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Abstract—A Multiprocessor System-on-Chip (MPSoC) composed 
of different types of processors is known as heterogeneous 
MPSoC. This kind of MPSoC based on Network-on-Chip (NoC) 
is a promising target architecture to fulfill requirements of high 
processing and communicating rate, enabling the execution of 
several tasks at the same time. Among the challenges in current 
heterogeneous MPSoC design is the partitioning of application 
tasks aiming for the energy saving and for a fair load balance. 
This work’s contribution is twofold: (i) a partitioning algorithm 
is developed; and (ii) the evaluation of using partitioning as a 
pre-mapping task is explored. This work analyzes and compares 
stochastic and new heuristic partitioning algorithms for 
obtaining low energy consumption and for load balance when 
applied to tasks partitioning onto heterogeneous MPSoC. In 
addition, simulated results indicate that the static partitioning 
technique could be applied to application tasks before mapping 
activities in order to improve the quality of the static or dynamic 
mapping design and also to minimize the processing time. 

Keywords—partitioning; mapping; heterogeneous MPSoC. 

I. INTRODUCTION 
Networks-on-Chip (NoCs) are an efficient communication 

infrastructure for Multiprocessor System-on-Chip (MPSoC) 
architectures. A NoC is typically composed of a set of routers 
interconnected by communication channels. In direct NoC 
topologies, each router connects to a module and both are 
placed inside a limited region of an integrated circuit called 
tile. Low energy consumption, performance, scalability, 
modularity, and communication parallelism, make NoCs 
powerful communication architectures for MPSoCs [1]. 

Ogras et al. [2] proposed three dimensions for NoC 
architectural design: (i) communication architecture synthesis, 
(ii) communication paradigm selection, and (iii) application 
partitioning/mapping optimization. This paper focuses on the 
application-partitioning problem that consists in finding 
associations of tasks into groups according to criteria. 

The partitioning of k application-tasks in mutually 
exclusive groups of tasks generates massive possible solutions, 
and the task groups mapping onto n processors in the NoC can 
generate n! possible solutions. Considering a SoC containing 
hundreds of tiles, the exhaustive search solution is unfeasible. 
Thus, the development of efficient partitioning and mapping 
approaches is able to guarantee better SoC implementations. 

In contrast of dynamic partitioning (and/or mapping) that 
occurs at runtime, static partitioning (and/or mapping) occurs 
at design time, which is suitable for static workloads. Thus, at 
design time the adequate placement of a given task may be 
found according to its computation and/or communication. 

In this paper we provide a comparative analysis of 
Simulated Annealing (SA) [3] and Tabu Search (TS) [3] with 

two new heuristic algorithms based on the classical Kernighan 
& Lin (KL) algorithm [4] that are called KL*-width and KL*-
height. While SA and TS are classical stochastic and well-
known algorithms applied in several works for general-
purpose problems, KL is a bisection algorithm known for 
minimizing the weight or the number of edges in a given 
graph. This work proposes two new algorithms, KL*-width 
and KL*-height, both, adaptations of versions of KL algorithm 
to the context of heterogeneous MPSoC design (i.e. composed 
of different types of Processing Elements (PEs)), aiming to 
achieve fair load balanced partitions while saving energy. 

Direct task mapping into processors of the target 
architecture has been compared with the approach that 
previously applies static partitioning of tasks into a group of 
tasks (pre-mapping), and then maps these groups onto the 
processors. Thus, the application task graph is taken as input 
for the pre-mapping procedure, which tries to minimize the 
communication volume among various tasks, also aiming at a 
reduction of the energy consumption. Simultaneously, the 
procedure tries to balance the processing load on various 
groups related to the different types of processors of a 
heterogeneous NoC-based MPSoC. The pre-mapping is 
proposed focusing on the improvement of the dynamic 
mapping quality by previously sorting each application task in 
determined groups, thereby optimizing the mapping process. 

This paper is organized as follows. Section II contains a 
discussion about related works; Section III presents the 
problem formulation of task partitioning (pre-mapping) and 
task/group mapping. Section IV describes the KL modified 
version proposed for tasks pre-mapping on heterogeneous 
MPSoCs. Section V presents experimental results. Finally, 
Section VI presents the conclusion and further discussions. 

