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ABSTRACT: This research project focuses upon the wake 
behind a two-dimensional blunt-trailing-edged body. Data 
are obtained numerically by means of a Direct Numerical 
Simulation code. The body has an elliptical nose followed by a 
straight section that ends in a blunt base. The present paper 
is dedicated to the analysis of the onset of the shedding 
process. The effort is certainly worthwhile, because, in 
contrast to the case of the circular cylinder, the boundary 
layers’s separation points are defined and fixed. This allows 
a better assessment of the vital influence of the boundary 
layers upon the wake, in a controlled way. This is not the case 
for the circular cylinder, because, in this instance, the 
separation points oscillate in relation to a mean position. 
In the present analysis, the relationship between the onset 
of shedding Reynolds number, Reh

K , and the aspect ratio, 
AR, is obtained. To this end, a wide range of aspect ratios, 
between 3 and 25, was investigated. The result represented 
by this relationship is a novelty in the literature. Values of 
Reh

K are strongly influenced by the aspect ratio for the case 
of the short cylinders — for which AR is low. After AR about 
9, the  curve flattens and the influence of the aspect ratio 
upon the shedding Reynolds number is very mild. Besides, the 
paper discusses another very important aspect; the overall 
stability of the pre-shedding laminar bubble at the base of the 
body. It is important to stress that the latter study relies on 
the fact that the boundary layers separation points are fixed.

KEYWORDS: Wakes, Onset of shedding, Blunt-trailing-edged 
body, Numerical analysis.
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INTRODUCTION

The aim of the present work is to study the wake behind 
a blunt-trailing-edged body, consisting of an elliptical nose 
followed by a straight section (Fig. 1). In the present paper, a 
study of the onset of shedding is reported, whereas in a second 
paper, the main topological features of the flow are discussed 
(Ortega et al., 2012). 

There is a myriad of publications in the literature related 
to flows about blunt bodies. It is not the aim of the present 
authors to present here a thorough literature review about 
this theme. The interested reader can find these information 
in the following citations. Some of the most comprehensive 
and authoritative historical reviews are the ones by Williamson 
(1996) and Dauchy et al. (1997). On the other hand, low 
Reynolds number data, relative to elliptical elongated cylinders, 
is rather scarce. Bearman (1965) has conducted, during the 
1960’s, a thorough experimental analysis of this geometrical 
form. Two-dimensional results were presented for a model 
with and without splitter plates, and the Reynolds number, 
based on the model chord, was made to vary in the range 
of 1.4 x 105 to 2.56 x 105 (Bearman, 1965). Several splitter 
plate lengths were investigated, and studies of base pressure, 
shedding frequency, hot-wire traverse distributions of mean 
flow velocity, and r.m.s. of velocity fluctuations, were done. 
The main focus of the investigation was the understanding of 
how those factors would influence the formation length, and, 
at the same time, to assess the possibility of drag reduction. 
In a sequence, Bearman (1967), following basically the same 
line of study, investigated the effect of base bleed behind the 
same model. Now, the Reynolds number, based on the body 
base height, was made to vary between 1.3 x 104 and 4.1 x 104. 

doi: 10.5028/jatm.v6i3.365

1.Instituto Tecnológico de Aeronáutica – São José dos Campos/SP – Brazil 2.Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS – Brazil

Author for correspondence: Marcos Aurélio Ortega | Department of Aerodynamics – Division of Aeronautical Engineering – ITA, CEP: 12.228-001 - São José dos 
Campos/ SP | Brazil | Email: marcos.ts.ortega@gmail.com

Received: 04/09/2014 | Accepted: 06/25/2014



J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 3, pp.249-266, Jul.-Sep., 2014

250
Ortega, M.A., Girardi, R.M. and Silvestrini, J.H.

The model investigated had a span of 71.1 cm, a chord of 
15.24 cm, and a base height, h, of 2.54 cm. The aspect ratio, 
AR = c/h, was equal to 6. The frontal half ellipse had semi-
major and -minor axes equal to, respectively, 12.70 cm and 
1.27 cm. In the words of the author: “The rear 2.54 cm of the 
model was parallel sided in order that the flow left the surface 
smoothly at the trailing edge corners”. As pointed out before, 
this was the main geometric characteristic that attracted our 
attention. Recently, Park et al. (2006) have investigated a new 
passive device for drag reduction in a flow about a bluff body 
with a cross-section like the one in Fig. 1. The aspect ratio 
was equal to 6.33 and the study involved both experimental 
and numerical treatments. Another work that has focused on 
the elongated cylinder shape is the one by Ryan et al. (2005). 
In this paper, the authors conducted a numerical Floquet 
analysis of the three-dimensional transition to turbulence in 
the wake of the body.

For the case of the elongated cylinder, the onset-of-shedding 
process that happens at low values of the Reynolds number, the 
well known Hopf bifurcation, responsible for the appearance 
of the von Kármán vortex street, has never been investigated 
before. This is the main focus of this article. Values of the 
onset of shedding Reynolds number are numerically obtained 
by varying the value of the aspect ratio. For low values of 
the aspect ratio, the influence upon the Reynolds number 
in strong, but after about AR = 9, the curve flattens and an 
asymptotic behavior is observed. After that, an exploration 
on the influence of the boundary layers upon the shedding 
process was attained. For this purpose, we have “installed” 
small bumps on the upper and lower surfaces of the body, and 
have studied how those perturbations affect the conditions 
of the vortexes emission.

This paper is organized as follows. In the section 
“Computational strategy”, the main aspects of the mathematical 
model are presented and discussed. A short review of the 
Hopf bifurcation is given, with the purpose of establishing the 
physical scenario to be tackled ahead in the study. After that, 
some data about validation and convergence of the code are 
discussed. Convergence characteristics are extremely important 
here because the physics is essentially time dependent. In the 
section “In search of the onset of shedding Reynolds number”, 
the core of the article is divided into three sub-sections. In the 
first one, a strategy of investigation is designed. We have 
arrived at the rake of grids idea. This idea was tested, first, 
by dealing with the circular cylinder, taking into account the 

vast number of literature data for this geometry. Because the 
circular cylinder results were consistent, we then applied it 
to the elongated body. Finally, we made an effort to assess 
the influence of the boundary layers upon the formation 
and shedding of the structures at the base of the body. Some 
conclusions are then presented.

