
Pre-Mapping Algorithm for Heterogeneous MPSoCs
César Marcon, Thais Webber, Letícia B. Poehls, Igor K. Pinotti

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga 6681, Porto Alegre, Brazil – 90619-900

cesar.marcon@pucrs.br

Abstract—A Multiprocessor System-on-Chip (MPSoC) composed
of different types of processors is known as heterogeneous
MPSoC. This kind of MPSoC based on Network-on-Chip (NoC)
is a promising target architecture to fulfill requirements of high
processing and communicating rate, enabling the execution of
several tasks at the same time. Among the challenges in current
heterogeneous MPSoC design is the partitioning of application
tasks aiming for the energy saving and for a fair load balance.
This work’s contribution is twofold: (i) a partitioning algorithm
is developed; and (ii) the evaluation of using partitioning as a
pre-mapping task is explored. This work analyzes and compares
stochastic and new heuristic partitioning algorithms for
obtaining low energy consumption and for load balance when
applied to tasks partitioning onto heterogeneous MPSoC. In
addition, simulated results indicate that the static partitioning
technique could be applied to application tasks before mapping
activities in order to improve the quality of the static or dynamic
mapping design and also to minimize the processing time.

Keywords—partitioning; mapping; heterogeneous MPSoC.

I. INTRODUCTION
Networks-on-Chip (NoCs) are an efficient communication

infrastructure for Multiprocessor System-on-Chip (MPSoC)
architectures. A NoC is typically composed of a set of routers
interconnected by communication channels. In direct NoC
topologies, each router connects to a module and both are
placed inside a limited region of an integrated circuit called
tile. Low energy consumption, performance, scalability,
modularity, and communication parallelism, make NoCs
powerful communication architectures for MPSoCs [1].

Ogras et al. [2] proposed three dimensions for NoC
architectural design: (i) communication architecture synthesis,
(ii) communication paradigm selection, and (iii) application
partitioning/mapping optimization. This paper focuses on the
application-partitioning problem that consists in finding
associations of tasks into groups according to criteria.

The partitioning of k application-tasks in mutually
exclusive groups of tasks generates massive possible solutions,
and the task groups mapping onto n processors in the NoC can
generate n! possible solutions. Considering a SoC containing
hundreds of tiles, the exhaustive search solution is unfeasible.
Thus, the development of efficient partitioning and mapping
approaches is able to guarantee better SoC implementations.

In contrast of dynamic partitioning (and/or mapping) that
occurs at runtime, static partitioning (and/or mapping) occurs
at design time, which is suitable for static workloads. Thus, at
design time the adequate placement of a given task may be
found according to its computation and/or communication.

In this paper we provide a comparative analysis of
Simulated Annealing (SA) [3] and Tabu Search (TS) [3] with

two new heuristic algorithms based on the classical Kernighan
& Lin (KL) algorithm [4] that are called KL*-width and KL*-
height. While SA and TS are classical stochastic and well-
known algorithms applied in several works for general-
purpose problems, KL is a bisection algorithm known for
minimizing the weight or the number of edges in a given
graph. This work proposes two new algorithms, KL*-width
and KL*-height, both, adaptations of versions of KL algorithm
to the context of heterogeneous MPSoC design (i.e. composed
of different types of Processing Elements (PEs)), aiming to
achieve fair load balanced partitions while saving energy.

Direct task mapping into processors of the target
architecture has been compared with the approach that
previously applies static partitioning of tasks into a group of
tasks (pre-mapping), and then maps these groups onto the
processors. Thus, the application task graph is taken as input
for the pre-mapping procedure, which tries to minimize the
communication volume among various tasks, also aiming at a
reduction of the energy consumption. Simultaneously, the
procedure tries to balance the processing load on various
groups related to the different types of processors of a
heterogeneous NoC-based MPSoC. The pre-mapping is
proposed focusing on the improvement of the dynamic
mapping quality by previously sorting each application task in
determined groups, thereby optimizing the mapping process.

This paper is organized as follows. Section II contains a
discussion about related works; Section III presents the
problem formulation of task partitioning (pre-mapping) and
task/group mapping. Section IV describes the KL modified
version proposed for tasks pre-mapping on heterogeneous
MPSoCs. Section V presents experimental results. Finally,
Section VI presents the conclusion and further discussions.

