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Abstract
This document presents a dissertation work regarding the study of control strategies for
the efficient tracking of spiral patterns. Such patterns arise in many areas, as for example
the Atomic Force Microscopy, where fast and smooth reference signals are required. In or-
der to successfully track the above mentioned references, which are composed of amplitude
and frequency-varying sinusoidal signals, advanced control strategies were investigated.
The Internal Model Principle is a traditional approach to track reference signals, but
it cannot be directly applied in frequency-varying signals. Therefore, the present work
proposed a robust control strategy where the Internal Model Principle was applied as a
Resonant Control in an augmented time-varying structure. The augmented system and the
reference frequency values were organized using a polytopic representation and structured
as an optimization problem subject to constraints in the form of Linear Matrix Inequali-
ties. This synthesis was evaluated through a set of simulations, using a numerical model
of an Atomic Force Microscope and a new suitable scanning reference pattern. Moreover,
using the premise that the same reference signals are tracked multiple times, an Iterative
Learning Controller was also designed in order to improve the tracking performance of
the proposed main strategy. Numerical results demonstrated that the designed controller
achieved satisfactory results, in comparison to the traditional controller available in the
area.

Keywords: Atomic Force Microscopy, Internal Model Principle, time-varying reference
tracking, Robust Control, Iterative Learning Control.



Resumo
Este documento apresenta um trabalho de dissertação sobre o estudo de estratégias de
controle para o seguimento eficiente de padrões espirais. Estes padrões podem ser aplica-
dos em muitas áreas, como por exemplo, a Microscopia de Força Atômica, onde padrões
de referenciais rápidos e suaves são requeridos. Para realizar com sucesso o seguimento
destas referências, que são compostas de sinais senoidais de amplitude e frequência var-
iável, estratégias de controle avançadas foram investigadas. O Princípio do Modelo Interno
é uma abordagem tradicional para o seguimento de sinais, mas ele não pode ser aplicado
diretamente em sinais com frequência variante. Logo, o presente trabalho propôs uma
estratégia de controle robusto onde o Princípio do Modelo Interno foi aplicado como
um Controlador Ressonante em uma estrutura aumentada e variante no tempo. O sis-
tema aumentado e os valores da frequência foram organizados usando uma representação
politópica e estruturados como um problema de otimização sujeito a restrições na forma
de Desigualdades Matriciais Lineares. Esta síntese foi avaliada através de um conjunto de
simulações, usando um modelo numérico de um Microscópio de Força Atômica e um novo
padrão de referência para escaneamento apropriado. Além disso, usando a premissa que
estes sinais de referência são aplicados múltiplas vezes, um Controle por Aprendizagem
Iterativa também foi projetado para melhorar o desempenho do seguimento da estraté-
gia principal proposta. Resultados numéricos demonstraram que o controlador projetado
atingiu resultados satisfatórios, em comparação com o controlador tradicional disponível
na área.

Palavras-chave: microscopia de força atômica, Princípio do Modelo Interno, seguimento
de referência variante no tempo, Controle Robusto, Controle por Aprendizagem Iterativa.
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1 Introduction

Reference tracking of time-varying signals is a traditional problem in the control
area. Robotic manipulators (JIN, 2016), atomic force microscopes (BAZAEI et al., 2016)
and frequency inverters (RAMOS; SOTO-PEREZ; CIFUENTES, 2017) are examples of
applications where the system output must track a reference signal that varies over time.
Fast convergence and small tracking error are common performance standards in these
types of applications.

In the case of the Atomic Force Microscopy (AFM), for example, the performance
is a critical item for the controller design. Atomic force microscopes are tools used in
order to analyze materials in the scale of nanometers (BARÓ; REIFENBERGER, 2012).
The final result of these equipments are images of the material structure. The scanning of
samples in this small scale is highly susceptible to the presence of tracking errors or noise,
which could compromise the image quality (HABIBULLAH; POTA; PETERSEN, 2014b).
During the last few years, different approaches were developed in order to improve AFM
scans, such as the project of the scanning pattern used by the microscope (MAHMOOD;
MOHEIMANI, 2010).

