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Abstract— Time optimal control (TOC) for servomechanism
is not a practical controller due to the chattering phenomenon
that occurs on the presence of noise and model uncertainty.
Maybe the most popular attempt to transform this controller
in a practical one comes from the so called Proximate Time
Optimal Servomechanism (PTOS). This approach starts with a
near time optimal controller and then switches to a linear con-
troller when the system output approaches the target. While the
chattering phenomenon is avoided, this comes at an expense in
performance generated by the so called “acceleration discount
factor”. This paper will present a controller that makes use of
dynamic damping in order to push the acceleration discount
factor arbitrarily close to one, thus practically eliminating
the conservatism present in the PTOS. Experimental results
support the proposed design.

I. INTRODUCTION

In many automatic control systems, the most important

performance requirement concerns minimum-time output

response. However, it is well known that Time Optimal

Control (TOC) [1] is not a practical controller inasmuch

as both a perfect knowledge of the system and noise free

measurements are necessary in order to avoid the chattering

phenomenon [2]. Many different strategies have been pro-

posed in order to overcome this problem, some of which take

direct account of the controller saturation limits, such as the

famous Proximate Time Optimal Servomechanism (PTOS)

[3], and others which adopt a more “linear” approach, such

as the smart Composite Nonlinear Feedback (CNF) [4]. The

main objective of this paper is to propose the integration of

the aforementioned techniques, so that, the merits of one are

used to compensate the defects of the other.

Workman’s PTOS is an important adaptation of the orig-

inal TOC which takes into account the saturation levels of

the input, but only makes use of them when it is practical

to do so. As the system approaches the reference point,

where chattering would normally occur, the PTOS switches

to a linear controller and, therefore, elegantly deals with

measurement noises and plant uncertainties. The chattering

phenomenon does not occur with this strategy, it is famously

easy to tune the controller, and a single set of parameters

perform well for a wide range of set point changes. However,

due to the fact that a linear controller is used when the system

This work was partly supported by the Australian Research Councils
Center of Excellence for Complex Dynamic Systems and Control (CDSC).

The authors are with the School of Electrical Engineering and Computer
Science, The University of Newcastle, Callaghan, NSW 2308, Australia.
aurelio.salton@uon.edu.au, {zhiyong.chen, minyue.fu}@newcastle.edu.au

M. Fu is also with the Department of Control Science and Engineering,
Zhejiang University, China.

Z. Chen is also with the State Key Laboratory of Digital Manufacturing
Equipment and Technology, Huazhong University of Science and Technol-
ogy.

approaches the set point, necessarily some conservatism must

be added such that a nonovershooting response is achieved.

This is done via the so called “acceleration discount factor”

which reduces the speed of the system to levels that can be

dealt with by the linear controller.

On the other hand, Lin et al. [4] proposed a nonlinear tech-

nique for the improvement of linear systems performance.

The controller is divided in two parts, a linear gain designed

such that the system has a small damping for fast rise time,

and a nonlinear function designed to add damping to the

system as it approaches the reference point, thus avoiding

unacceptable levels of overshoot. The best of two worlds is

achieved by such method: a fast rise time with no or limited

overshoot. This strategy was further developed by Chen et al.

[5] and came to be known as Composite Nonlinear Feedback

(CNF). As mentioned before, the CNF design itself does

not explicitly take into account the saturation levels of the

actuators. This makes the controller tuning somehow tedious

once different parameters must be used for different ranges

of actuation. However, an attempt to address this matter was

made in [6] where an automatic tuning method is proposed.

By combining both controllers a significant improvement

in performance may be achieved. The general framework

of the PTOS is maintained, but, instead of switching the

controller to the linear PD gain as the system approaches the

reference point, this paper proposes a controller that switches

to a simple form of CNF. In this way, damping may be added

to the system resulting in a more aggressive usage of the

PTOS, where the acceleration discount factor may be pushed

to its limit, arbitrarily close to one. Furthermore, because

the CNF is only employed in a very small range (when the

system is close enough to the reference point), the tuning

problems associated with such controller are minimized.

The proposed design presents a considerable improvement

in performance, is as easy to be tuned as the original PTOS,

and with a single set of parameters performs well for a very

wide range of set point variations.