II. RELATED WORKS
Partitioning and mapping represent major research

challenges that have been addressed, in several works over the
last decades [17]. Table I summarizes related work, classifying
them according to: (i) design tasks (static/dynamic partitioning
and/or mapping); (ii) partitioning and/or mapping algorithms;
(iii) design requirements (e.g. energy saving and total
execution time minimization); and (iv) target architecture -
MPSoC type (homogeneous/heterogeneous) and NoC type.
The main contribution of the work is twofold: (i) the use of a
pre-processing (partitioning) before mapping, focusing on
improving the mapping quality. Our paper follows the same
idea as [11] and [12]; however, we investigate the pre-
processing of tasks when applied to heterogeneous
architectures; and (ii) the proposal of two algorithms based on
KL, which are used to fulfill the proposed strategy.

2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems

1063-9667/14 $31.00 © 2014 IEEE

DOI 10.1109/VLSID.2014.50

252

TABLE I - RELATED WORK SUMMARY.

Work, year Design tasks Algorithm Design requirements MPSoC type, NoC
[6], 2006 Static mapping Greedy Energy and area minimization Homogeneous, regular mesh/torus
[7], 2008 Static partitioning, dynamic mapping Selection / incremental Energy and time saving Homogeneous, regular mesh
[8], 2008 Static mapping Stochastic and greedy Energy and time saving Homogeneous, regular mesh
[9], 2009 Dynamic mapping Heuristic search space Communication overhead minimization Heterogeneous, regular mesh
[10], 2011 Static mapping Multicast aware heuristic Energy and end-to-end delay reduction Homogeneous, regular mesh
[11], 2011 Static partitioning, dynamic mapping Heuristic Load balance and traffic reduction Homogeneous, regular mesh
[12], 2011 Static partitioning, static mapping SA Energy saving Homogeneous, regular mesh
[13], 2012 Static mapping ILP Energy saving Homogeneous, regular/irregular mesh
[14], 2013 Static mapping Heuristic Total execution time minimization Heterogeneous, arbitrary
This work Static partitioning, static/dyn. mapping KL based algorithms Load balance and energy saving Heterogeneous, regular mesh

III. PROBLEM FORMULATION
This paper assumes that an application is a group of tasks

and NoC-based MPSoC with heterogeneous processors as
target architecture. A NoC is a 2D mesh topology composed of
tiles; and each tile τ contains a router r and a processor p. The
deterministic XY routing algorithm is employed to route
packets only along minimal paths. Moreover, the design of
parallel applications running on heterogeneous MPSoCs
involves partitioning and mapping activities, which depend on
the application and target architecture characteristics.

A partition is a division of a set of elements into non-
overlapping and non-empty blocks that cover the entire set.
This work considers elements as tasks and blocks as groups of
tasks. Further, task partitioning is defined as the activity of
finding a partition that minimizes energy consumption whereas
performing load balancing among groups of tasks – the
partitioning cost function. Nevertheless, when concerning
heterogeneous processors, each task grouping has to compute
the cost function according to the available processors
features. Additionally, a map is a function that associates
source elements of the source set to target elements of the
target set. This work takes into account two types of mappings:
(i) task mapping and (ii) task-group mapping. Both mapping
types consider processors of the target architecture as target
elements, but while for task mapping the source elements are
individual tasks of the application, for task-group mapping the
source elements are groups of tasks provided by partitioning.

The mapping, as well as the partitioning, can be applied in
static (i.e. design time) or dynamic (i.e. runtime) scenarios.
The main advantage of the static approach is the independence
from time to explore solutions. The dynamic approach is
capable of handling unpredictable behaviors, while static
algorithms can explore more adequate solutions for a set of
well-known possibilities. Depending on the application’s
complexity, it is unfeasible to foresee all possible scenarios at
design time. However, some pre-analysis of applications
characteristics can be made, generating useful information for
further complexity minimization at runtime.

