↵usion time of the particle the along x axis. By discretization of equation (S13)

we obtain the expression (7) of the main paper,

B
e↵

(f) = k
B

T log

"
NX

n=0

e
�G

n

(f)

k

B

T

 
nX

n

0
=0

e
��G

n

0 (f)

k

B

T

!#
(S14)

Where �G
n

is the potential energy V (x) and where we considered that D⌧
0

' O(1).
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S4 Sensitivity of the data analysis

An experimental estimation of the kinetic barrier is obtained from the measured transition rates k
U

(f)

and k
F

(f). From the unfolding transition rate, the estimator of the kinetic barrier is given by:

B
(U)

e↵

(f)

k
B

T
= log k

0

� log k
U

(f) (S15)

Where log k
0

is a constant (equal to the logarithm of the attempt rate at zero force for the activated

kinetics) and log k
U

(f) is estimated from the measured unfolding rupture forces (see section 2.6 in the

main paper).

On the other hand, from folding rupture forces the estimation of the kinetic barrier is:

B
(F )

e↵

(f)

k
B

T
= log k

0

� log k
F

(f) +
�G

N

(f)

k
B

T

= log k
0

� log k
F

(f) +
�G

N

(0)

k
B

T
+

�GssRNA

N

(f)

k
B

T
+

�Gd

0

N

(f)

k
B

T

= log k
0

� log k
F

(f) +
�G

N

(0)

k
B

T
�
R
f

0

xssRNA

N

(f 0)df 0

k
B

T
+ log


k
B

T

fd
0

sinh

✓
fd

0

k
B

T

◆�

(S16)

Where log k
0

is the same constant as in eq. (S15) and log k
F

(f) is obtained from the measured folding

rupture forces. The term �G
N

(0)/k
B

T is another constant equal to the free energy of the RNA

hairpin at zero force;
R
f

0

xssRNA

N

(f 0)df 0 is a force dependent term evaluated according to the model

used to describe the elastic response of ssRNA (here we use the WLC model with a salt-dependent

persistence length P ); and the last term, log
h
k

B

T

fd

0

sinh
⇣

fd

0

k

B

T

⌘i
, is evaluated using d

0

= 2.0 nm at any

salt condition for the given force f (see section 2.3).

Typically, log k
0

is unknown and either �G
N

(0)/k
B

T is unknown and P is known (here, for

monovalent salt conditions) or�G
N

(0)/k
B

T is known and P is unknown (for mixed monovalent/Mg2+

conditions).

S4.1 Sensitivity of the method at determining �GN(0)

For a given value of the persistence length P we can evaluate the kinetic barrier from experimental

unfolding/folding rupture forces by ignoring the unknown constants (log k
0

and �G
N

(0)/k
B

T ) and

we obtain the result shown in Fig. S2A. Error bars are evaluated using the bootstrap method.

In order to determine the constant �G
N

(0)/k
B

T , i. e. the free energy of formation of the RNA

hairpin, we impose the continuity of the kinetic barrier in folding and unfolding data (Fig. S2B).

The error committed in the evaluation of �G
N

(0)/k
B

T mainly depends on the good agreement of the

overlapping between
⇣
B

(U)

e↵

(f)� log k
0

⌘
and

⇣
B

(F )

e↵

(f)� log k
0

⌘
and their error bars. In the example

provided in Fig. S2B the best overlapping is found at �G
N

(0) = 64 k
B

T . In the insets we see that the

continuity requirement worsens for values of �G
N

(0) as close as 64.4 or 63.6 k
B

T . As a consequence,

we estimate �G
N

(0) = 64.0± 0.4 k
B

T (see Table 1 in the main document).
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Figure S2: Determination of �GN(0). Data obtained at 1.8 pN/s and 550 mM [Mon+]. (A)

Evaluation of B(U)(f)� log k
0

(red squares) and B(F )(f)� log k
0

��G
N

(0)/k
B

T (blue circles). (B)

�G
N

(0)/k
B

T is obtained using the overlapping of the kinetic barrier with force. Once unfolding
and folding data overlap, the resulting experimental curve is equal to B

e↵

(f) � log k
0

. Insets: The
value of �G

N

(0)/k
B

T can be overestimated (top) or underestimated (bottom) so that the continuity
requirement is not well-satisfied.

S4.2 Sensitivity of the method at determining log k0

In order to estimate the attempt rate at zero force we need a theoretical model for the kinetic barrier.