There are many different patterns for the AFM scanning. The most basic one is
the raster scanning pattern, usually found in atomic force microscopes (YABLON, 2014).
Among many different patterns, such as the cycloid and Lissajous (TUMA et al., 2013), we
may highlight the Archimedean spiral pattern. In this pattern, the distance between the
loops, i.e., the distance between the curves that compose the spiral, is constant, which al-
lows a homogeneous scanning without over-imaging (RANA; POTA; PETERSEN, 2014).

In comparison to the raster scanning pattern the spiral pattern allows higher ve-
locities and robustness to noise (MAHMOOD; MOHEIMANI; BHIKKAJI, 2011). Never-
theless, the spiral pattern has its own difficulties. They are generated using two sinusoidal
signals, each one applied in one of the two microscope horizontal planes. These references,
which can have varying frequency and amplitude, require more sophisticated tracking con-
trol strategies in order to achieve satisfactory performance.

Besides the AFM area, there are more applications where the problem of spiral
reference tracking is relevant. Two main examples are the Fiber Scanners (LEE et al.,
2010) and the Pico-Projectors (SCHOWENGERDT et al., 2009). In medical imaging area,
the Fiber Scanners play an important role for the surface-based techniques using optical
endoscopes. According to Lee et al. (2010), this equipment allows "high quality laser-based
imaging within an ultrathin and flexible endoscope", which can be achieved using spiral
patterns. The Pico-Projectors are useful in the context of technological miniaturization
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of electronic gadgets, like laptops and smartphones. As presented in Schowengerdt et al.
(2009), nano fiber-coupled laser diodes use the spiral pattern in order to project light,
which may be used for gaming, movies transmission and video conferencing.

One of the more traditional strategies in order to realize reference tracking is
the so-called Internal Model Principle (IMP) (FRANCIS; WONHAM, 1976). The IMP
establishes that if the exogenous system dynamic is placed in the controller loop, then
the tracking is guaranteed in steady state. For example, considering a step signal as the
reference, the controller must add an integrator in the control loop in order to achieve
asymptotic tracking. When the reference is a sinusoidal signal, then the IMP is applied
through the Resonant Controller (RC) (CHEN, 1999).

If the reference signal is composed of multiple known frequencies values, then the
Multiple Resonant Controller (MRC) is a suitable option (PEREIRA et al., 2014). The
MRC consists in a set of resonant controllers, each one designed for one of the reference
signal frequencies. As any periodic signal may be rewritten as a weighted sum of sine and
cosine functions through the Fourier series expansion, the MRC may be applied to a wide
range of periodic references.

Nevertheless, there are situations where the reference frequency may not be lim-
ited to a single value or a small set of values. Taking for example the previously cited
AFM, its spiral scanning patterns may be generated through amplitude and frequency-
varying sinusoidal signals (ZIEGLER et al., 2017), composed by a considerable interval
of values. Therefore, the direct application of the IMP through the RC is not viable in
this situation. Even the MRC would require a very large number of modes to achieve
satisfactory tracking. Therefore, other control strategies must be used in order to track
these references using the IMP.

Habibullah, Pota e Petersen (2014b) used a resonant controller in order for spi-
ral reference tracking in AFM. Nevertheless, all the tracked spirals only had constant
frequency. Bazaei, Maroufi e Moheimani (2017) proposed a controller to track frequency-
varying spirals, but in this case the resonant controller was used only to upgrade a feedfor-
ward gain. Das, Pota e Petersen (2012) used a resonant controller in an AFM application,
but for the tracking of a triangular wave for a raster scanning pattern. Preliminary results
of the present dissertation can be found in (OLIVEIRA; SALTON; FLORES, 2017), where
an optimal frequency-varying resonant controller was proposed for a frequency-varying
spiral pattern. The control structure was organized in such a way that the feedback gains
are computed by the Linear Quadratic Regulator.