This work focuses on static partitioning as pre-mapping in
order to reduce mapping complexity. Static evaluation over
tasks connections can be performed, thus enabling faster
mapping decisions. In other words, if the tasks have been
grouped together according to their connection’s weight, the
mapping algorithms have to search only inside the
connection’s set, instead of a wider search inside all tasks. This
mapping activity can be performed statically or dynamically

done, but the advantages are highlighted when the mapping is
performed at runtime.

Fig. 1 illustrates the mapping process of an application
composed by communicating tasks, which considers
application requirements and constraints (e.g. energy
consumption and load balance, connected by dotted arrows),
and a given NoC-based MPSoC architecture (e.g. NoC
topology, number of processors, type of processors). The
process involves pre-mapping and mapping (continuous path),
or applies the mapping directly (dashed path).

Fig. 1 Application pre-mapping/mapping targeting to NoC-based MPSoC.

A. Application and MPSoC Definitions
Definition 1: A TCG (Task Communication Graph) is a

directed graph <T, S>, where T = {t1, t2, …, tn} represents the
set of n tasks in a parallel application, i.e. the set of TCG
vertices. Assuming sab is the quantity of bits sent from task ta
to task tb, hence the set of edges S is {(ta, tb, sab) | ta, tb∈ T, sab �
0}, with each edge attached to its sab value, is the total
communication amount between tasks of an application.

Definition 2: A CWG (Communication Weighted Graph) is
a directed graph <G, W>, similar to TCG, but G =
{g1, g2, …, gn} represents the set of n task-groups achieved
from pre-mapping, which has TCG as input. Furthermore, wab
is the total communication amount (in bits) transmitted from
task-group ga to task-group gb. The set of edges W is {(ga, gb,
wab) | ga, gb ∈ G, wab � 0} with each edge attached to its wab
value, representing all the communication between MPSoC
processors, since the task-group mapping assigns each task-
group to a unique processor. CWG reveals the relative
communication volume of an application.

Definition 3: A CRG (Communication Resource Graph) is
a directed graph <Γ, L>, where Γ = {τ1, τ2, …, τn} is the set of
n tiles (i.e. the set of CRG vertices), each tile containing a
processor of P = {p1, p2, …, pn}. L = {(τi, τj), ∀τi, τj ∈ Γ} is the
set of CRG edges, i.e., the set of routing paths from tile τi to
tile τj. The CRG vertices and edges represent, respectively, the
routers R = {r1, r2, …, rn} and their physical links.

253

Fig. 2 illustrates an example of pre-mapping and mapping
of a synthetic application. Fig. 2(a) shows a TCG, which is the
pre-mapping input model, where T = {t1, …, t8}, and S = {(t1,
t5, 6), (t1, t7, 8), (t2, t1, 4), ...}. Fig. 2(b) shows the pre-mapping
output containing a CWG with G = {g1, …, g4} and W = {(g2,
g3, 30), (g3, g4, 5), …}. The CWG and CRG are inputs for
mapping, whose output is shown in Fig. 2(c), where T = {τ1,
…, τ4} and L = {(τ1, τ2), (τ1, τ3), (τ2, τ4), …}. Each tile τi
contains a processor pi of a given type, and the mapping
produces the association {(p1, g1), (p2, g4), (p3, g2), (p4, g3)}.

 �

τ2

r1 r3

r2 r4

p1, g1 p3, g2

p2, g4 p4, g3

τ4

τ1

τ2

a. TCG b. CWG c. CRG and mapping

Fig. 2 Example of application and NoC descriptions

B. MPSoC Energy Consumption Model and Algorithm
Processors and communication infrastructure have an

important influence on the energy consumption of an
application mapped onto an MPSoC. The sum of the energy
consumed in a specific processor during the execution of all
tasks, enables to estimate the individual processor energy
consumption. In a heterogeneous scenario, the energy
consumed in each processor, and by a given task, could vary
according to the architecture and to the optimized procedures
considering the processor type. The quantity of bits exchanged
between processors, enables to compute the total energy
consumption related to the communication architecture. The
energy consumed by tasks running on processors, plus the
energy consumed on the communication architecture,
determines the choice of partitions or mappings.