In the case of this work we use the Kramers theory (see section S3). Once we have evaluated B
e↵

(f)�
log k

0

, log k
0

is obtained by overlapping the theoretical model to the experimental results, as shown

in Fig. S3. The sensitivity in the determination of log k
0

is similar to the sensitivity in determining

�G
N

(0): at log k
0

=10.5 we find the best match, and for values 0.4 greater or smaller the result

significantly worsens (insets in Fig. S3B).

f (pN) f (pN)

log k
0

B
e
↵

(f
)
(k

B

T
)

A B

-5
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17 18 19 20 21 22
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16
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17 18 19 20 21 22

B
(
U
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(f
)
�
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g
k
0
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B

T
)

log k
0

= 10.5

16
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6
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17 19 21

log k

0

= 10.1

log k

0

= 10.9

Figure S3: Determination of logk0. Data obtained at 1.8 pN/s and 550 mM [Mon+]. (A) Black-
straight line is the theoretical evaluation of the kinetic barrier using Kramers theory (section S3 and
section 2.5 in the main document) and blue circles (red squares) are the experimental estimation of the
kinetic barrier without the contribution of log k

0

using folding (unfolding) rupture forces. (B) log k
0

is obtained overlapping the experimental data to the theoretical curve. Insets: The value of log k
0

can be underestimated (top) or overestimated (bottom) leading to a worse match between theory and
experiments.
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S4.3 Sensitivity of the method at determining P

The elastic contribution to B
e↵

(f) only applies to folding data, eq. (S16), and regulates the slope

of the experimental estimation of the kinetic barrier in the range of experimentally measured folding

forces. In this work we determine the persistence length P of ssRNA by comparing the profile of the

kinetic barrier estimated from experimental data with the one evaluated using the Kramers theory

(see Fig. S4). The sensitivity at determining P is limited by the determination of �G
N

(0)/k
B

T ,

log k
0

and the error bars estimated for B(U/F )

e↵

(f). Therefore, the is a feedback in the determination

of the �G
N

(0)/k
B

T , log k
0

and P : optimal values are those that give a best fit between experimental

and theoretical estimations of the kinetic barrier.

B
e
↵

(f
)
(k

B

T
)

f (pN)

P = 0.5 nm

P = 1.5 nm

0

5

10

15

20

25

14 15 16 17 18 19 20 21 22

Figure S4: Determination of P. Data obtained at 1 mM [Mg2+]. Gray lines are evaluations of the
kinetic barrier using Kramers theory, eq. (S14), for di↵erent values of the persistence length (P =
0.5, 0.6, 0.7, . . . , 1.5 nm). Experimental data is analyzed using also di↵erent values of the persistence
length. In this case, at P = 0.8 ± 0.1 nm we obtain the best overlapping between theory and
experiments.

The same methodology was used to determine the value of m in the non-specific correction for the

free energy of formation of one base pair, where the elastic parameters are known but the free energy

is unknown (see section 3.5 and Fig. 4 in the main paper): we look for the best matching between

theory and experiments.
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S5 UV Absorbance experiments

In order to determine the e↵ect of salt on the stability of the hairpin we obtained the melting profile

of the molecule using UV absorbance at 260 nm. The melting temperature was measured at 70±1oC

using a bu↵er containing 100 mM Tris.HCl, 1 mM EDTA and no NaCl neither MgCl
2

. Results can be

observed in Fig. S5A. We calculated the first derivative of the absorbance as a function of temperature

(Fig. S5B) and observed several maximums along the resulting profile (see arrows), which denote the

presence of pre-melted states. For instance, regions with a richer A-U content in the middle of the stem

may dissociate before the whole hairpin is unfolded (Fig. S5C). This result invalidates the two-states

assumption used to extract thermodynamic parameters from the melting curve.
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Figure S5: UV Absorbance of the RNA hairpin. (A) Experimental results of the absorbance of our
RNA hairpin as a function of temperature. (B) First derivative of the absorbance as a function
of temperature. Its maximum (black dashed line) defines the melting temperature. (C) The RNA
hairpin under study has a region with a high A-U content in the stem which could lead to premelted
states.

We tried to obtain the melting profile adding 100 mM NaCl to the bu↵er, and the melting temper-

ature was too high and the sample started boiling and evaporating before any relevant signal could

be obtained. Therefore, for this RNA hairpin melting curves cannot be measured at the experimental

conditions used in our pulling experiments with optical tweezers, and our results can only be compared

with Mfold [7, 8, 9] and other theoretical predictions [10, 11, 12]
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S6 Rupture force histograms
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Figure S6: Probability distributions of the unfolding and folding first rupture forces measured at
di↵erent pulling speeds and di↵erent monovalent ionic condition. Red points are folding forces at 1.8
pN/s, green are unfolding forces at 1.8 pN/s, blue are folding forces at 12.5 pN/s and magenta are
unfolding forces at 12.5 pN/s.
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S7 Tightly Bound Ion Model

In this section the empirical equations of the Tightly Bound Ion (TBI, [11, 12]) model used to predict

the hairpin free energies at di↵erent ionic conditions are summarized [13, 14].

The external parameters, obtained from the Mfold server [7, 8, 9], are:

Bases in the loop N
l

=4
Bases in the helix N=20
Hairpin diameter d=1.7 nm
Interphosphate distance a=0.6 nm
Enthalpy at 1 M [Mon+], 0 M [Mg2+] �H

0

=199 kcal/mol
Entropy at 1 M [Mon+], 0 M [Mg2+] �S

0

=527.16 mkcal/Kmol

In what follows x is the concentration of monovalent salt and y is the concentration of magnesium

ions. Both parameters are given in units of M. Temperature T is given in Celsius.