COMPUTATIONAL STRATEGY

Firstly, solutions for flow past a circular cylinder from 
time-dependent simulations of the Navier-Stokes equations 
on two-dimensional domains are obtained. The immediate 
objective is to perform code convergence tests. Secondly, the 
code is applied to the studies of the flow about the elongated 
cylinder. The code is called Incompact3d and it was originally 
developed by Lamballais and Silvestrini (2002), and Lamballais 
et al. (2008); it is a software for incompressible flows of the 
immersed boundaries type and it uses compact differences for 
discretization purposes.

Time dependent simulations
We consider the flow of an incompressible Newtonian 

fluid. The physical behavior is mathematically modelled by the 
Navier-Stokes equations, written here as:

xc

hp

c q
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xc, yc = position of the body in the calculation domain, h = body base height, c = 
body chord length.

Figure 1. Cross-sectional view of the elongated cylinder and 
dimensions of computational domain.
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� (1)

� (2)

where;
ρ is the density,  is the pressure field, and  is 

the velocity field. 
The introduction of an external force field  is necessary, 

in order to simulate the presence of the body. The equations 
above, if written in rotational form, are stable to aliasing errors 
(Kravchenko and Moin, 1997); therefore, in the numerical 
algorithm, the following formulation is preferred:

� (3)

where;
P *  (x,t) is  the modif ied pressure f ield (equal  to 

(P+ρu2/2)),  and ω(x,t) is the vorticity f ield (equal 
to∇×u). The groups of equations above are written in non-
dimensional form: lengths are scaled by a typical length, 
lt, — the diameter for the circular cylinder, d, and the base 
height for the elongated cylinder, h, — and a typical velocity, 
which happens to be, in both instances, the magnitude of the 
free-stream velocity, U∞. The Reynolds number that results 
from the non-dimensionalisation is given by Re = U∞. lt / υ∞, 
where υ∞, is the free-stream kinematic viscosity.

Time-dependent simulations based on these equations in 
two dimensions (ω≡0; ∂/∂z≡0) are carried out using a sixth-
order, compact-finite-difference scheme (Lele, 1992). Meshes 
are Cartesian and the presence of the body is simulated 
by virtue of an immersed-boundary technique (Goldstein 
et al., 1993). To integrate Eq. (3), a third-order low-storage 
Runge-Kutta strategy was used (Lamballais, 1996). The core 
of the algorithm solves a Poisson equation for the pressure, 
which, in the sequel, acts as a projector of the velocity field 
onto a divergence-free space (Lamballais, 1996). Part of the 
forcing terms in the immersed boundary sub-routine is 
advanced implicitly, instead, and the Crank-Nicolson scheme 
is used (Lamballais, 1996). This feature improves the efficiency 
of the forcing mechanism (Fadlun et al., 2000; Lamballais 
and Silvestrini, 2002). All calculations presented here were 
performed in 64-bits precision. Further details of the code, and 
many verification and validation studies, can be assessed in a 
series of former applications, both two- and three-dimensional 
(Ribeiro, 2002; Vitola, 2006; Lamballais et al., 2008; Silvestrini 

and Lamballais, 2004; Lardeau et al., 2002; Laizet et al., 2009). 
The two-dimensional approach that is used to investigate the 
problem is appropriate due to the fact that, when the Reynolds 
number is low, the flow is everywhere laminar but the main 
characteristics of the great structures are mostly all present 
(Barkley and Henderson, 1996).

Boundary conditions are required at the limits of the 
computational domain. At the entrance plane — left vertical 
boundary in Fig. 1 —, velocity components are specified 
according to: ux = U∞= 1 and uy = 0. A white noise might 
be added, in order to speed up a process of transition that is 
eventually being studied. At the upper and lower boundaries, 
the uniform flow is enforced, i.e., ux = 1 and uy = 0 (Ribeiro, 
2002), while along the exit plane, conditions are established 
according to a simplified convection equation: 

� (4) 

where Uconv is made equal to the main structures mean-convection 
velocity at the end of each iteration. The very mild degradation 
of the flow, imposed by this condition, is confined to a narrow 
region close to the boundary, according to Akselvoll and Moin 
(1996). The last frontier is composed of the body surface. To cope 
with it, following Goldstein et al. (1993) and Saiki and Biringen 
(1996), a feedback forcing term was introduced in the momentum 
equation, in order to represent the presence of the solid body. 
This procedure presents an outstanding advantage because a 
Cartesian grid can always be used, independently of the body’s 
external geometry.

Hopf stability analysis
For sufficiently low Reynolds numbers, the topology in 

the near wake of a two-dimensional bluff body is that of the 
laminar twin vortices. After that, and as the Reynolds number 
grows, an instability corresponding to a Hopf bifurcation leads 
to a changing of regimes. For the case of the circular cylinder, 
and for a Reynolds number, somewhere between 40 and 50, 
the steady flow field transitions to a laminar two-dimensional 
shedding wake, the von Kármán vortex street — Williamson 
(1996) reports a Red

K equal to 49; DuŠek et al. (1994) inform 
a slightly different range, 46 - 47, while Sumer and Fredsoe 
(1997) give Red

K = 40. The subscript K in the Reynolds number 
symbol is an indicative that the value corresponds to the onset of 
shedding, while a superscript indicates the definition reference 
length. To be more specific, one should remind that, at this low 
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range, there are three limiting values of the Reynolds number, 
which we shall indicate by Rec, ReA, and ReK. The subscripts 
correspond to “critical state”, “absolute instability” and “onset 
of shedding”, respectively. For the case of the circular cylinder 
and for a Reynolds number based on the diameter, Monkewitz 
(1988) reports the following: Rec ≈ 5, ReA ≈ 25, and Red

K ≈ 47. 
The critical Reynolds number, Rec, divides the ranges of complete 
stability (Re < Rec) and convective instability (Rec < Re < ReA). 
ReA marks the appearance of the first local absolute instability, 
while Red