The energy consumption model applied in this work is
similar to [8]. The dynamic energy consumption is related to
the package exchange through the NoC, dissipating energy
inside each router and on the links where the package passes
by. Ebit is an estimation of the dynamic energy consumption for
each bit, when the bit changes its value (i.e. polarity). Ebit is
divided in three components: (i) ERbit – dynamic energy
consumed on the router components (e.g. wires, buffers and
logic gates); (ii) ELHbit and ELVbit – dynamic energy consumed
on horizontal and vertical links between tiles, respectively; and
(iii) ECbit – dynamic energy consumed on links between each
router and its local processor. For regular 2D mesh NoCs with
square dimension tiles, it is reasonable to estimate that ELHbit
and ELVbit have the same value. Hence, we assume ELbit as a
simplified way to represent ELHbit and ELVbit. Eq. (1)
computes the dynamic energy consumed by a bit passing
through the NoC from tile τi to tile τj, with η being the number
of routers that the bit passes through, i.e. the number of hops.
Ebitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit (1)

Both mapping and partitioning cost functions use the NoC
energy model parameters stated by Eq. (1); however mapping
provides the association of a task or task-group to a processor
placed in specific tile, whereas partitioning only explores the
communication needs without knowing each processor

position (i.e. the number of hops between two communicating
processors is unknown). Thus, partitioning cost function uses
the average of hops concept, which allows computing the
average energy consumption of all possible paths.

Assuming that both X and Y are the number of tiles in
horizontal and vertical dimensions of a NoC, respectively.
Therefore Eq. (5) computes the total number of hops of paths
that all processors have regarding to XY routing algorithm.
The average of hops is computed dividing the summation of
all hops, of all paths, of all processors, by the total number of
communications, which is stated by Eq. (2), (3), (4) and (5).

�������	
 � � � � �
�� � �� � �� � ������
���

���
���

���
���

���
��� (2)

 !"#$�%&''�$' � () * (3)
+,�-�.. � !"#$�%&''�$)
 !"#$�%&''�$' � /� (4)
� 0 �
����12�3,4� 5
+,�16�""�� (5)

The value �7 is applied to Eq. (1) replacing the value η,
resulting on an average value of EBitij. Thus, the energy
consumption’s estimation, of each communication, used
during the partitioning (i.e. pre-mapping), is the result of a
multiplication of EBitij by the communication volume.

Being τi and τj the tiles that contain pa and pb, respectively,
the dynamic energy consumed by all communications traffic
pa→pb is given by Eq. (6). While, the total amount of NoC
energy consumption (ENoC) related to all communication
traffic between processors (|W|) is given by the Eq. (7).
EBitab = Wab × Ebitij (6)

ENoC = , ∀ pa, pb ∈ P (7)

The ENoC algorithm is implemented with four nested
loops, whose pseudo-code is shown in Fig. 3. The outer loop
(lines 2 to 11) searches for all processor-tasks associations
finding the source processor in an inter-processor
communication. The inner loop (lines 3 to 10) searches for all
processor-task’s associations, finding the target processor. The
algorithm returns an association, instead of a map, since it is
applied for performing both, partitioning and mapping.

1. cost � 0;
2. for(Association sa: associations) {
3. for(Association ta: associations) {
4. if(sa.equals(ta))
5. continue;
6. for(Task st: sa.getTask()) {
7. for(Task tt: at.getTask())
8. cost � cost + st.computeEnergy(tt);
9. }
10. }
11. }

Fig. 3 Pseudo-code of ENoC algorithm

The energy consumed by the inter-processor
communication is computed by a function denominated
computeEnergy inside two nested loops (from line 6 to 9). The
function implements the Eq. (6) and the ENoC of Eq. (7) is the
final value stored in the variable cost, which is the return value
of the function actualCost() of the algorithms in Section IV.

IV. KL* PARTITIONING ALGORITHM
Kernighan & Lin (KL) [4] proposed a graph bisection

algorithm, starting with a random initial partition, using

�
=

|W|

1i
ab

(i)E
Bit

254

pairwise swapping of vertices among partitions to reduce the
cut size until no further improvement is possible. The classical
KL starts partitioning the graph into two subsets of equal sizes.
Pairs of vertices are exchanged across the bisection if the
exchange improves the cut size. The procedure is carried out
iteratively until no further improvement can be achieved.