II. RELATED WORKS 
Partitioning and mapping represent major research 

challenges that have been addressed, in several works over the 
last decades [17]. Table I summarizes related work, classifying 
them according to: (i) design tasks (static/dynamic partitioning 
and/or mapping); (ii) partitioning and/or mapping algorithms; 
(iii) design requirements (e.g. energy saving and total 
execution time minimization); and (iv) target architecture - 
MPSoC type (homogeneous/heterogeneous) and NoC type. 
The main contribution of the work is twofold: (i) the use of a 
pre-processing (partitioning) before mapping, focusing on 
improving the mapping quality. Our paper follows the same 
idea as [11] and [12]; however, we investigate the pre-
processing of tasks when applied to heterogeneous 
architectures; and (ii) the proposal of two algorithms based on 
KL, which are used to fulfill the proposed strategy. 
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TABLE I - RELATED WORK SUMMARY. 

Work, year Design tasks Algorithm Design requirements MPSoC type, NoC 
[6], 2006 Static mapping Greedy Energy and area minimization Homogeneous, regular mesh/torus 
[7], 2008 Static partitioning, dynamic mapping Selection / incremental Energy and time saving Homogeneous, regular mesh 
[8], 2008 Static mapping Stochastic and greedy Energy and time saving Homogeneous, regular mesh 
[9], 2009 Dynamic mapping Heuristic search space Communication overhead minimization Heterogeneous, regular mesh 
[10], 2011 Static mapping Multicast aware heuristic Energy and end-to-end delay reduction Homogeneous, regular mesh 
[11], 2011 Static partitioning, dynamic mapping Heuristic Load balance and traffic reduction Homogeneous, regular mesh 
[12], 2011 Static partitioning, static mapping SA Energy saving Homogeneous, regular mesh 
[13], 2012 Static mapping ILP Energy saving  Homogeneous, regular/irregular mesh 
[14], 2013 Static mapping Heuristic Total execution time minimization Heterogeneous, arbitrary 
This work Static partitioning, static/dyn. mapping KL based algorithms Load balance and energy saving Heterogeneous, regular mesh 
 

III. PROBLEM FORMULATION 
This paper assumes that an application is a group of tasks 

and NoC-based MPSoC with heterogeneous processors as 
target architecture. A NoC is a 2D mesh topology composed of 
tiles; and each tile τ contains a router r and a processor p. The 
deterministic XY routing algorithm is employed to route 
packets only along minimal paths. Moreover, the design of 
parallel applications running on heterogeneous MPSoCs 
involves partitioning and mapping activities, which depend on 
the application and target architecture characteristics. 

A partition is a division of a set of elements into non-
overlapping and non-empty blocks that cover the entire set. 
This work considers elements as tasks and blocks as groups of 
tasks. Further, task partitioning is defined as the activity of 
finding a partition that minimizes energy consumption whereas 
performing load balancing among groups of tasks – the 
partitioning cost function. Nevertheless, when concerning 
heterogeneous processors, each task grouping has to compute 
the cost function according to the available processors 
features. Additionally, a map is a function that associates 
source elements of the source set to target elements of the 
target set. This work takes into account two types of mappings: 
(i) task mapping and (ii) task-group mapping. Both mapping 
types consider processors of the target architecture as target 
elements, but while for task mapping the source elements are 
individual tasks of the application, for task-group mapping the 
source elements are groups of tasks provided by partitioning. 

The mapping, as well as the partitioning, can be applied in 
static (i.e. design time) or dynamic (i.e. runtime) scenarios. 
The main advantage of the static approach is the independence 
from time to explore solutions. The dynamic approach is 
capable of handling unpredictable behaviors, while static 
algorithms can explore more adequate solutions for a set of 
well-known possibilities. Depending on the application’s 
complexity, it is unfeasible to foresee all possible scenarios at 
design time. However, some pre-analysis of applications 
characteristics can be made, generating useful information for 
further complexity minimization at runtime. 

This work focuses on static partitioning as pre-mapping in 
order to reduce mapping complexity. Static evaluation over 
tasks connections can be performed, thus enabling faster 
mapping decisions. In other words, if the tasks have been 
grouped together according to their connection’s weight, the 
mapping algorithms have to search only inside the 
connection’s set, instead of a wider search inside all tasks. This 
mapping activity can be performed statically or dynamically 

done, but the advantages are highlighted when the mapping is 
performed at runtime. 