The empirical set of equations are:

lnZl

Mon

(x) = al
1

(x) log(N
l

� a/d+ 1) + bl
1

(x)(N
l

� a/d+ 1)2 � bl
1

(x) (S17)

lnZc

Mon

(x) = cl
1

(x)N
l

� dl
1

(x) (S18)

al
1

(x) = (0.02N
l

� 0.026) log(x) + 0.54N
l

+ 0.78 (S19)

bl
1

(x) =

✓
� 0.01

(N
l

+ 1)
+ 0.006

◆
log(x)� 7

(N
l

+ 1)2
� 0.01 (S20)

cl
1

(x) = 0.07 log(x) + 1.8 (S21)

dl
1

(x) = 0.21 log(x) + 1.5 (S22)

Gl

Mon

(x) = �(lnZl

Mon

(x)� lnZc

Mon

(x)) (S23)

Gh

Mon

(x, T ) = H
0

� (T + 273.15)S
Mon

(x)0.001 (S24)

S
Mon

(x) = S
0

� 3.22(N � 1)g
1

(x) (S25)

g
1

(x) = ah
1

(x) + bh
1

(x)/N (S26)

ah
1

(x) = �0.075 log(x) + 0.012 log2(x) (S27)

bh
1

(x) = 0.018 log2(x) (S28)

G
Mon

(x, T ) = Gh

Mon

(x, T ) +Gl

Mon

(x) (S29)
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lnZl

Mg

(y) = al
2

(y) log(N
l

� a/d+ 1) + bl
2

(y)(N
l

� a/d+ 1)2 � bl
2

(y) (S30)

lnZc

Mg

(y) = cl
2

(y)N
l

� dl
2

(y) (S31)

al
2

(y) =

✓
� 1

N
l

+ 1
+ 0.32

◆
log(y) + 0.7N

l

+ 0.43 (S32)

bl
2

(y) = 0.0002(N
l

+ 1) log(y)� 5.9/(N
l

+ 1)2 � 0.003 (S33)

cl
2

(y) = 0.067 log(y) + 2.2 (S34)

dl
2

(y) = 0.163 log(y) + 2.53 (S35)

Gl

Mg

(y) = �(lnZl

Mg

(y)� lnZc

Mg

(y)) (S36)

(S37)

Gh

Mg

(y, T ) = H
0

� (T + 273.15)S
Mg

(y)0.001 (S38)

S
Mg

(y) = S
0

� 3.22(N � 1)g
2

(y) (S39)

g
2

(y) = ah
2

(y) + bh
2

(y)/N2 (S40)

ah
2

(y) = �0.6/N + 0.025 log(y) + 0.0068 log2(y) (S41)

bh
2

(y) = log(y) + 0.38 log2(y) (S42)

G
Mg

(y, T ) = Gh

Mg

(y, T ) +Gl

Mg

(y) (S43)

xl

1

(x, y) = x/(x+ (7.2� 20/N
l

)(40� log(x))y) (S44)

Gl

Mon,Mg

(x, y) = xl

1

(x, y)Gl

Mon

(x) + (1� xl

1

(x, y))Gl

Mg

(y) (S45)

Gh

Mon,Mg

(x, y, T ) = H
0

� (T + 273.15)S
Mon,Mg

(x, y)0.001 (S46)

S
Mon,Mg

(x, y) = S
0

� 3.22
⇥
(N � 1)

�
xh

1

(x, y)g
1

(x) + (1� xh

1

(x, y))g
2

(y)
�
+ g

1,2

(x, y)
⇤

(S47)

xh

1

(x, y) =
x

x+ (8.1� 32.4/N)(5.2� log(x))y
(S48)

g
1,2

(x, y) = �0.6xh

1

(x, y)(1� xh

1

(x, y)) log(x) log((1/xh

1

(x, y)� 1)x)/N (S49)

G
Mon,Mg

(x, y, T ) = Gh

Mon,Mg

(x, y, T ) +Gl

Mon,Mg

(x, y) (S50)

Where G
Mon,Mg

(x, y, T ) is the free energy at any temperature and at any monovalent and mag-

nesium ion concentration.
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S8 Comparison to the counterion condensation theory

There are two successful theories to account for the energetic interactions between ions in solution

and nucleic acids: the Poisson-Boltzmann theory and the counterion condensation theory derived

by Manning [10, 15]. These theories are based on di↵erent mean field approaches and neglect any

kind of correlations between the ions in the solution. More recently a new theory known as the

Tightly Bound Ion (TBI) model has been introduced [11], which accounts for the di↵erent modes of

correlations between counterions.

In Fig. S8 we see the prediction provided by the Manning theory and the TBI model to the free

energy of formation of our RNA hairpin as a function of the salt concentration. Because correlations

between monovalent ions are negligible, we see that both the Manning theory and the TBI model give

similar results under this condition (Fig. S8A). However, correlations between Mg2+ are important

and the TBI model gives an improved prediction in this case (Fig. S8B) [12].
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Figure S8: Comparison between experimental data, the counterion condensation theory and the TBI
model to predict the behavior of the free energy of formation of our RNA hairpin as a function of salt
concentration.
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