The method is particularly well suited for bisection, since it
divides the graph into two parts, but can be abstracted to
perform partitioning into unequal parts, becoming the basis of
a hierarchical partitioning scheme. However, KL does not
totally comply with the application’s partitioning problem as
stated above, because it has to associate a task or a group of
tasks to a given processor type (i.e. when dealing with
heterogeneous MPSoCs). In addition, groups of tasks are
limited to the quantity of processors, and the cost of each task-
group associated to a processor depends on the processor type.
Thus, we implemented a modified KL algorithm (KL*), based
on the classical KL idea but having as input a list of individual
tasks or groups of tasks to execute partitioning as well as a list
of processors with their characteristics (quantity and type). The
output is a list containing task groups associated to types of
processors. Fig. 4 shows the pseudo-code of KL implemented
according to depth and width bisection.
1. interaction � Interaction input parameter
2. while(interaction > 0) {
3. interaction--
4. while(!reachConstraints() || !reachBipartitionLimit()) {
5. if(isDepthBipartition)
6. depthBipartition()
7. else
8. widthBipartition()
9. }
10. if(minimumPartitionCost > actualPartitionCost) {
11. minimumPartitionCost = actualPartitionCost
12. saveActualPartitionAsMinimum()
13. }
14. }

Fig. 4 Pseudo-code of KL* algorithm.

The outer loop of KL* (lines 2 to 14) is responsible for
enlarging the search space, since each loop starts new initial
random partition, which is controlled by the parameter
interaction. The inner loop (lines 4 to 9) accomplishes the
depth partition by algorithm depthBipartition (KL*depth), or
the width partition through widthBipartition (KL*width),
according to the input Boolean parameter isDepthBipartition.
Fig. 5 exemplifies the process of both algorithms.

t8t4 t1

t1t5 t6 t7t8t2 t3t4

t4t8 t6 t7t3t2 t5t1

Bisection

t4t8 t6 t7t2t3 t5t1

Exchange

g1Bisection

t4t8 t1 t3t6

g2Bisection

t4t8 t1

Exchange

g3g4
a. KL*depth b. KL*width

Fig. 5 Example of a task-group partitioning with KL* approaches. The
application contains 8 tasks, targeting an MPSoC with at least 4 processors.

The KL*depth algorithm starts performing a bisection,
trying to find a target task-group that fulfills the constraints.
Thus, the system is divided into 2 groups, the target group that
the algorithm is trying to optimize, and the one that contains
the remaining tasks. Hence, the algorithm performs several
task exchanges between task-groups, aiming to minimize the
cost function of the target task-group; and the quantity of
exchanges is defined by an input parameter. The tasks
exchange may be performed in two different ways: (i) a pair of
tasks is exchanged between a pair of groups; or (ii) a task
migrates from a group to another. When exchange is
performed, the target task-group remains unchanged until the
algorithm does not reach the end of the inner loop. If the inner
loop condition (line 4) is satisfied, the algorithm restarts a new
sequence of bisection plus several tasks exchanges, but now
taking as input the remaining task-group provided by the last
bipartition. As the remaining task group is always smaller than
the former, each iteration has to handle a less complex
problem, which is performed in less time.

In comparison, the KL*width starts performing a bisection
trying to find task-groups that equally fulfill the constraints.
Thus, all groups have the same optimization priority. The
algorithm performs exchanges of tasks between task-groups
aiming to minimize the cost function of all task-groups and the
quantity of exchanges is previously defined by an input
parameter, which is typically lesser than the one used on
KL*depth. The task exchanges may be performed exactly the
same way they would be in the KL*depth. Having performed
the exchange, the inner loop condition (line 4) is verified; if
satisfied, KL*width restarts applying bisections to all groups,
until reaching all processors of the target architecture. Also,
the exchanges occur among all task-groups. As a consequence,
all iterations are similarly complex and time consuming.