Fig. 1 illustrates the mapping process of an application 
composed by communicating tasks, which considers 
application requirements and constraints (e.g. energy 
consumption and load balance, connected by dotted arrows), 
and a given NoC-based MPSoC architecture (e.g. NoC 
topology, number of processors, type of processors). The 
process involves pre-mapping and mapping (continuous path), 
or applies the mapping directly (dashed path). 

 
Fig. 1 Application pre-mapping/mapping targeting to NoC-based MPSoC. 

A. Application and MPSoC Definitions 
Definition 1: A TCG (Task Communication Graph) is a 

directed graph <T, S>, where T = {t1, t2, …, tn} represents the 
set of n tasks in a parallel application, i.e. the set of TCG 
vertices. Assuming sab is the quantity of bits sent from task ta 
to task tb, hence the set of edges S is {(ta, tb, sab) | ta, tb∈ T, sab � 
0}, with each edge attached to its sab value, is the total 
communication amount between tasks of an application. 

Definition 2: A CWG (Communication Weighted Graph) is 
a directed graph <G, W>, similar to TCG, but G = 
{g1, g2, …, gn} represents the set of n task-groups achieved 
from pre-mapping, which has TCG as input. Furthermore, wab 
is the total communication amount (in bits) transmitted from 
task-group ga to task-group gb. The set of edges W is {(ga, gb, 
wab) | ga, gb ∈ G, wab � 0} with each edge attached to its wab 
value, representing all the communication between MPSoC 
processors, since the task-group mapping assigns each task-
group to a unique processor. CWG reveals the relative 
communication volume of an application. 

Definition 3: A CRG (Communication Resource Graph) is 
a directed graph <Γ, L>, where Γ = {τ1, τ2, …, τn} is the set of 
n tiles (i.e. the set of CRG vertices), each tile containing a 
processor of P = {p1, p2, …, pn}. L = {(τi, τj), ∀τi, τj ∈ Γ} is the 
set of CRG edges, i.e., the set of routing paths from tile τi to 
tile τj. The CRG vertices and edges represent, respectively, the 
routers R = {r1, r2, …, rn} and their physical links. 
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Fig. 2 illustrates an example of pre-mapping and mapping 
of a synthetic application. Fig. 2(a) shows a TCG, which is the 
pre-mapping input model, where T = {t1, …, t8}, and S = {(t1, 
t5, 6), (t1, t7, 8), (t2, t1, 4), ...}. Fig. 2(b) shows the pre-mapping 
output containing a CWG with G = {g1, …, g4} and W = {(g2, 
g3, 30), (g3, g4, 5), …}. The CWG and CRG are inputs for 
mapping, whose output is shown in Fig. 2(c), where T = {τ1, 
…, τ4} and L = {(τ1, τ2), (τ1, τ3), (τ2, τ4), …}. Each tile τi 
contains a processor pi of a given type, and the mapping 
produces the association {(p1, g1), (p2, g4), (p3, g2), (p4, g3)}. 

 �

 

τ2

r1 r3 

r2 r4 

p1, g1 p3, g2

p2, g4 p4, g3

τ4

τ1 

τ2 

a. TCG b. CWG c. CRG and mapping 

Fig. 2 Example of application and NoC descriptions 

B. MPSoC Energy Consumption Model and Algorithm 
Processors and communication infrastructure have an 

important influence on the energy consumption of an 
application mapped onto an MPSoC. The sum of the energy 
consumed in a specific processor during the execution of all 
tasks, enables to estimate the individual processor energy 
consumption. In a heterogeneous scenario, the energy 
consumed in each processor, and by a given task, could vary 
according to the architecture and to the optimized procedures 
considering the processor type. The quantity of bits exchanged 
between processors, enables to compute the total energy 
consumption related to the communication architecture. The 
energy consumed by tasks running on processors, plus the 
energy consumed on the communication architecture, 
determines the choice of partitions or mappings. 