The rest of the paper is organized as follows. Section

2 will present the model of interest along with a form of

disturbance observer that is used to fit a larger class of

systems to the rigid body dynamics model. Section 3 will

present the proposed control design. Section 4 will expose

experimental results and concluding remarks will be given

in Section 5.

2011 9th IEEE International Conference on
Control and Automation (ICCA)
Santiago, Chile, December 19-21, 2011

WedC1.1

978-1-4577-1476-4/11/$26.00 ©2011 IEEE 1151



-

-
-

+
++

+

1
Ms

1
s

y
f
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Fig. 1. The model-based friction compensator.

II. DYNAMIC MODEL AND FRICTION COMPENSATOR

The system in hand is comprised of a body of mass M

subject to some friction f and disturbance d,

Mÿ = ũ− f − d.

Once friction and disturbances are undesirable phenom-

ena that exert adverse effects on the tracking performance,

the model-based friction compensator of Fig. 1 will be

employed. This is a mature compensator that has been

successfully implemented in previous applications [7]; [8]

and [9]. In the structure given at the figure, G is the desired

dynamics of the system:

G = 1
Ms2 , (1)

and Q is any filter that can be approximated as one within the

bandwidth of interest (Q ≈ 1). In this way, the input-output

relation in Fig. 1 becomes:

y =
u−(1−Q)(d+ f )

Ms2 ≈ 1
Ms2 u,

(2)

and the system is fully described by the rigid body equations

of motion given by:

ẋ1 = x2

ẋ2 = b sat(u)

y = x1 (3)

where x1 and x2 refer to the position and velocity, b := 1/M

and “sat” is the saturation function defined as:

sat(z) =







ū, z > ū

z, |z|< ū

−ū, z <−ū
(4)

with ū the saturation level of the control input.

It is the system described by (3) that will be considered

in the remainder of this paper.

III. CONTROL DESIGN

The original Proximate Time Optimal Servomechanism

(PTOS) is an adaptation from the time optimal, or bang-

bang, controller. It also uses the maximal acceleration the

system is able to deliver, but only when it is practical to do

so. As the system approaches the reference point the PTOS

switches to a linear controller in order to avoid chattering

and achieve asymptotical stability. This linear controller,

however, is unable to avoid the overshoot if the system

approaches the reference with a large speed. In order to

overcome this problem the so called acceleration discount

factor (0 < α < 1) was introduced in the nonlinear function

that emulates the time optimal controller. The result is a

controller that achieves acceptable levels of overshoot, but

that is somehow conservative.

The PTOS as presented by [3] is given by

u = k2(− fptos(e)− v), (5)

with,

fptos(e) =

{

(k1/k2)e, for |e| ≤ yl ,

sgn(e)(
√

2bα ū|e|− ū/k2), for |e|> yl .
(6)

Where we have defined e := x1−yr and v := x2. Furthermore,

in order to guarantee the continuity of the controller during

the switching, the following conditions must be satisfied:

yl =
ū

k1

, k2 =

√

2k1

bα
. (7)

Notice there are two free parameters in the design of the

PTOS, namely k1 and α . Both these parameters should be

as large as possible, but, as mentioned before, the design

must be somehow conservative in the choice of α in order

to avoid unacceptable levels of overshoot. This is due to the

relation between α and k2. Recall that the PD controller gain

for rigid body systems may be parameterized as a function

of the undamped natural frequency ωn and damping ratio ζ :

K =
1

b
[4π2ω2

n 4πωnζ ]. (8)

Together with the second equation in (7), we find that ζ is

directly dependent in the choice of α in the following way

ζ =

√

1

2α
(9)

It is now clear that if we try to push α → 1 we will

necessarily be pushing the damping ratio to ζ → 0.707

and, unfortunately, an unacceptable level of overshoot will

occur. Therefore, it is logical to attempt to use a form of

dynamic damping in order to solve the overshooting problem

while achieving α → 1. In this way we may satisfy the

continuity constraints given by (7), achieve an improvement

in performance by making an aggressive choice of α and

still avoid undesired levels of overshoot. Such controller is

the main contribution of this paper and is presented in the

next theorem.
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Theorem 3.1: Consider system (3) with

u = k2(− f (e)−ρ(e)v), (10)

where,

f (e) =

{

(k1/k2)e, for |e| ≤ yl ,

sgn(e)(
√

2bα ū|e|− ū/k2), for |e|> yl ,
(11)

and

ρ(e) =

{

1+β (|e|− yl)
2, |e| ≤ yl ,

1, |e|> yl .
(12)