Others control used for spiral reference tracking were Model Predictive Control
(MPC) (RANA; POTA; PETERSEN, 2015) and Internal Model Control (IMC) (MAH-
MOOD; MOHEIMANI, 2010). The MPC is an optimal control technique, that uses nu-
merical optimization in order to define the current control input based in the system
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future responses. The IMC, which also is based on the IMP, uses the system model ex-
plicitly as a part of the controller in order to deal with any uncertainty regarding the real
plant.

Robust control is another important research topic in this context. It is a method
for solving control problems involving a nominal system and a family of uncertainties
around it (BOYD, 1994). One example is the design of controllers for time-varying
systems, where the parameters variation must be considered in the problem. In this
context, the state-space approach using polytopic modeling is an interesting strategy,
where the problems may be designed using Lyapunov functions (BERNUSSOU; PERES;
GEROMEL, 1990) and Linear Matrix Inequalities (LMIs) structures.

The feedforward controllers are another suitable option in reference tracking. The
feedforward strategy makes use of the reference measure in order to take action before it
the signal affects the system (ŻAK, 2003). There are many ways to apply this concept.
For example, it is possible to compensate the system gain in order to better track the
reference signal. Another feedforward approach is the Iterative Learning Control (ILC).

In this strategy, the information obtained in previous batches is used in the next
executions, in order to improve the tracking performance (BRISTOW; THARAYIL; AL-
LEYNE, 2006). Considering the context of the current work, where the scanning of sam-
ples may be performed using the same reference pattern in multiple batches in order to, for
example, generate a video recording of the scanned sample, the ILC becomes an interest-
ing option. More than a direct solution for the control of a system, the Iterative Learning
Control is mostly applied along side with a feedback controller, in order to improve the
general performance over the repeated tasks (BOEREN et al., 2016).

The ILC was previously applied for AFM scanning patterns tracking, but as far
as the author knows, it was not for the frequency-varying spirals case. Butterworth, Pao
e Abramovitch (2011) applied the ILC was used for x-y axes reference tracking, but
for triangular waves that compose the raster pattern. A proportional-integral-derivative
(PID) ILC with genetic algorithm was proposed by Lin, Wu e Hwang (2009); however the
reference was a triangular signal. In (WU; ZOU; SU, 2009) and (WU; ZOU, 2009), an
ILC was applied along side with a feedback controller in order to control the z axis of an
AFM scanner.

1.1 Objectives
The main focus of this work is to propose a robust control strategy in order to track

frequency varying sinusoidal signals. This dissertation applies the proposed control strat-
egy in a numerical model of an atomic force microscope, where frequency-varying refer-
ences may be used in order to improve scanning performances. The proposed methodology
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makes use of a Frequency Varying Resonant Controller. In order to validate the proposed
control system, the controller performance was compared to a traditional Proportional-
Integral controller, and to a proposed Iterative Learning Control.

1.2 Manuscript Description
This dissertation is organized as follows. Chapter 2 describes the main background

necessary for the comprehension of the proposed strategy. For example, it presents im-
portant information regarding: stability in the sense of Lyapunov concepts, which were
subsequently applied in the control strategies defined by the robust control; Internal Model
Principle and its application through the Resonant Control; Kalman Filter, used in order
to estimated the system states necessary for the controller; and Atomic Force Microscopy
area, such as functioning principles and operation difficulties. Chapter 3 will explain the
Iterative Learning Control basic ideas and the design procedure for the spiral tracking,
explaining how it relates with its application in a feedback closed-loop system. Then,
Chapter 4 presents the main proposed control strategy, called Resonant Gain Scheduling
Controller, which makes use of the previous information regarding the Lyapunov stability
and robust control. This chapter is followed by Chapter 5 where the graphical and numer-
ical results, obtained through simulations, are shown and discussed. Finally, Chapter 6
summarizes the main results presented in this dissertation, recalling the most important
concepts and results found and presenting ideas for future works developments.
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2 Background

In this chapter the main background concepts, used in the proposed control strat-
egy, are presented. First, the concept of stability in the sense of Lyapunov is presented,
being followed by the definition of Robust Control, a key element for the dissertation, using
the Linear Matrix Inequalities approach. The chapter then explores the Internal Model
Principle and the Resonant Control, the last being an important concept used in the
proposed methodology in order to track sinusoidal signals. In the sequence, the Kalman
Filter, used in order to achieve satisfactory state estimation, is revised. After, the Atomic
Force Microscopy area is described, detailing its operation principles, applicabilities and
limitations.