The energy consumption model applied in this work is 
similar to [8]. The dynamic energy consumption is related to 
the package exchange through the NoC, dissipating energy 
inside each router and on the links where the package passes 
by. Ebit is an estimation of the dynamic energy consumption for 
each bit, when the bit changes its value (i.e. polarity). Ebit is 
divided in three components: (i) ERbit – dynamic energy 
consumed on the router components (e.g. wires, buffers and 
logic gates); (ii) ELHbit and ELVbit – dynamic energy consumed 
on horizontal and vertical links between tiles, respectively; and 
(iii) ECbit – dynamic energy consumed on links between each 
router and its local processor. For regular 2D mesh NoCs with 
square dimension tiles, it is reasonable to estimate that ELHbit 
and ELVbit have the same value. Hence, we assume ELbit as a 
simplified way to represent ELHbit and ELVbit. Eq. (1) 
computes the dynamic energy consumed by a bit passing 
through the NoC from tile τi to tile τj, with η being the number 
of routers that the bit passes through, i.e. the number of hops. 
Ebitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit (1)

Both mapping and partitioning cost functions use the NoC 
energy model parameters stated by Eq. (1); however mapping 
provides the association of a task or task-group to a processor 
placed in specific tile, whereas partitioning only explores the 
communication needs without knowing each processor 

position (i.e. the number of hops between two communicating 
processors is unknown). Thus, partitioning cost function uses 
the average of hops concept, which allows computing the 
average energy consumption of all possible paths. 

Assuming that both X and Y are the number of tiles in 
horizontal and vertical dimensions of a NoC, respectively. 
Therefore Eq. (5) computes the total number of hops of paths 
that all processors have regarding to XY routing algorithm. 
The average of hops is computed dividing the summation of 
all hops, of all paths, of all processors, by the total number of 
communications, which is stated by Eq. (2), (3), (4) and (5). 
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The value �7 is applied to Eq. (1) replacing the value η, 
resulting on an average value of EBitij. Thus, the energy 
consumption’s estimation, of each communication, used 
during the partitioning (i.e. pre-mapping), is the result of a 
multiplication of EBitij by the communication volume. 

Being τi and τj the tiles that contain pa and pb, respectively, 
the dynamic energy consumed by all communications traffic 
pa→pb is given by Eq. (6). While, the total amount of NoC 
energy consumption (ENoC) related to all communication 
traffic between processors (|W|) is given by the Eq. (7). 
EBitab = Wab × Ebitij (6)

ENoC = , ∀ pa, pb ∈ P (7)

The ENoC algorithm is implemented with four nested 
loops, whose pseudo-code is shown in Fig. 3. The outer loop 
(lines 2 to 11) searches for all processor-tasks associations 
finding the source processor in an inter-processor 
communication. The inner loop (lines 3 to 10) searches for all 
processor-task’s associations, finding the target processor. The 
algorithm returns an association, instead of a map, since it is 
applied for performing both, partitioning and mapping. 

1. cost � 0; 
2. for(Association sa: associations) { 
3.  for(Association ta: associations) { 
4.   if(sa.equals(ta)) 
5.    continue; 
6.   for(Task st: sa.getTask()) { 
7.    for(Task tt: at.getTask()) 
8.     cost � cost + st.computeEnergy(tt);
9.   } 
10.  } 
11. }  

Fig. 3 Pseudo-code of ENoC algorithm 

The energy consumed by the inter-processor 
communication is computed by a function denominated 
computeEnergy inside two nested loops (from line 6 to 9). The 
function implements the Eq. (6) and the ENoC of Eq. (7) is the 
final value stored in the variable cost, which is the return value 
of the function actualCost() of the algorithms in Section IV. 

IV. KL* PARTITIONING ALGORITHM 
Kernighan & Lin (KL) [4] proposed a graph bisection 

algorithm, starting with a random initial partition, using 

�
=

|W|

1i
ab

(i)E
Bit
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pairwise swapping of vertices among partitions to reduce the 
cut size until no further improvement is possible. The classical 
KL starts partitioning the graph into two subsets of equal sizes. 
Pairs of vertices are exchanged across the bisection if the 
exchange improves the cut size. The procedure is carried out 
iteratively until no further improvement can be achieved. 