Independent of the bipartition approach, the inner loop
stops when all constraints (e.g. limit of processor workload or
maximum energy consumption) are satisfied by all
associations of task-groups with the corresponding processor
type, or when the bipartition reaches the limit (i.e. cannot
perform more bisections, since there are no more processors to
associate a new task-group with and at least one round of
exchanges was already performed). These verifications are
accomplished by the functions reachConstraints() and
reachBipartitionLimit(), respectively. Finally, every time the
inner loop finishes, the cost of the achieved partition is stored
to be compared to all costs, making possible the identification
of the best of all reached partitions.

V. EXPERIMENTAL RESULTS
This section explores two types of experiments: (a) the

influence of pre-mapping plus mapping (PM) when compared
to a direct mapping approach (DM), both targeting a
heterogeneous MPSoC; and (b) the evaluation of a set of static
partitioning algorithms used to perform the pre-mapping.

A. Pre-Mapping and Mapping versus Direct Mapping
DM has a TCG as input, which maps tasks that

communicate the most with the same processor, whereas
satisfying the processor constraints. When some processor’s
constraint is reached, the search for a neighboring processor is

255

initiated. The heterogeneous approach expands the algorithm
implemented in [16] by also taking into account the processor
type and its influence on the mapping cost function. The PM
has a CWG as input after the partitioning, which searches the
set of task-groups for the processor that other tasks of the same
group have been already mapped onto. If no task was
previously mapped, PM searches for a near processor of the
same type, elected by the static partitioning algorithm.

Experiments evaluate how PM saves energy and improves
load balancing if compared to DM. They are composed of
synthetic applications, where tasks have on average 15% of
inter-tasks communication (e.g. for an application with 20
tasks, each task communicates with 3 others), each phit
(physical link) is 16-bits length, and each inter-task
communication has 100 phits. All MPSoCs are composed of 3
processors type, with different performance and energy
consumptions, and whose quantities are proportional to NoC
size; their positions are randomly distributed into the tiles of
the target architecture. Besides, applications consider that any
task could be executed on any type of processor. Thus,
combining 6 quantities of tasks (25, 50, 75, 100, 125 and 150)
with 4 NoC sizes (3�3, 4�4, 5�5 and 7�7) totalize 24 synthetic
applications. These experiments are used as input for both
flows of Fig. 1, regarding energy consumption and load
balancing. For each cost function, the results are compared
proportionally, and the percentages of improvement when
using PM instead of using DM are illustrated in Fig. 6.

(a)

(b)

Fig. 6 Improvements when using PM instead of DM approach; (a) energy
saving, (b) load balancing

The results show that PM always enables to achieve better
results than DM, because PM may capture some information
during the design time, where constraints still allow exploring
implementation options. Also, this static information enables
to reduce the search space for solutions during runtime (i.e. the
quantity of task-groups used in the mapping is always smaller
than the quantity of tasks used in DM), which is an advantage
for NP-complete problems. The increased quantity of grouped
tasks improves the quality of the results obtained with PM in
comparison with DM results, because it increases the ratio of

the number of tasks by the quantity of task-groups. Further, it
is worth noting that the improvement when using PM is
directly proportional to the quantity of processors type, since
even for small task-groups, the decision of the target processor
type may be statically made by PM, whereas it is dynamically
performed in DM. Finally, although not explicitly shown in
Fig. 6, PM improves the load balancing and energy saving in
9.5% and almost 34%, respectively, when compared to DM.

B. Analysis of Pre-Mapping Activity
We evaluate SA, TS and KL* static partitioning algorithms

in relation to energy consumption minimization and load
balancing performance. As illustrated in Fig. 7, the flow used
to evaluate algorithms for pre-mapping presents as input the
application composed of communicating tasks, the MPSoC
characteristics (e.g. type and number of processors), the
requirements and constraints of each processor type.

Fig. 7 Evaluation flow for algorithms targeted for pre-mapping activity

The synthetic applications are similar to those employed in
Section V.A, but exploring the tasks connectivity. The MPSoC
has the following features: (i) a 3x3 mesh NoC; (ii) 16-bit
length for each phit; (iii) three types of processors; (iv) the
MPSoC contains exactly three processors of each type,
totalizing 9 processors; (v) the processors’ positions in the
NoC tiles are randomly chosen.