K is indicative of the onset of vortexes shedding. 
See, for example, Huerre and Monkewitz (1985), or Bers 
(1983), or Drazin and Reid (2004), for an explanation of those 
stability concepts. In his studies Monkewitz investigated the 
stability of a family of incompressible bluff-body wakes by 
means of a linear parallel, that is, local, approach. One of the 
main results of this investigation is the confirmation that ReK 
is really larger than ReA, a result first established by Chomaz 
et al. (1988). In other words, this means that the Karman 
vortex street is a consequence of self-excited oscillations 
of the wake, and that shedding is not triggered by the first 
appearance of an absolute instability in the near wake. This is 
a necessary condition, but shedding is the “end product” of a 
saturated state, that is, global instability sets in after a whole 
region of the near wake has reached the absolute instability 
state (Monkewitz, 1988; Chomaz et al., 1988; Yang and Zebib, 
1989). Monkewitz (1988) suggests that for forms other than 
circular, the sequence Rec < ReA < ReK is maintained, but with 
different numerical values.

The majority of the studies which deal with the Hopf 
bifurcation is either experimental or analytical (based on some 
variation of the linearized Landau equation). There is also a 
hybrid approach, where the author significantly simplifies the 
physical scenario: by considering the basic flow as parallel, 
for example, and completing the study by numerical means 
(Triantafyllou et al., 1986).

The approach to be followed in this work is the DNS, Direct 
Numerical Simulation, a numerical tool that solves the complete 
Navier-Stokes equations. The great advantage is to solve the 
equations in their original form, and, in doing so, to take into 
account the essential non-linearities of the physical problem. 
The disadvantage, which is also considerable, corresponds to the 
computer costs. The main drawback is the following. For a coarse 
grid, the elapsed time to reach a stable oscillating state is rather 
short (taking into account that the Reynolds number is already 
inside the shedding range). This time length is measured from the 

very beginning — iteration 1 —, when the field of flow corresponds 
to the initial state (usually, uniform distributions of parameters 
along the domain of calculation). The destabilizing interval of 
time is short, in this instance, because the numerical error is 
relatively large in view of the coarseness of the grid. The numerical 
error is the leading factor in the onset of shedding triggering 
process (this point will be explored further in this paper). On the 
other hand, if the grid is coarse, the overall accuracy will most 
probably be poor. Eventually then, the user might be tempted to 
refine the grid in order to improve accuracy. As a result of this 
initiative, the destabilizing interval of time will grow accordingly, 
because a refined grid will “offer” a smaller destabilizing effect. 
Because the process is truly an assymptotic one, refining the 
grid further will correspond to an ever increasing computational 
time (a similar effect can be observed in Figs. 2 and 4 in relation 
to compiler precision). The way we have adopted to avoid this 
physical/numerical difficulty is to search for pre-established 
ranges of Reynolds numbers, which will, at least under certain 
controllable circumstances, contain the true value of ReK . That is, 
we will be looking for data in the form of ReK ± Δ Re. In the 
sequel, the details of this strategy will be given and discussed.

Convergence tests

The main concern in this section is to check for approximation 
errors. For the cyclic flow computations, the results were verified 
to be mesh independent to a high degree of accuracy. These 
error checking studies were conducted considering the flow 
about a circular cylinder.

The cyclic flow calculation was submitted to a complete 
battery of tests. In former works, members of our team (Ribeiro, 
2002; Vitola, 2006) have already investigated the “collection” of 
optimized code parameters — related both to domain geometry 
and mathematical algorithms. Notwithstanding this, and due to the 
nature of the present paper, we have decided to further investigate 
the convergence characteristics of code Incompact3d, by means of a 
grid-refinement study— following Barkley and Henderson (1996). 
To this end, we have used a 30d x 24d grid and several resolutions, 
as shown in Table 1. The Reynolds number was fixed in 300. Here, 
an enlarged grid is preferred because errors resulting, for example, 
from small distance of the body to the domain entrance plane 
and blockage effects, can be better controlled. Results are given 
in Table 1 showing convergence to three digits for Δ/d ≤ 0.0167.
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IN SEARCH OF THE ONSET OF 
SHEDDING REYNOLDS NUMBER

The strategy for the circular cylinder
The numerical investigation in the range Re ≈ ReK, that is, 

for values of the Reynolds number in the onset of shedding 
region, must be done with very much care. As soon as one 
approaches the exact value of ReK, the final solution gets 
extremely sensitive to the various parameters that have some 
influence in the numerical calculation. Basically, every factor 
has its influence in the final shedding conditions: (i) Grid 
resolution (probably, the most influential one); (ii) Type of 
numerical algorithm; (iii) Domain overall sizes (Lx and Ly); 
(iv) Accuracy — if single or double precision; (v) Time step; 
(vi) Type of machine: if 32 or 64 bits; (vii) For codes of the 
immersed boundary type — as the one here employed is —, 
how smoothly is the perimeter of the body represented. 
These items bring to the stage the question of the computational 
error, a factor that helps to trigger the shedding process when 
it grows up to a certain point. The problem of the blockage 
comes embedded in item (iii), and is especially related to Ly. 
Item (iii) also includes the effect of the position of the body 
in relation to the domain boundaries, especially the entrance 
plane. The time step has an indirect effect, because as the grid 
is refined, most probably one will be required to lower it, in 
order to guarantee convergence. The Reynolds number is 
evidently a prime influence. Besides all those aspects, there 
is still to be remembered the fact that the closing-in process 
to ReK is, in a way, always asymptotic, and, most certainly, the 
investigation will require running the code for long intervals 
of time. In the sequence, we will return to some of these points 
and discuss them further.

After some work, we devised what was judged as a good 
approach to the problem. The core of our strategy corresponded 
to the creation of a sort of a “grid rake”. This means a collection 
of grids with different resolutions. The testing of the idea was 
done considering the flow about a circular cylinder. For this 
specific case, five meshes were used in the study, corresponding 
to [nx/d] = [ny/d] = 12, 18, 24, 30 and 36, where d stands for 
the circular cylinder diameter. The domain of calculation 
dimensions were adopted as Lx = 19d, Ly = 12d, and xc = 8d 
(these values are the results of optimizing studies by Ribeiro 
(2002); for a Reynolds number equal to 300, these studies 
indicate n/d = 24 as a best value for the number of grid nodes 
per diameter).