The method is particularly well suited for bisection, since it 
divides the graph into two parts, but can be abstracted to 
perform partitioning into unequal parts, becoming the basis of 
a hierarchical partitioning scheme. However, KL does not 
totally comply with the application’s partitioning problem as 
stated above, because it has to associate a task or a group of 
tasks to a given processor type (i.e. when dealing with 
heterogeneous MPSoCs). In addition, groups of tasks are 
limited to the quantity of processors, and the cost of each task-
group associated to a processor depends on the processor type. 
Thus, we implemented a modified KL algorithm (KL*), based 
on the classical KL idea but having as input a list of individual 
tasks or groups of tasks to execute partitioning as well as a list 
of processors with their characteristics (quantity and type). The 
output is a list containing task groups associated to types of 
processors. Fig. 4 shows the pseudo-code of KL implemented 
according to depth and width bisection. 
1. interaction � Interaction input parameter 
2. while(interaction > 0) { 
3.  interaction-- 
4.  while(!reachConstraints() || !reachBipartitionLimit()) {
5.   if(isDepthBipartition) 
6.    depthBipartition() 
7.   else 
8.    widthBipartition() 
9.  } 
10.  if(minimumPartitionCost > actualPartitionCost) { 
11.   minimumPartitionCost = actualPartitionCost 
12.   saveActualPartitionAsMinimum() 
13.  } 
14. }  

Fig. 4 Pseudo-code of KL* algorithm. 

The outer loop of KL* (lines 2 to 14) is responsible for 
enlarging the search space, since each loop starts new initial 
random partition, which is controlled by the parameter 
interaction. The inner loop (lines 4 to 9) accomplishes the 
depth partition by algorithm depthBipartition (KL*depth), or 
the width partition through widthBipartition (KL*width), 
according to the input Boolean parameter isDepthBipartition. 
Fig. 5 exemplifies the process of both algorithms. 

t8t4 t1

t1t5 t6 t7t8t2 t3t4

t4t8 t6 t7t3t2 t5t1

Bisection

t4t8 t6 t7t2t3 t5t1

Exchange

g1Bisection

t4t8 t1 t3t6

g2Bisection

t4t8 t1

Exchange

g3g4  
a. KL*depth b. KL*width 

Fig. 5 Example of a task-group partitioning with KL* approaches. The 
application contains 8 tasks, targeting an MPSoC with at least 4 processors. 

 

The KL*depth algorithm starts performing a bisection, 
trying to find a target task-group that fulfills the constraints. 
Thus, the system is divided into 2 groups, the target group that 
the algorithm is trying to optimize, and the one that contains 
the remaining tasks. Hence, the algorithm performs several 
task exchanges between task-groups, aiming to minimize the 
cost function of the target task-group; and the quantity of 
exchanges is defined by an input parameter. The tasks 
exchange may be performed in two different ways: (i) a pair of 
tasks is exchanged between a pair of groups; or (ii) a task 
migrates from a group to another. When exchange is 
performed, the target task-group remains unchanged until the 
algorithm does not reach the end of the inner loop. If the inner 
loop condition (line 4) is satisfied, the algorithm restarts a new 
sequence of bisection plus several tasks exchanges, but now 
taking as input the remaining task-group provided by the last 
bipartition. As the remaining task group is always smaller than 
the former, each iteration has to handle a less complex 
problem, which is performed in less time. 

In comparison, the KL*width starts performing a bisection 
trying to find task-groups that equally fulfill the constraints. 
Thus, all groups have the same optimization priority. The 
algorithm performs exchanges of tasks between task-groups 
aiming to minimize the cost function of all task-groups and the 
quantity of exchanges is previously defined by an input 
parameter, which is typically lesser than the one used on 
KL*depth. The task exchanges may be performed exactly the 
same way they would be in the KL*depth. Having performed 
the exchange, the inner loop condition (line 4) is verified; if 
satisfied, KL*width restarts applying bisections to all groups, 
until reaching all processors of the target architecture. Also, 
the exchanges occur among all task-groups. As a consequence, 
all iterations are similarly complex and time consuming. 