The applications have the following features: (i) 6
quantities of tasks (25,50,75,100,125 and 150) for each set of
experiments; (ii) TCG generated considering 5 task
connectivity (10%, 15%, 20%, 25% and 30%) and that any
task could be executed on any type of processor; (iii) each task
sends 1000 phits during each communication. The task
workload and power dissipation that depends on the processor
type, are randomly generated, whose ranges are from 5% to
30% and from 5uW to 15uW, respectively. Moreover, the
partitioning applies 100% as the maximum processor workload
and 150uW as maximum energy consumption per processor.

Fig. 8 collects the energy saving and the load balancing
improvements of all sets of experiments, where each dot in
each curve represents an average of the values reached with
the five task connectivity sets (10%, 15%, 20%, 25% and
30%) presented above. For all experiments the reference
values were produced inverting the objective of the cost
function, i.e. the reference algorithm tries to maximize the
energy consumption and to unbalance the workload. Thus, the
values of Fig. 8 are percentages of how algorithms improve
energy consumption and load balancing, when compared to the
values acquired with reference algorithm, respectively.

Fig. 8(a) shows that SA and TS are always able to reduce
more energy consumption when compared with the KL*
approach. However, the improvements are not sufficiently
meaningful if compared to KL*width for experiments with
100 or less tasks, and if compared to KL*depth for
experiments with 50 to 150 tasks.

0

5

10

15

20

25

30

35

40

45

50

55

60

25 50 75 100 125 150

En
er

gy
 s

av
in

g
im

pr
ov

em
en

t (
%

)

Quantity of tasks

3 x 3 4 x 4 5 x 5 7 x 7

0

2

4

6

8

10

12

14

16

18

20

22

24

25 50 75 100 125 150

Lo
ad

 b
al

an
ci

ng
 im

pr
ov

em
en

t(
%

)

Quantity of tasks

3 x 3 4 x 4 5 x 5 7 x 7

Application

Task�groups

Application

Tasks

MPSoC architecture

Requirements and constraints

Static partitioning
(pre�mapping)

256

(a)

(b)

Fig. 8 Improvements on energy consumption and load balancing achieved
with partitioning algorithms (TS, SA, KL*depth and KL*width).

In fact, Fig 8(a) shows that KL*width performs better than
KL*depth for low complex applications, whereas KL*depth
performs better for high complex applications. This behavior
probably occurs because KL*depth tries to produce an
optimum task-group, before considering optimizations in the
remaining tasks. However, when the focused task-group is
optimized, it is withdrawn from the partitioning, thus
simplifying next steps. In contrast, KL*width leaves the
possibility to revisit previously visited task-groups and to
apply changes if they minimize the overall cost function.
Consequently, for low complex applications, KL*width
performs better because it considers the entire set of tasks
during partitioning, whereas for high complex problems,
KL*depth performs better due to the minimization of the
application complexity at each step.

Fig. 8(b) illustrates that the bisection nature of the KL*
algorithm enables to produce high quality load balanced
partitions, but the application complexity may minimize its
gains when KL* is compared to stochastic methods. For some
experiments with 125 tasks or more, stochastic methods have
demonstrated better load balancing results. The experiments
presented on Fig. 8 were acquired concerning around of one
million iterations for both methods, which implied an average
of 2 minutes for each experiment’s execution; whereas
KL*width takes merely a second, and KL*depth is still four
times faster, on average. This shows the algorithm’s efficiency
when concerning load balancing.

Finally, it is important to remark that all algorithms are
penalized with application complexity, including the one used
as reference. This drawback reduces the quality of partitions
but also minimizes the difference between the achieved values
and the corresponding reference, which is probably one of the
main reasons that significant improvements are noticed only
for applications with hundred tasks or more.

VI. CONCLUSION
We show that static partitioning may be used as a dynamic

pre-mapping activity in order to conduct to efficient task

mappings. In fact, the application of partitioning techniques
before mapping is a promising study to reduce design space
problem complexity, mainly dealing with applications
composed of hundreds of communicating tasks that are
dynamically mapped into several processors of heterogeneous
MPSoCs. Based on the Kernighan-Lin (KL) approach, this
work proposes two new but similar algorithms to perform
static partitioning, namely KL*depth and KL*width, whose
difference is the way tasks are grouped (i.e. the application
graph describing parallel communicating tasks is searched
either in depth or in width). The presented experimental results
show that both KL* algorithms are static migration methods
that, with low energy consumption penalty, enable to achieve
good load balanced partitions. A further advantage is the low
computational effort needed, when compared with SA and TS.