The fact is that, the numerical investigation of the onset of 
shedding neighborhood is difficult, time consuming, and very 
elusive. Therefore, we concentrated mainly on the grid resolution, 
and probed other influences more superficially. The main aim 
of this particular effort is to try to develop a viable and reliable 
criterion that could be applied to the ReK region, especially now 
to the elongated cylinder studies.

We studied the flow about the circular cylinder in the 
range of Reynolds number from 40 to 50. Table 2 shows 
the wake flow state for the various cases investigated. The 
first column of the table gives the value of the Reynolds 
number, while the first line indicates the grid resolution 
in terms of grid points per cylinder diameter. We began by 
running the case Re = 40 and ended with Re = 50, and the 
intermediate values are shown in Table 2. Each of these values 
of the Reynolds number was investigated using the five grid 
resolutions, as shown in Table 2, [nx/d] = [ny/d] = 12, 18, 
24, 30, 36. All cases were run in single precision in a 64-bits 
machine, and at least from t = 0 up to t = 1000 units of non-
dimensional time. The dimensionless time step was always 
the same and equal to 0.004838, which corresponded to a safe 
value that would guarantee the convergence at the finer grids. 
For Re = 40, 41 and 42, there was no shedding, and the signal 
of the anemometers indicated damping (some “numerical” 
anemometers were strategically placed in certain positions 
along the grid.) When the Reynolds number was raised to 
43 there was shedding for resolution 12/d. The first Reynolds 
number value for which we obtained vortexes shedding in all 
grids was Re = 45. One would be then tempted to define 45 as 
the value of Red

K for the cylinder, but there is a crucial point 
here. We do believe that it is basically not possible to define 
an absolute value of the onset of shedding Reynolds number, 

Table 1. Grid refinement study of code Incompact3d.

Δ/d < Cd > C’d C’l

0.0250 1.4267 0.0589 0.6776

0.0222 1.4147 0.0584 0.6703

0.0200 1.4178 0.0585 0.6718

0.0185 1.4018 0.0578 0.6615

0.0167 1.3927 0.0562 0.6483

0.0156 1.3924 0.0562 0.6482
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at least when one is using an experimental or numerical tool 
to probe the process. The most one can do is to search for a 
range of values inside which one can probably guarantee, under 
certain controlled conditions, that the value of Red

K resides.
To clarify this point, let us focus our attention upon 

the case “43/18d”, in Table 2. In this instance, there was no 
shedding until t = 1000. On the other hand, how can one be 
sure that the shedding will not set in for a certain instant of 
time after that limit? As we have stressed before, the final 
stability of the laminar bubble system in the wakeside of the 
cylinder is a characteristic of the system perse. In other words, 
given the state of the final saturation, the onset of shedding 
settles in. Therefore, what might be happenning here is that, 
for t = 1000, we have not yet reached the final saturated state. 
If this is the case, running for a longer stretch of time would 
almost inevitably result in shedding due to the mounting of 
the overall instability, which is ultimately fed by the numerical 
errors, being introduced in every iteration. Putting it differently, 
the result in Table 2 for the 43/18 case is conditioned to the 
length of the pre-defined time interval, equal, in this case, 
to 1,000 units. To be really sure, one would have to run the 
case for a much longer time stretch. If the setting 43/18 is 
physically not a shedding case, the feeding of perturbation at 
each iteration would never saturate the laminar bubble system, 
and the machine would run indefinitely without disturbing 
the damping state. This is why we argue that, for numerical, 
as well as for experimental investigations, it is not possible 
to fix an absolute value of the shedding Reynolds number. 
In this work, we will concentrate on the effort of determining 
the ranges of ReK.

A careful observation of Table 2 reveals an unexpected 
result relative to Re = 43. Because the arrangement 43/18 
corresponds to a damped flow, with more reason, the 
combination 43/24 should also correspond to a damped 
case. In normal conditions, the amplitude of the numerical 
error distribution along the grid is the main drive for the 
shed triggering. All combinations in Table 2 were run in a 
64-bits machine (Dell Precision 690) with single precision. 
In any case, the amplitude of the error diminishes as the 
grid is refined. After some investigation we found out that 
the 24 points per diameter grid does not match as best as 
possible, as it should, the cylinder perimeter. That is, for this 
resolution, some nodes get slightly mispositioned along the 
perimeter. This “mispositioning” is recognized considering 
the details of the immersed boundary strategy. In practice 
what happens is that the flow in the numerical calculation 
“sees”, in this case, the cylinder as a body with an augmented 
rugosity in its surface. Therefore, the perturbation increased, 
since 43 is located in a very critical position in relation to the 
interval that is being investigated (Re = 40 - 45), i.e., exactly 
at the centre of the stretch, the case 43/24 came out of the 
calculation as a shedding case and not as a damped one.

Because the points previously stressed are too important, 
we would like to illustrate them further. A clear evidence of 
the fact that the error amplitude is decisive is given in Fig. 2. 
We rerun several 12 points per diameter cases, but now using 
double precision, and a much longer calculation that reached 
10 141.26 units of time. The running of the code, for such 
long stretches of time, can be looked at as a severe test for the 
damping characteristic of the flow. Besides, one has to keep 

 Table 2. Condition of the circular cylinder wake in the onset of shedding range.