With

k1 > 0, k2 =

√

2k1

bα
, yl =

ū

k1

(13)

and

0 < α < 1, (α−1 − 1)/(4y2
l )> β ≥ 0. (14)

Then, the closed-loop system is globally asymptotically

stable in the sense that limt→∞ x(t) = 0 for any x(0) ∈R
2.

Proof: Without loss of generality, we assume yr = 0

and the problem reduces to a stabilization problem of the

equilibrium point x := [x1,x2]
T = 0. We proceed by noticing

that the control law (10) may be described as:

u = −h1(x1)− h2(x1)x2, (15)

where h1(·) and h2(·) are piecewise continuously differ-

entiable functions, with h1(0) = 0, given by:

h1(x1) := k2 f (x1),
h2(x1) := k2ρ(x1).

(16)

The proof will be divided in three parts showing that: (i)

Given an unsaturated region U defined by,

U= {(x1, x2) ∈ R
2 | |− h1(x1)− h2(x1)x2| ≤ ū},

any trajectory starting outside U enters U in finite time; (ii)

Any trajectory in U remains there indefinitely; (iii) Once

in U the trajectory converges to the equilibrium point, i.e.,

limt→∞ x(t) = 0.

(i) Suppose a given initial condition (x1(0), x2(0)) belongs

to the region outside U where u(0)> ū, that is,

u(0) =−h1(x1(0))− h2(x1(0))x2(0)> ū.

It must be shown that for a finite time T > 0, the input will

be such that u(T ) = ū. From the system equations (3), the

evolution of the system will be:

x2(t) = būt + x2(0)> 0

x1(t) = būt2/2+ x2(0)t + x1(0)> 0

for a sufficiently large t. Since1 h′1(x1)> 0 and h2(x1) > 0,

we have h2(x1(t))x2(t)> 0 and,

u(t) = −h1(x1(t))− h2(x1(t))x2(t)

< −h1(būt2/2+ x2(0)t + x1(0)).

Therefore u(t) satisfies lim
t→∞

u(t) = −∞, and, due to the

continuity of hi(·), it must be that u(t) takes all the values in

the interval [u(0), −∞). Which implies that for a finite time

T > 0, u(T ) = ū, i.e., the system enters U. By symmetry, the

same is true for trajectories satisfying u(0)<−ū.

(ii) In order to prove that any trajectory starting in U will

remain there indefinitely, let T denote the time when the

trajectories are at the boundary of U, that is |u(T )|= ū. These

trajectories will stay in U if,

u(T )u̇(T )< 0, (17)

where u̇=−(h′1(x1)ẋ1+h2(x1)ẋ2+h′2(x1)ẋ1x2) is the change

rate of u, because either u(T ) = ū and u̇ < 0, or u(T ) =−ū

and u̇ > 0. We consider the case when u(T ) = ū, then,

u̇ = −(h′1x2 + h2bū+ h′2x2
2)

= h′1(
ū+ h1

h2

)− h2bū− h′2(
ū+ h1

h2

)2

=
h′1h1

h2

+
h′1ū

h2

− h2bū− h′2(
ū+ h1

h2

)2 < 0 (18)

is guaranteed by (14). Next, we consider the case when

u(T ) =−ū, then, a similar calculation shows

u̇ =
h′1h1

h2

−
h′1ū

h2

+ h2bū− h′2(
ū− h1

h2

)2 > 0 (19)

is also guaranteed by (14).

(iii) We may now proceed to the stability proof of the

system when inside the region U and neglect the effects of

saturation. To do so, let us take the following as a Lyapunov

function candidate

V (x) =

∫ x1

0
h1(y)dy+

x2
2

2b
. (20)

which is positive definite and radially unbounded.