2.1 Stability in the Sense of Lyapunov
The stability in the sense of Lyapunov is a major theoretical development, for both

linear and non-linear systems (KHALIL, 2002). It uses the concept of equilibrium points
in order to determine the system stability. The first part of this section shows the basic
definitions of stability in the sense of Lyapunov. In the second part, definitions regarding
the stability of uncertain systems are presented.

2.1.1 Stability of discrete systems

Equilibrium point is an important concept for state equations. According to (KHALIL,
2002), a point 𝑥 = 𝑥*is said to be an equilibrium point of a system "if it has the property
that whenever the state of the system starts at 𝑥*, it will remain at 𝑥* for all future time".

Consider the following autonomous system

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)), (2.1)

where 𝑘 ∈ Z+ is the sample time, 𝑥(𝑘) ⊆ R𝑛 is the discrete system states vector in the
sample time 𝑘 and 𝑓 : R+ ×R𝑛 → R𝑛 is the function that maps the states vector. For this
autonomous system, the equilibrium points are the real roots of the equation 𝑓(𝑥(𝑘)) = 0.

Now, it is possible to define the main concepts regarding the stability of equilibrium
points. This stability is evaluated using a function called Lyapunov function, i.e. 𝑉 (𝑥(𝑘)).

Theorem 2.1. Stability of equilibrium points: Let 𝑥 = 0 be an equilibrium point for
(2.1) and 𝒟 ⊂ R𝑛 be a set containing 𝑥 = 0. Let 𝑉 : 𝒟 → R be a continuous function in
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𝑥 such that:

𝑉 (𝑥(0)) = 0 and Δ𝑉 (𝑥(𝑘)) < 0 in 𝒟 − {0}

Δ𝑉 (𝑥(𝑘)) 6 0, ∀ 𝑥 ∈ 𝒟
(2.2)

∙ Then, 𝑥 = 0 is stable. Moreover, if

Δ𝑉 (𝑥(𝑘)) < 0, ∀ 𝑥 ∈ 𝒟 − {0}. (2.3)

∙ then 𝑥 = 0 is asymptotically stable.

Now, let us consider the case of a discrete linear system in the form of

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) (2.4)

The stability condition for this type of system is given by the next Theorem.

Theorem 2.2. Stability in the sense of Lyapunov: The system equilibrium point is
asymptotically stable if there exists a symmetric positive matrix P such that

𝐴T𝑃𝐴 − 𝑃 < 0. (2.5)

Proof. Let us consider the following quadratic Lyapunov function

𝑉 (𝑥(𝑘)) = 𝑥(𝑘)T𝑃𝑥(𝑘), (2.6)

where 𝑃 is a defined positive symmetric matrix with appropriate dimensions. The varia-
tion of 𝑉 (𝑥(𝑘)) along the system trajectories is given by

Δ𝑉 (𝑥(𝑘)) = 𝑥(𝑘 + 1)T𝑃𝑥(𝑘 + 1) − 𝑥(𝑘)T𝑃𝑥(𝑘). (2.7)

Substituting (2.6) in (2.7)

Δ𝑉 (𝑥(𝑘)) = 𝑥(𝑘)T (𝐴T𝑃𝐴 − 𝑃 ) 𝑥(𝑘). (2.8)

If we assure that 𝑃 > 0, then the first condition of the Theorem is satisfied. Furthermore,
if (𝐴T𝑃𝐴 − 𝑃 ) < 0, then Δ𝑉 (𝑥(𝑘)) < 0, which is a sufficient condition for the system
stability.