Red 12/d 18/d 24/d 30/d 36/d 36/d (0.01%) 36/d (0.1%)

50 s s s s s – –

47 s s s s s – –

45 s s s s s – –

44 s s s d d s s

43 s d s d d d s

42 d d d d d d d

41 d d d d d – –

40 d d d d d – –

 s: vortexes shedding; d: vortexes damping (Calculations performed in single precision).
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in mind that we are using here the coarser grid, the one that 
rises the largest amount of error. The reader can perceive that 
shedding was damped for Re = 41 and Re = 42, and very much 
delayed for the other cases. The reason is evidently the fact 
that the truncation error has decreased when the compiling 
precision was increased. As a final test following this line, we 
introduced a white noise with amplitude of 0.0001, with the 
basic aim of speeding the onset of shedding. The results are 
shown on Fig. 3, and when compared with Fig. 2, they confirm 
the expected speeding of the process. When submitted to this 
level of excitation, the Re = 42 case did not “resist” and the 
shedding was initiated, only after about 7,500 units of time. 
Besides, and again from Fig. 3, one can appreciate the fact that 
the introduction of this level of noise corresponds basically 
to running the cases in single precision — compare it to Fig. 
4. In fact, and the reader should keep this in mind, what is 
happening here is that for this grid resolution and double 
precision compiling, the beginning of vortexes emission was 
delayed, but not eliminated. The introduction of the white 

noise simply “pulled” the shedding process back to an earlier 
time, what evidently spares a lot of computing time. On the 
other hand this is a clear example of the difficulties associated 
to the study of transitional physical problems. The last word 
about a certain case, i.e., if the flow has finally reached the 
final global response — Kármán vortex shedding, Monkewitz 
(1988) —, or not, depends upon many factors, and much care 
must be exercised.

Attention was also paid to the other side of Table 2. Flows 
with Reynolds numbers 42, 43, and 44 were simulated again, 
but now subjected to higher levels of excitation. This was 
accomplished by raising the white noise amplitude. Columns 
“36/d(0.01%)” and “36/d(0.1%)” contain results for the 
36-nodes-per-diameter grid and levels of perturbation of 
0.01% and 0.1%, respectively. Again we observe that shedding 
was obtained for some Reynolds numbers that, otherwise, 
when excitation was smaller, corresponded to damped cases, 
at least during the length of time of numerical simulation — 
1,000 units. Another clear evidence from Table 2 is the very 
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Figure 2. History of the crosswise velocity component, υ, for the circular cylinder and several values of Re. 
Grid resolution=12/d. Processing in double precision

(a) (b)

(d)

(c)

(e)



J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 3, pp.249-266, Jul.-Sep., 2014

256
Ortega, M.A., Girardi, R.M. and Silvestrini, J.H.

Re=41

0
0,001

-0,001
-0,002
-0,003
-0,004
-0,005

0 250 500 750 1000

0,002
0,003
0,004
0,005

time

y

Re=42

0
0,1

-0,1
-0,2
-0,3
-0,4
-0,5

0 250 500 750 1000

0,2
0,3
0,4
0,5

time
y

Re=43

0
0,1

-0,1
-0,2
-0,3
-0,4
-0,5

0 250 500 750 1000

0,2
0,3
0,4
0,5

time

y

Re=44

0
0,1

-0,1
-0,2
-0,3
-0,4
-0,5

0 250 500 750 1000

0,2
0,3
0,4
0,5

time

y

Re=45

0
0,1

-0,1
-0,2
-0,3
-0,4
-0,5

0 250 500 750 1000

0,2
0,3
0,4
0,5

time

y

Figure 3. History of the crosswise velocity component, υ, for the circular cylinder and several values of Re. 
Grid resolution=12/d. Processing in double precision and a 0.0001 amplitude white noise.

Figs. 3 and 4) is capable of triggering the shedding process 
according to the right trends. That is, if we use, for example, 
double precision, what happens is that the shedding, in most 
cases, will be delayed, but, most certainly, not eliminated. 
We believe that, under those circumstances, and restrained 
by the conditions of the numerical simulation — among 
which the most influential is the grid refinement —, it is 
possible to state, after Table 2, that the onset of the shedding 
Reynolds number is located in the interval Red

K = 43.5 ± 1.5. 
If one decides to reach a second order level of accuracy in 
the determination of ReK , then the computational cost will 
be amplified by many folds. For example, to run a 36-points-
per-diameter case in double precision, and reach 10 ,000 units 
of time, one would need about 2,100,000 iterations, what, 
in the case of our Dell Station 690, took about 40 (forty) 
days of calculation. This is because the largest time step for 
guaranteeing convergence is equal to 0.00483786, due to the 
grid spacing. For reasons of our convenience, the investigation 

important fact that studies of onset of shedding, as well as 
every investigation on transitional phenomena, being it 
experimental or numerical, must bring clearly the information 
relative to the levels of turbulence/perturbation under which 
the experience was carried out. Otherwise, an isolated figure, 
in this specific case the value of the Reynolds number, carries 
the risk of getting almost meaningless. Maybe the only thing 
that can be assured is that the provided number furnished 
falls inside a very wide interval generally well established in 
the literature.

If one compares all those results carefully, and takes into 
account the arguments previously presented, it is possible to 
state that the “scanning” of the Reynolds number interval 
by a rake of grids in single precision and a relatively “small” 
time stretch (about 1,000 units) is a guarantee that the 
interval is well located, at least, say, to “first order”. The error 
of the code in single precision (that corresponds, for the 
present code, to a perturbation level of 0.01% — compare 
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that is being reported here was performed using the serial 
version of code Incompact3d.

The elongated cylinder onset of 
shedding study

The objective of this section is to apply to the elongated 
cylinder the technique that was established for the case of the 
circular cylinder. Before going into the details, it is important 
to describe how the different aspect ratios were investigated. 
The immediate idea would be to maintain the body base height 
fixed and to adapt the chord length to the desired aspect ratio. 
It is obvious that, in doing so, the domain of calculation total 
length, Lx, would increase according to the increase of the 
aspect ratio. Therefore, having in mind the goal of sparing 
grid nodes, we decided differently: to keep the chord fixed 
and to diminish the base height. In both cases, however, either 
keeping the chord length or the base height fixed, one has to 
care about the similarity of both the overall size of the domain of 

calculation and the grid resolution. This is essential in order to 
obtain results that can be compared on the same basis. Observe 
Fig. 1. The following rules were then established: (i) The ratio 
Ly=h was kept constant; this would assure that any blockage 
effect, whatever its extension, would, in principle, be the same 
for every configuration and for every code run. (ii) The ratio 
q=h was also kept constant; therefore, the influence of the exit 
plane would be felt in the same terms in every running of the 
code. By keeping constant the ratios Ly=h and q=h, the same 
similar evolution domain was offered to the wake, irrespective 
of the actual investigation. (iii) The ratio of grid nodes per base 
height, nh

y/h, where nh
y is the number of crosswise grid points, 

allocated at the body base height, was kept the same from case 
to case. This figure ultimately defines ny the total number of 
points along Ly.