ACKNOWLEDGEMENT
This work is partially funded by FAPERGS under grants

PqG 12/1777-4 and Docfix SPI n.2843-25.51/12-3.

REFERENCES
[1] L. Benini, G. De Micheli. Networks on chips: a new soc paradigm.

Computer, v.35, n.1, pp.70–78, 2002.
[2] U. Ogras, J. Hu, R. Marculescu. Key research problems in NoC

design: a holistic perspective. CODES+ISSS, pp. 69–74, 2005.
[3] H. Faragardi et al. Reliability-Aware Task Allocation in Distributed

Computing Systems using Hybrid Simulated Annealing and Tabu
Search. HPCC-ICESS, pp 1088–1095, 2012.

[4] B. Kernighan, S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell Sys. Tech. J., v.49, n.2, pp.291–307, 1970.

[5] P. Sahu, S. Chattopadhyay. A survey on application mapping
strategies for Network-on-Chip design. Journal of Systems
Architecture (JSA), v.59, n.1, pp.60–76, 2013.

[6] S. Murali et al. Mapping and Configuration Methods for Multi-Use-
Case Networks on Chips. ASP-DAC, pp 146–151, 2006.

[7] C-L. Chou, U. Ogras, R. Marculescu. Energy- and Performance-
Aware Incremental Mapping for Networks on Chip with Multiple
Voltage Levels. IEEE Trans Comput-aided Des Integr Circuits Syst.,
v.27, n.10, pp.1866–1879, 2008.

[8] C. Marcon et al. Comparison of network-on-chip mapping
algorithms targeting low energy consumption. IET Computers &
Digital Techniques, v.2, n.6, pp.471–482, 2008

[9] A. Singh et al. Mapping Algorithms for NoC-based Heterogeneous
MPSoC Platforms. DSD, pp 133–140, 2009.

[10] A. Habibi, M. Arjomand, H. Sarbazi-Azad. Multicast-Aware Mapping
Algorithm for On-chip Networks. PDP, pp 455–462, 2011.

[11] S. Kaushik, A. Singh, T. Srikanthan. Preprocessing-based Run-time
Mapping of Applications on NoC-based MPSoCs. IEEE Computer
Society Annual Symposium on VLSI, pp 337–338, 2011.

[12] E. Antunes et al. Partitioning and Mapping on NoC-Based MPSoC:
An Energy Consumption Saving Approach. NoCArc, pp.51-56, 2011.

[13] O. He et al. UNISM: Uni�ed Scheduling and Mapping for General
Networks on Chip. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
v.20, n.8, pp.1496–1509, 2012.

[14] J. Castrillon, R. Leupers, G. Ascheid. MAPS: Mapping Concurrent
Dataflow Applications to Heterogeneous MPSoCs. IEEE
Transactions on Industrial Informatics, v.9, n.1, pp.527–545, 2013

[15] T. Wiangtong, P. Cheung, W. Luk, Comparing Three Heuristic
Search Methods for Functional Partitioning in Hardware-Software
Codesign. DAES, v.6, n.4, pp.425–449, 2002.

[16] E. Antunes et al. Partitioning and dynamic mapping evaluation for
energy consumption minimization on NoC-based MPSoC. ISQED,
pp 451–457, 2012.

[17] A. Singh et al. Mapping on multi/many-core systems: survey of
current and emerging trends. DAC, pp 1-10, 2013.

20%

25%

30%

35%

40%

45%

50%

55%

60%

25 50 75 100 125 150

En
er

gy
 s

av
in

g

Quantity of tasks

SA TS KL*depth KL*width

40%

45%

50%

55%

60%

65%

70%

75%

80%

25 50 75 100 125 150

Lo
ad

 b
al

an
ci

ng
 im

pr
ov

em
en

t

Quantity of tasks

SA TS KL*depth KL*width

257