Along the trajectory of the closed-loop system inside the

region U, we have

V̇ (x) = h1(x1)x2 − x2[h1(x1)+ h2(x1)x2]

= −h2(x1)x
2
2 ≤ 0.

It remains to show that V̇ (x) = 0 only at the origin

V̇ (x) = 0 ⇒ h2(x1)x
2
2 = 0 ⇒ x2 = 0.

Which in turn implies that

x2(t) = 0 ⇒ ẋ2(t) = 0 ⇒ h1(x1(t)) = 0 ⇒ x1(t) = 0.

We may now claim LaSalle’s invariance principle and assert

that limt→∞ x(t) = 0. This completes the proof. �

1We define h′i(x1) := dhi(x1)/dx1 as the derivative of hi and drop the
dependency of the functions on x1 for ease of notation, if it does not cause
any confusion.
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Fig. 2. Experimental set up of the electromagnetic motor.

Notice that the control law (10) is very similar to that of

(5), the only difference coming from the inclusion of the term

ρ(e). If fact, by choosing ρ(e) = 1 the proposed controller

becomes the traditional PTOS. This nonlinear term, however,

provides the system with dynamic damping when it enters

the region |e| ≤ yl , which, in turn, allows us to be extremely

aggressive when |e| > yl , pushing α → 1 and eliminating

the conservatism present in the original PTOS. Since now α
is only necessary for stability issues and may be arbitrarily

close to one, e.g., α = 0.99, there are still only two free

parameters to be tuned, namely k1 and β , which means that

the tuning process of the proposed controller is as easy and

as straightforward as that of the PTOS.

IV. RESULTS

In this section we will show simulated and experimental

results of the proposed control design. In order to compare

its performance, we will also simulate and implement the

traditional PTOS, and compare both controllers to the simu-

lated time optimal controller. The system in hand is the linear

motor depicted in Fig. 2 whose parameters are b = 1.7×104

and ū = 1. The time optimal control law is given by

uto(t) = sgn(
√

2bū|e|− v). (21)

and the parameters of the prosed design and of the original

PTOS are as described in Table 1.

Figure 3 presents the simulated normalized responses to

step references of 1, 10, 25, 50 and 70 mm. The thin gray

TABLE I

CONTROLLERS’ PARAMETERS

Parameter Traditional Proposed

k1 2.09 2.09

k2 0.019 0.016

α 0.7 0.99

β - 0.02
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Fig. 3. Normalized simulated responses (y/yr) for steps of 1, 10, 25, 50
and 70 mm for the three comparative controllers.
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Fig. 4. Simulated response of TOC, PTOS and DDPTOS for a 70 mm
step reference.

line is the TOC, the dashed line is the original PTOS and

the dark line is the proposed Dynamically Damped Proximate

Time Optimal Servomechanism (DDPTOS). One can see that

the prosed design presents a clear improvement over the

traditional controller and is much closer to the theoretical

limits given by the TOC. This is even clearer in Fig. 4, where

we have zoomed in the 70 mm step. Notice how the proposed

design practically matches the TOC. Also notice the bottom

plot in the figure where the similarity between the inputs of

the proposed controller and the TOC are evident.
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Fig. 5. Normalized plant responses (y/yr) for steps of 1, 10, 25, 50 and 70
mm for the two compared controllers along with simulated TOC responses.
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Fig. 6. Simulated response of the TOC and plant responses of PTOS and
DDPTOS for a 70 mm step reference.

The experimental results seen in Figures 5 and 6 support

the performance improvement seen in the simulation re-

sponses. It is clear that a significant improvement is achieved

by the proposed design. In fact, the proposed controller

performance is indeed comparable to that of the simulated

TOC.

V. CONCLUSION

This paper proposed a form of active damping in order to

improve the performance of the well known Proximate Time

Optimal Servomechanism (PTOS). The proposed design is

able to practically eliminate the conservatism present in the

original PTOS by pushing the so called “acceleration dis-

count factor” arbitrarily close to one. The main contribution

of the paper is to achieve a performance comparable to that

of the theoretical limits given by Time Optimal Control while

retaining acceptable levels of overshoot. Experimental results

give support to the proposed control design.
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