The rake of grids for this study was composed of three 
choices whose number of points were: [nh

y/h] = 12, 20 and 
30. It is more difficult to select the grids and the resolution in 
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Figure 4. History of the crosswise velocity component, υ, for the circular cylinder and several values of Re. 
Grid resolution=12/d. Processing in single precision.
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the case of the elongated body when compared to the circular 
cylinder. The difficulties come from the geometric constraints, 
to guarantee similarity, plus the fact that the total number 
of grid nodes for each direction has to be a product of the 
form [2a3b5c], in order to meet the “needs” of the fast Fourier 
subroutines. Table 3 shows the main grid characteristics of 
some of the cases.

The result of the investigation is plotted in Fig. 5. It is 
important to draw attention to the fact that each point in this 
figure is the result of a rather long process. Many Reynolds 
number values had to be tried, and for each of them, the 
extension of the time of calculation was about 1,000 units of 
non-dimensional time, which demanded a large number of 
iterations (generally, on the order of six digits). Only after that, 
one can be sure that the onset of shedding for that particular 
case was attained. A minimum number of at least 100 steady 
cycles of emission was made to run, before guaranteeing 
that the case corresponded to a real “onset of shedding” 
case. The calculations were performed in a 64-bits machine 

(Dell Precision 690), and the Fortran compiler was the Intel 
ifort version running in single precision. In Fig. 5, the vertical 

Table 3. Data relative to the principal domains and grids that were used in the study of the elongated body onset of shedding. 
Observe that lengths are given in base heigths.

AR nh
y/h Lx=h Ly=h nx ny xc/h q/h

3

12 30.0 15.0 451 181 13.5 15.0

20 30.0 15.0 601 301 13.5 15.0

30 30.0 15.0 751 451 13.5 15.0

7

12 45.0 15.0 481 181 26.5 15.0

20 45.0 15.0 751 301 26.5 15.0

30 45.0 15.0 901 451 26.5 15.0

12

12 45.0 15.0 541 181 24.0 15.0

20 45.0 15.0 601 301 24.0 15.0

30 45.0 15.0 901 451 24.0 15.0

18

12 60.0 15.0 541 181 36.0 15.0

20 60.0 15.0 601 301 36.0 15.0

30 60.0 15.0 901 451 36.0 15.0

25

12  75.0 15.0  601 181 50.0 15.0

20  75.0 15.0 601 301 50.0 15.0

30  75.0 15.0 901  451 50.0 15.0

Re
AR

150
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100
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50

25

0
0 5 10 15 20 25 30

Figure 5. The dependence of Reh
K on the elongated cylinder 

aspect ratio, AR.
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bar for each point is an indication of the spreading extension 
of the Reynolds number as function of the grid resolution. 
For example, for AR = 14, the result is Reh

K = 100 ± 2.0. 
Therefore, taking into account the envelope of restrictions 
of the numerical prediction — that we have tried to point 
out during the discussion so far —, it is guaranteed that the 
true value of Reh

K falls inside the spreading interval defined 
by the vertical lines. On the other hand there is a lot of other 
factors that might influence this spreading range, as we have 
discussed previously in the case of the cylinder. However, the 
grid resolution is indeed the main factor. We do believe that 
these data (especially, Fig. 5) are important, and have not as 
yet been published in the literature.

Two important results stem immediately as one observes 
Fig. 5. Firstly, the Reynolds number grows almost linearly 
for small values of the aspect ratio, and after an AR equal to 
9 it behaves in a plateau-like fashion, leveling at about 100. 
Ryan et al. (2005), in the context of a three-dimensional 
investigation, have already called attention to the increase in 
the onset-of-shedding Reynolds number with aspect ratio. 
Secondly, because the functional relationship of Re and AR 
is practically linear in the range 3 to 6, an extrapolation of 
this line to values of AR less than 3 would meet a vertical line 
through AR = 1 in a range of Reynolds numbers between 45 to 
50. It is exactly in this region that the circular cylinder critical 
Reynolds number is located. It is important to remind that 
the circular cylinder has an aspect ratio equal to 1.

In the present two-dimensional study we learn that, for 
small values of AR, the Reynolds number really increases, 
but afterwards it levels off to an almost constant value (at 
least, up to AR = 25). The main reason for this behavior is 
suggested by Fig. 6. Instant vorticity fields are shown where 
values are made dimensionless regarding U∞ and h. Following 
the order (a), (b), (c), and (d), for [nh

y/h] = 12, one may 
appreciate, respectively, snapshots of cases AR = 3, Reh

K = 
66.5, t = 1930.31 (units of non-dimensional time); AR = 6, 
Reh

K = 89.5, t = 758.33; AR = 9, Reh
K = 100.0, t = 1004.09 and 

AR = 12, Reh
K = 101.0, t = 1011.41. The flow about the body 

and especially the boundary layers asymptote to a common 
pattern, what Ryan et al. (2005) called a “near-universal” 
boundary layer. Putting it differently, for low values of AR, 
the boundary layers are still carrying the history of their 
initial formation at the ogival front part. As the aspect ratio 
increases, the flow, especially that part near the tip of the body 
base, just before separation, gradually looses the influence 

of the ogive and behaves more like a flow along a flat plate. 
This is apparent for cases (c) and (d), AR = 9 and 12, where 
the physical scenario of the streams along the walls of the 
bodies is exactly alike.