From now on, the notation "asymptotically stable system" will refers to the stability
of the system origin.
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2.1.2 Stability of discrete uncertain systems

An appropriate mathematical model of real systems may require the consideration
of uncertainties. In these cases, it is necessary to specify the Lyapunov theory in order to
address the system stability. Let us consider the following uncertain discrete system:

𝑥(𝑘 + 1) = 𝐴(𝛿)𝑥(𝑘). (2.9)

In order to address the uncertainty in the problem analysis, a possible approach
is to define a polytope containing the maximum and minimum admissible values of any
given uncertain parameter. Let us assume that 𝐴(𝛿) is an affine matrix on its uncertain
parameters

𝐴(𝛿) = 𝐴0 + 𝐴1𝛿 (2.10)

where 𝛿 is the uncertain parameter, which belongs to a closed set

𝛿 ∈
[︁
𝛿, 𝛿

]︁
, (2.11)

where the extreme limits 𝛿 and 𝛿 are the lower and upper bounds of the parameter,
respectively. When the dimension of 𝛿 is greater then one, they also describe a hyper-
rectangle in R, whose vertices are defined by

𝜐 ,
{︁
𝜆 = (𝜆1, ... , 𝜆𝑖) : 𝜆𝑖 ∈ {𝛿, 𝛿}

}︁
(2.12)

From convexity arguments, it follows that if the inequalities conditions are satisfied
in the polytope vertices, then the same restrictions will be satisfied inside the polytope
(BERNUSSOU; PERES; GEROMEL, 1990). Therefore, it is possible to define the follow-
ing theorem for systems with polytopic uncertainties:

Theorem 2.3. Stability in the sense of Lyapunov for polytopic uncertainties
(DUAN; YU, 2013)1: The system (2.9) is asymptotically stable, in the hyper-rectangle 𝜐,
if there is a symmetric positive matrix 𝑃 ∈ R𝑛×𝑛 such that

𝐴T
𝑖 𝑃𝐴𝑖 − 𝑃 < 0, 𝑖 = 1, . . . , ℎ. (2.13)

2.2 Robust Control
Robust control is a convenient method in order to solve control problems involving

a system and its uncertainties. In this section, the main ideas regarding robust control
are developed. First, robust state-feedback is defined, and then a performance requisite
through pole placement is shown.
1 The proof for this theorem can be found in the page 117 of (DUAN; YU, 2013).
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2.2.1 Robust State-feedback

Besides the stability analysis, it is possible to make use of Lyapunov functions in
order to design controllers. First, consider the following non-autonomous linear discrete
system

𝑥(𝑘 + 1) = 𝐴(𝛿)𝑥(𝑘) + 𝐵(𝛿)𝑢(𝑘), (2.14)

where 𝑥(𝑘) ∈ R𝑛 is the discrete states vector, 𝑢(𝑘) ∈ R is the system input, and 𝐴(𝛿) ∈ R𝑛

and 𝐵(𝛿) ∈ R𝑛 are the system matrices that varies with the parameter 𝛿.

A usual control strategy is the state-feedback, where the system states are multi-
plied by a fixed gain matrix 𝐾 ∈ R𝑛, as can be seen in the following control law:

𝑢(𝑘) = 𝐾𝑥(𝑘). (2.15)

If we consider uncertainties in the systems, it is possible to make use of the poly-
topic representation in order to obtain a robust state-feedback controller, that is, a con-
troller that guarantees the stability of the system for any admissible value of the uncertaing
parameters 𝛿 (BERNUSSOU; PERES; GEROMEL, 1990).

Theorem 2.4. State-feedback design for polytopic uncertainties: Consider a sys-
tem in the form of (2.14) and its polytopic representation in (2.10). Suppose there exists
a positive definite matrix 𝑄 ∈ R𝑛×𝑛 and a matrix 𝑌 ∈ R𝑛 such that the following LMIs
are satisfied at the vertices of the polytope 𝜐(𝜆)⎡⎣𝑄 (𝐴𝑖𝑄 + 𝐵𝑖𝑌 )T

⋆ 𝑄

⎤⎦ > 0, 𝑖 = 1, . . . , ℎ.