Independent of the bipartition approach, the inner loop 
stops when all constraints (e.g. limit of processor workload or 
maximum energy consumption) are satisfied by all 
associations of task-groups with the corresponding processor 
type, or when the bipartition reaches the limit (i.e. cannot 
perform more bisections, since there are no more processors to 
associate a new task-group with and at least one round of 
exchanges was already performed). These verifications are 
accomplished by the functions reachConstraints() and 
reachBipartitionLimit(), respectively. Finally, every time the 
inner loop finishes, the cost of the achieved partition is stored 
to be compared to all costs, making possible the identification 
of the best of all reached partitions. 

V. EXPERIMENTAL RESULTS 
This section explores two types of experiments: (a) the 

influence of pre-mapping plus mapping (PM) when compared 
to a direct mapping approach (DM), both targeting a 
heterogeneous MPSoC; and (b) the evaluation of a set of static 
partitioning algorithms used to perform the pre-mapping. 

A. Pre-Mapping and Mapping versus Direct Mapping 
DM has a TCG as input, which maps tasks that 

communicate the most with the same processor, whereas 
satisfying the processor constraints. When some processor’s 
constraint is reached, the search for a neighboring processor is 
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initiated. The heterogeneous approach expands the algorithm 
implemented in [16] by also taking into account the processor 
type and its influence on the mapping cost function. The PM 
has a CWG as input after the partitioning, which searches the 
set of task-groups for the processor that other tasks of the same 
group have been already mapped onto. If no task was 
previously mapped, PM searches for a near processor of the 
same type, elected by the static partitioning algorithm. 

Experiments evaluate how PM saves energy and improves 
load balancing if compared to DM. They are composed of 
synthetic applications, where tasks have on average 15% of 
inter-tasks communication (e.g. for an application with 20 
tasks, each task communicates with 3 others), each phit 
(physical link) is 16-bits length, and each inter-task 
communication has 100 phits. All MPSoCs are composed of 3 
processors type, with different performance and energy 
consumptions, and whose quantities are proportional to NoC 
size; their positions are randomly distributed into the tiles of 
the target architecture. Besides, applications consider that any 
task could be executed on any type of processor. Thus, 
combining 6 quantities of tasks (25, 50, 75, 100, 125 and 150) 
with 4 NoC sizes (3�3, 4�4, 5�5 and 7�7) totalize 24 synthetic 
applications. These experiments are used as input for both 
flows of Fig. 1, regarding energy consumption and load 
balancing. For each cost function, the results are compared 
proportionally, and the percentages of improvement when 
using PM instead of using DM are illustrated in Fig. 6. 

(a) 

(b) 

Fig. 6 Improvements when using PM instead of DM approach; (a) energy 
saving, (b) load balancing 

The results show that PM always enables to achieve better 
results than DM, because PM may capture some information 
during the design time, where constraints still allow exploring 
implementation options. Also, this static information enables 
to reduce the search space for solutions during runtime (i.e. the 
quantity of task-groups used in the mapping is always smaller 
than the quantity of tasks used in DM), which is an advantage 
for NP-complete problems. The increased quantity of grouped 
tasks improves the quality of the results obtained with PM in 
comparison with DM results, because it increases the ratio of 

the number of tasks by the quantity of task-groups. Further, it 
is worth noting that the improvement when using PM is 
directly proportional to the quantity of processors type, since 
even for small task-groups, the decision of the target processor 
type may be statically made by PM, whereas it is dynamically 
performed in DM. Finally, although not explicitly shown in 
Fig. 6, PM improves the load balancing and energy saving in 
9.5% and almost 34%, respectively, when compared to DM. 

B. Analysis of Pre-Mapping Activity 
We evaluate SA, TS and KL* static partitioning algorithms 

in relation to energy consumption minimization and load 
balancing performance. As illustrated in Fig. 7, the flow used 
to evaluate algorithms for pre-mapping presents as input the 
application composed of communicating tasks, the MPSoC 
characteristics (e.g. type and number of processors), the 
requirements and constraints of each processor type. 

 
Fig. 7 Evaluation flow for algorithms targeted for pre-mapping activity 

The synthetic applications are similar to those employed in 
Section V.A, but exploring the tasks connectivity. The MPSoC 
has the following features: (i) a 3x3 mesh NoC; (ii) 16-bit 
length for each phit; (iii) three types of processors; (iv) the 
MPSoC contains exactly three processors of each type, 
totalizing 9 processors; (v) the processors’ positions in the 
NoC tiles are randomly chosen. 