The influence of the boundary layers
In this section, we will investigate the possible influences 

of the boundary layers “running” above and below the body 
upon the physical scenario at the body base and near wake. 
The main interest at this point is to investigate some specific 
influences of the boundary layers upon the onset of shedding 
condition. One should pay special attention to this point. 
The present study is made possible due to the special geometry 
of the elongated cylinder. The presence of the two flat surfaces 
that constitute the body, plus the fact that the separation 
points are fixed, are instrumental. It is not possible to repeat 
the same numerical experiments with the circular cylinder, 
because of the everlasting excursions of the separation points 
during the shedding state.

The first aspect to stress is that the boundary layers at the 
tips of the body base, just before separation and at the onset 
of shedding state, are always laminar. The reader can find, in 
Fig. 7, data about the layers thicknesses and shape factor as 
functions of the aspect ratios. For each point in the figure, the 
Reynolds number corresponds to Reh

K , the onset of shedding 
value. By the value of H, the shape factor, one can see that 
the boundary layers are laminar. One should remind that, for 
the laminar boundary layer along a flat plate and without 
pressure gradient H is equal to 2.59 (Schlichting, 1979). At this 
point of this research project, we are focused upon the low 
Reynolds number range, for which the boundary layers and, 
most of the time also the shear layers, are laminar. One can 
find in the literature some studies related to the influence 
of the turbulent boundary layers upon the characteristics of 
the wake — Sieverding and Heinemann (1990); Rowe et al. 
(2001) —, but in general the Reynolds numbers are much 
larger (the works are mostly experimental) and the emphasis 
lies on the analysis of “macro” parameters, for example, the 
influence of the boundary layer shape factor upon the shedding 
frequency, and studies alike. In Fig. 8, for AR = 7 and Reh = 
95, we have plotted the boundary layers profiles at the upper 
and lower tips of the body base, for eleven instants of time of 
a complete cycle of emission. Precisely in the case of Fig. 8, 
the cycle starts at t = 288.88 and ends at t = 290.12. Plotted 
in the figure, there are eleven profiles for the upper tip and 
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eleven for the lower one (the cycle was divided in ten equal 
time intervals). The case is that, the eleven profiles are basically 
coincident in the scale of the figure, and it seems that there 
is only one plotted distribution of the horizontal velocity 
component. What one can learn from this figure is that, in 
a situation where there is already vortex shedding — let us 
remind that for AR = 7 the onset of shedding Reynolds number 
is 94.0 —, there is virtually no variation in the boundary layers 
profiles during a whole cycle of emission. If we invert the 
argument, one may verify that, if the profiles do not change 
with time during a whole cycle, most probably they do not 
have any influence upon the mechanism of vortex liberation 
in the formation region. This is another indication that the 
global instability with the consequent vortexes evolution 

Figure 6. Instant vorticity fields at the onset of shedding Re. (a) AR = 3, Reh
K = 66.5, t = 1930.31, -1.33 ≤ ωz ≤1.33, 

Δωz = 0.27; (b) AR = 6, Reh
K = 89.5, t = 758.33, -1.17 ≤ ωz ≤1.17, Δωz = 0.23; (c) AR = 9, Reh

K = 100.0, t = 1004.09, 
-1.0 ≤ ωz ≤1.0, Δωz = 0.2; (d) AR = 12, Reh

K = 101.0, t = 1011.41, -1.0 ≤ ωz ≤ 1.0, Δωz = 0.2.

and shedding is a specific characteristic of the wake itself, 
considered as a dynamical system.

Because this is a point of paramount importance, we have 
focused onto it and introduced new numerical experiments. 
Using the geometries corresponding to AR = 6, 14 and 22, 
the following extra cases were investigated. The body shapes 
were slightly changed by introducing two small bumps, one 
at the upper wall, and another at the lower one. The bumps 
were made triangular, with heights equal to 1.0dy, 0.5dy and 
0.25dy; the bases of the triangles were always equal to 2dx. 
The position of both bumps were defined at half-base height, 
one base height and two base heights, upstream of the upper 
and lower tips of the trailing edge. The 12/h grid and single 
precision were used again in those experiences. In this part 
of the investigation, for every situation, we mostly used the 

(a)

(c)

(b)

(d)
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Figure 7. Strouhal number, tip boundary layers thicknesses 
and shape factor at the onset of shedding Re as function of 
the aspect ratio. The reference length is always the base 
height, h. St: Strouhal number (diamonds); Thd: displacement 
thickness (circles); Thm: moment thickness (deltas); H: shape 
factor (squares).

value of Reh=(Reh
K

,12 - 1), that is, the onset of shedding Reynolds 
number for that configuration and the grid resolution equal 
to 12/h, minus one unity. The main final results are presented 
in Table 4 and Fig. 10. In Table 4, the crossing of a row and a 
column corresponds to one case studied; for example, “14” 
and “h/0.5dy” indicate an AR equal to 14, and both bumps, 
the upper and the lower ones, positioned one base height 
upstream of the base tips, being the height of the bumps 
equal to 0.5dy.

Details of the top tip boundary layers are depicted in 
Fig. 10. In pictures (a), (b), and (c), the reader can observe 
four lines marked with symbols: squares, circles, deltas and 
right triangles, corresponding, respectively, to the plain body, 
bumps at 0.5h/0.5dy, bumps at 1h/1dy, and bumps at 2h/1dy. 
There are some important aspects about those profiles. The 
bumps introduce a distortion in the boundary layer profile 
in the form of a retracting defect, situated approximately 
between 0.1h and 0.6h from the wall. Figure 10 depicts details 
of those regions for a better understanding of the point. When 
plotted together in a normal scale, it is practically impossible 
to detect those differences in the value of the horizontal 
velocity component. Even in the extended scale of Fig. 10, 

it is not possible to differentiate between the plain body and 
the (0.5h/0.5dy)-bumps cases. The square and circle symbols, 
and their corresponding lines, are coincident. For the other 
instances, i.e., bumps at 1h/1dy and 2h/1dy, the defects in the 
values of the velocity in relation to the plain body distribution, 
and for a distance of the wall of y/h = 0.25, are 0.035/0.02 
(AR = 6), 0.02/0.01 (AR = 14) and 0.015/0.005 (AR = 22), 
respectively. Hence, the influence of the bumps upon the 
tips’ boundary layers diminishes as the aspect ratio grows. 
By “tip” we mean the point that belongs at the same time to 
the flat plate and to the base of the body. By observing Fig. 
9, one can grasp why this is so. As the aspect ratio grows the 
thickness of the boundary layers along the walls of the body 
also grows. Therefore, for larger values of AR, the perturbation 
due to the bumps has to evolve in a region of the boundary 
layer relatively closer to the wall, and where shear stresses 
are larger. This is an indication that the perturbation signal 
will be more dissipated until reaching the base tip. And the 
dissipation will be larger for larger values of the aspect ratios. 
This is probably the reason why there was no shedding for 
AR = 22 (Table 4).