𝑄 > 0
(2.16)

Then, system (2.9) under control law (2.15) with 𝐾 = 𝑌 𝑄−1 is asymptotically stable.

Proof. Two conditions are necessary in order to demonstrate the proof. The condition
𝑉 (𝑥(𝑘)) > 0 holds from the assumption that 𝑃 > 0. For the second condition Δ𝑉 (𝑥(𝑘)) <

0, consider

Δ𝑉 (𝑥(𝑘)) = 𝑉 (𝑥(𝑘 + 1)) − 𝑉 ((𝑥(𝑘)) < 0

= 𝑥(𝑘 + 1)T𝑃𝑥(𝑘 + 1) − 𝑥(𝑘)T𝑃𝑥(𝑘) < 0
(2.17)

In closed loop, the system (2.9) takes the form of :

𝑥(𝑘 + 1) = (𝐴(𝛿) + 𝐵(𝛿)𝐾)𝑥(𝑘). (2.18)

Substituting (2.18) in (2.17), we have

((𝐴(𝛿) + 𝐵(𝛿)𝐾)𝑥(𝑘))T𝑃 ((𝐴(𝛿) + 𝐵(𝛿)𝐾)𝑥(𝑘)) − 𝑥(𝑘)T𝑃𝑥(𝑘) < 0,
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which is equivalent to

(𝐴(𝛿) + 𝐵(𝛿)𝐾)T𝑃 (𝐴(𝛿) + 𝐵(T𝛿)𝐾) − 𝑃 < 0. (2.19)

According to Theorem 2.3, the inequality (2.13) is the same as in (2.19). Nevertheless, as
(2.19) is a nonlinear expression, it requires some manipulation before being represented
as an LMI. In order to make it linear, we may use the Schur complement, presented in
the Definition 2.1.

Definition 2.1. Schur Complement: consider matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚 and
𝐶 ∈ R𝑚×𝑚, such that 𝐴 = 𝐴T, 𝐶 = 𝐶T and 𝐶 > 0. According to Schur complement, the
following expressions are equivalent

𝐴 − 𝐵𝐶−1𝐵T > 0,

⎡⎣𝐴 𝐵

⋆ 𝐶

⎤⎦ > 0. (2.20)

Applying the Schur complement in (2.19), we now have:⎡⎣𝑃 (𝐴(𝛿) + 𝐵(𝛿)𝐾)T

⋆ 𝑃 −1

⎤⎦ > 0,

𝑃 > 0
(2.21)

Then, we may multiple both sides of (2.21) by a diagonal matrix⎡⎣𝑄 0
0 𝐼𝑛×𝑛

⎤⎦ , (2.22)

where 𝐼 ∈ R𝑛×𝑛 is a unit matrix and 𝑄 = 𝑃 −1, resulting in:⎡⎣𝑄 𝑄𝐴(𝛿)T + 𝑌 T𝐵(𝛿)T

⋆ 𝑄

⎤⎦ > 0

𝑄 > 0
, (2.23)

where 𝑌 = 𝐾𝑄. Notice that (2.23) is equal to (2.16). Hence, the proof is complete.

The uncertain systems definitions presented may also be applied to time-varying
systems. The main difference between these two classes is that the second one has known
functions that define how its parameters change over the time. Even if this approach
may lead to conservative results in comparison, for example, to the parameter dependent
Lyapunov functions (MONTAGNER; PERES, 2004), where the parameters variation may
be considered in the problem, it is appealing due to its numerical simplicity, as it uses
a simple Lyapunov function to determine a fixed gain in order to stabilize the uncertain
system.
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2.2.2 D-stabilization

The previous controllers designs may not achieve a satisfactory performance if
specific requisites are not taken into the problems. In this context, it is valueable to
define a region of interest in the complex plane where one would like to place the poles
of the closed loop system (DUAN; YU, 2013).

The D-stabilization problem deals with the poles assignment of a system inside a
specific region (BOYD, 1994). Using the LMIs property of multi objective optimization,
the closed-loop poles can be placed using the controller design, through the addition of a
constraint in the form of another LMI.