The applications have the following features: (i) 6 
quantities of tasks (25,50,75,100,125 and 150) for each set of 
experiments; (ii) TCG generated considering 5 task 
connectivity (10%, 15%, 20%, 25% and 30%) and that any 
task could be executed on any type of processor; (iii) each task 
sends 1000 phits during each communication. The task 
workload and power dissipation that depends on the processor 
type, are randomly generated, whose ranges are from 5% to 
30% and from 5uW to 15uW, respectively. Moreover, the 
partitioning applies 100% as the maximum processor workload 
and 150uW as maximum energy consumption per processor. 

Fig. 8 collects the energy saving and the load balancing 
improvements of all sets of experiments, where each dot in 
each curve represents an average of the values reached with 
the five task connectivity sets (10%, 15%, 20%, 25% and 
30%) presented above. For all experiments the reference 
values were produced inverting the objective of the cost 
function, i.e. the reference algorithm tries to maximize the 
energy consumption and to unbalance the workload. Thus, the 
values of Fig. 8 are percentages of how algorithms improve 
energy consumption and load balancing, when compared to the 
values acquired with reference algorithm, respectively. 

Fig. 8(a) shows that SA and TS are always able to reduce 
more energy consumption when compared with the KL* 
approach. However, the improvements are not sufficiently 
meaningful if compared to KL*width for experiments with 
100 or less tasks, and if compared to KL*depth for 
experiments with 50 to 150 tasks. 
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(a) 

(b) 

Fig. 8 Improvements on energy consumption and load balancing achieved 
with partitioning algorithms (TS, SA, KL*depth and KL*width). 

In fact, Fig 8(a) shows that KL*width performs better than 
KL*depth for low complex applications, whereas KL*depth 
performs better for high complex applications. This behavior 
probably occurs because KL*depth tries to produce an 
optimum task-group, before considering optimizations in the 
remaining tasks. However, when the focused task-group is 
optimized, it is withdrawn from the partitioning, thus 
simplifying next steps. In contrast, KL*width leaves the 
possibility to revisit previously visited task-groups and to 
apply changes if they minimize the overall cost function. 
Consequently, for low complex applications, KL*width 
performs better because it considers the entire set of tasks 
during partitioning, whereas for high complex problems, 
KL*depth performs better due to the minimization of the 
application complexity at each step. 

Fig. 8(b) illustrates that the bisection nature of the KL* 
algorithm enables to produce high quality load balanced 
partitions, but the application complexity may minimize its 
gains when KL* is compared to stochastic methods. For some 
experiments with 125 tasks or more, stochastic methods have 
demonstrated better load balancing results. The experiments 
presented on Fig. 8 were acquired concerning around of one 
million iterations for both methods, which implied an average 
of 2 minutes for each experiment’s execution; whereas 
KL*width takes merely a second, and KL*depth is still four 
times faster, on average. This shows the algorithm’s efficiency 
when concerning load balancing. 

Finally, it is important to remark that all algorithms are 
penalized with application complexity, including the one used 
as reference. This drawback reduces the quality of partitions 
but also minimizes the difference between the achieved values 
and the corresponding reference, which is probably one of the 
main reasons that significant improvements are noticed only 
for applications with hundred tasks or more. 

VI. CONCLUSION 
We show that static partitioning may be used as a dynamic 

pre-mapping activity in order to conduct to efficient task 

mappings. In fact, the application of partitioning techniques 
before mapping is a promising study to reduce design space 
problem complexity, mainly dealing with applications 
composed of hundreds of communicating tasks that are 
dynamically mapped into several processors of heterogeneous 
MPSoCs. Based on the Kernighan-Lin (KL) approach, this 
work proposes two new but similar algorithms to perform 
static partitioning, namely KL*depth and KL*width, whose 
difference is the way tasks are grouped (i.e. the application 
graph describing parallel communicating tasks is searched 
either in depth or in width). The presented experimental results 
show that both KL* algorithms are static migration methods 
that, with low energy consumption penalty, enable to achieve 
good load balanced partitions. A further advantage is the low 
computational effort needed, when compared with SA and TS. 
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