The fact that stems from Fig. 10 and Table 4 is that we 
only had shedding for a value of the Reynolds number equal 
to (Reh

K
,12 - 1) when the perturbation amplitude grew beyond 

a certain level. Based on these results, one might appreciate 
a very important aspect of a bluff body wake. Given that 
the level of disturbances is sufficiently low (in the “linear” 
range, say), the “command” of the onset of shedding state is 
dictated by the wake itself. Only after sufficiently raising the 
level of the amplitude of the perturbation (the “non-linear” 
range, say), is that it is possible to disturb, from upstream, 
the overall state of the twin bubbles at the body’s base region. 
This agrees with many previous studies, e.g., to name a few, 
Monkewitz (1988), and Yang and Zebib (1989), for the case 
of the circular cylinder, and Jackson (1987) for an assortment 
of geometrical forms. See also Mathis et al. (1984) and 
Provansal et al. (1987), who report important experimental 
studies about the Karman instability for the circular cylinder. 
The reader should appreciate how important this result is. 
In the case of the elongated cylinder, because the points of 
separation are fixed, one may conclude, apparently with no 
possible doubt, that the wake is unstable by itself; for the 
circular cylinder, even if the boundary layer profiles did not 
vary during a whole cycle, the oscillation of the separation 
points — which would prevent a definitive affirmation — is 
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Figure 9. Instant vorticity fields at different aspect ratios: (a) AR = 3, Reh
K = 66.5, t = 1930.31; (b) AR = 3, Reh = 300, 

t = 112.28; (c) AR = 12, Reh
K = 101.0, t = 1008.39; (d) AR = 12, Reh = 300, t = 35.81.

Reh = 95; AR = 7.

Figure 8. Comparison of boundary layer profiles along a shedding cycle: (a) upper tip; (b) lower tip.
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Table 4. Investigation of upstream influences upon the flow about some representative aspect-ratio geometries. The 
Reynolds number is one unity less than the onset of shedding Reynolds number for each geometry (and a grid resolution 
equal to 12/h).

AR Reh
Reh,12 0.5h/0.5dy h/dy h/0.5dy 2h/dy

6 87 88 ns s ns ns

14 97 98 ns s ns ns

22 96 97 ns ns ns ns

  s: shedding state; ns: no shedding.

still to be considered. The reader should also be aware that we 
are not trying to state that for the case of the circular cylinder 
the wake is not unstable by itself, but that it may depend on 
the oscillation of the separation points. There are sufficient 
arguments in the literature to sustain the point that, for the 
circular cylinder, the wake is also self unstable. What we are 
trying to convey is the fact that the case of the elongated 
cylinder, for which the separation points are fixed, helps to 
better clarify and fix the point.

For the range of Reynolds number we have focused on, the 
boundary layers work as “conveyors” of vorticity, feeding the 
bubbles at the base region. This may be observed in Fig. 11. 
The instant bubbles are shown for the AR = 14 configuration 
and for several Reynolds numbers. For each frame we call 
attention to the value of the vorticity at certain specific 
points. The points at the separation stations correspond to the 

maxima of the vorticity at the tip boundary layer transversal 
section. The points located inside the bubble correspond to 
the approximate bubble centre, and the values on top of the 
upper bubble are located one base height from the vertical 
wall. As the Reynolds number grows towards the onset of 
shedding state the overall level of vorticity grows at the base 
region. It is evident that, with the raising of the vorticity, 
the length of the bubbles grows and the state of instability 
saturation is finally reached. 

The numerical experiments represented in Fig. 5 and the 
data collected seems to indicate that the boundary layers feed 
vorticity, but the transition of the wake to another state of flow — 
the crossing by the point of bifurcation —, is determined by the 
dynamics of the bubble itself. On the other hand it is evident 
that much more work is needed, especially stability studies, in 
order to better support these conclusions.

Figure 10. Details of tip boundary layer profiles. (a) AR = 6 and Reh = 87; (b) AR = 14 and Reh = 97; (c) AR = 22 and 
Reh = 96. The symbols indicate: Squares: no bumps; Circles: bumps at 0.5h, height 0.5h; Deltas: bumps at 1h, height 1.0 dy; 
Right triangles: bumps at 2h, height 1.0 dy.
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CONCLUSIONS

The main goal of this research effort is to study the onset 
of shedding of the wake behind a blunt-trailing-edged body 
- an elongated cylinder with an elliptical front part. What 
motivated this study was the objective of obtaining, for 
this geometry, much of the same data (at least in quality) 
as there are for the circular cylinder. In this latter case, the 
reasons for the great interest of the engineering community 
are obvious, considering the myriad of applications of this 
geometrical form. On the other hand, the elongated body 
has a paramount advantage, in terms of easiness of analysis, 
because the points of separation are fixed. Therefore, with 
the elimination of the separation points excursions, some 
investigations and their consequent analyses are facilitated. 
We do believe that we have succeeded in our endeavor, and 

hope that the collection of results presented here will be of 
help for those individuals who are pursuing studies in this 
field. For example, the information contained in Fig. 5, and 
the studies carried out as a result of the boundary layers 
influence upon the stability of the great structures in the 
near wake of the body.
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Figure 11. Evolution of the vorticity at the base region of the AR = 14 body, with varying Re. The numbers in each plot correspond 
to the dimensionless value of the vorticity. (a) Reh = 93; (b) Reh = 95; (c) Reh = 96; (d) Reh = 97; (e) Reh = 98; (f) Reh

K = 100.
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