Let us consider that the LMI problem presented in (2.16) must define a feedback
gain such that the control loop system poles are inside a disk with radius 𝑟 and with center
at coordinates 𝑐. In order to respect this restriction, it is possible to add the following
LMI (DUAN; YU, 2013) to the optimization problem:

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑖𝑄 + 𝐵𝑖𝑌 ) + 𝑀 T ⊗ (𝐴𝑖𝑄 + 𝐵𝑖𝑌 )T < 0, (2.24)

where ⊗ is the Kronecker product, and

𝐿 =
⎡⎣−𝑟 𝑐

𝑐 −𝑟

⎤⎦ , 𝑀 =
⎡⎣1 0
0 0

⎤⎦ (2.25)

By doing so, the calculated feedback gains will be able to lead the system poles to
the specified region in the complex plane.

2.3 Internal Model Principle
The Internal Model Principle (IMP) is an adequate strategy for reference tracking

and disturbance rejection (CHEN, 1999). According to (FRANCIS; WONHAM, 1976), if
the model of the dynamics of the reference (or disturbance) signal is incorporated in the
feedback path, it is possible to achieve asymptotic convergence of the tracking error. In
this section, the IMP will be illustrated for a Single-Input Single-Output (SISO) system.

In order to explain the IMP functioning, consider the block diagram in the Figure
1, where: 𝑅(𝑠) ∈ C is the reference signal, 𝐸(𝑠) ∈ C is the error signal, 𝑈(𝑠) ∈ C is
the control signal, 𝐶(𝑠) = 𝑈(𝑠)/𝐸(𝑠) is the controller transfer function, 𝑌 (𝑠) ∈ C is the
system output, and 𝐺(𝑠) = 𝑌 (𝑠)/𝑈(𝑠) is the system transfer function.

It is possible to define the error 𝐸(𝑠) as a function of the reference.

𝐸(𝑠) = 𝑅(𝑠) − 𝐺(𝑠)𝐶(𝑠)𝐸(𝑠)

= 1
1 + 𝐺(𝑠)𝐶(𝑠)𝑅(𝑠).

(2.26)
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Figure 1 – Generic block diagram of a control system.

𝐶(𝑠) 𝐺(𝑠)
−

𝑅(𝑠) + 𝐸(𝑠) 𝑈(𝑠) 𝑌 (𝑠)
∙

Expanding the following transfer functions to

𝑅(𝑠) = 𝑁𝑟(𝑠)
𝐷𝑟(𝑠) , 𝐶(𝑠) = 𝑁𝑐(𝑠)

𝐷𝑐(𝑠) , 𝐺(𝑠) = 𝑁𝑔(𝑠)
𝐷𝑔(𝑠) , (2.27)

and substituting in (2.26), with some algebraic manipulation:

𝐸(𝑠) = 𝐷𝑔(𝑠)𝐷𝑐(𝑠)
𝐷𝑔(𝑠)𝐷𝑐(𝑠) + 𝑁𝑔(𝑠)𝑁𝑐(𝑠)

𝑁𝑟(𝑠)
𝐷𝑟(𝑠) . (2.28)

Finally, considering the control block diagram defined in the Figure 1, the system
error asymptotically tends to zero, i.e.

lim
𝑡→∞

𝑒(𝑡) = 0,

where 𝑒(𝑡) is the inverse Laplace transform of 𝐸(𝑠), if and only if the following require-
ments are fulfilled (FRANCIS; WONHAM, 1976):

1. All closed-loop poles of 𝑃𝐸(𝑠) = 𝐷𝑔(𝑠)𝐷𝑐(𝑠) + 𝑁𝑔(𝑠)𝑁𝑐(𝑠) are in the left plane of
the complex plane;

2. The polynomial 𝐷𝑐(𝑠) has all the marginally stable roots of the polynomial 𝐷𝑟(𝑠);

3. The polynomial 𝑁𝑔(𝑠) does not have any roots in common with 𝐷𝑟(𝑠).

Thus, the IMP controller can asymptotically tracks a signal by adding its dynamics
into the closed-loop system.

2.3.1 Resonant Controller

In order to achieve better reference tracking, the present work proposes the appli-
cation of the Internal Model Principle in the form of a resonant controller (WANG; CHU;
TSAO, 2009). The resonant controller, in its simplest form, has the following structure:

𝐶(𝑠) = 𝜔2
𝑟

𝑠2 + 𝜔2
𝑟

. (2.29)

This controller introduces a valley in the frequency 𝜔𝑟 of the sensitivity function
𝑆(𝑗𝜔) = 𝐸(𝑗𝜔)/𝑅(𝑗𝜔), which relates the system error and the reference, as illustrate in
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Figure 2 – Magnitude of Sensitivity Function Bode Diagram defined in (2.29), for 𝜔𝑟 =
100 𝑟𝑎𝑑/𝑠 and an illustrative system 𝐺(𝑠) = 1/(𝑠 + 10)
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Figure 2. Thus, the gain of a sinusoidal reference with frequency 𝜔𝑟 for the system error
is zero, which implies a perfect tracking.

Using the state-space notation, it is possible to rewrite the equation (2.29) as:

𝑥̇𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑒(𝑡)

𝑦𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡)
(2.30)

where 𝑥𝑟 ∈ R2 is the resonant states vector, and 𝐴𝑟 ∈ R2×2, 𝐵𝑟 ∈ R2×1, 𝐶𝑟 ∈ R1×2 are
defined as

𝐴𝑟 =
⎡⎣ 0 𝜔𝑟

−𝜔𝑟 0

⎤⎦ , 𝐵𝑟 =
⎡⎣0
1

⎤⎦ , 𝐶𝑟 =
[︁
0 𝜔𝑟

]︁
(2.31)

In order to use the continuous-time state space in the discrete framework, such as
in a digital computer, a possible approach is to discretize the resonant system matrices
using a convenient discretization technique (OGATA, 1987). For example, it is possible
to cite the numerical integration methods Euler Forward, Euler Backwards and Tustin,
the pole/zero matching method and the zero-order hold method. The sample time used in
the discretization method must be faster than the system dynamics in order to generate
an appropriate approximation of the original continuous representation (OGATA, 1987).

2.4 Kalman Filter
The seminal paper about the Kalman Filter (KF) was published in 1960, by

Rudolph Emil Kalman (KALMAN, 1960). The KF is classified as a parametric Bayesian
filter, allowing the recursive estimation of a dynamic system states in the presence of noise.
It is possible to define an algorithm for the KF in two main steps (THRUN; BURGARD;
FOX, 2005).



Chapter 2. Background 27

The first step is the prediction, where, using the mathematical model of the dy-
namic system, a prediction of the states values is performed for the sample 𝑘. The second
step is the correction, where the states values measured by the sensors are used by the
filter in order to correct the predictions of the first step. In the Kalman Filter, the system
uncertain, represented by ℛ, and the sensors uncertain, represented by 𝒬, are parame-
terized in a Gaussian distribution form, which are composed by averages and covariances
(THRUN; BURGARD; FOX, 2005). Besides the state observer function, the KF also
performs a filtering in the measured signals, mitigating the presence of possible noises.

The Kalman Filter structure is describe in Algorithm 1 (THRUN; BURGARD;
FOX, 2005), where the lines 2 and 3 refer to the prediction step, and the lines 4 to 6 refer
to the correction step. The term Σ is the covariance of the states initial estimation. The
term 𝑧 refers to the output values measured by the sensors. Finally, the Kalman gain 𝒦
is responsible for the weighting of the estimated and measured signals.

Algorithm 1 Kalman Filter Algorithm
1: KF (𝑢(𝑘), 𝑧(𝑘), 𝑥(𝑘 − 1), Σ(𝑘 − 1)
2: 𝑥(𝑘) = 𝐴(𝑘)𝑥(𝑘 − 1) + 𝐵(𝑘)𝑢(𝑘)
3: Σ(𝑘) = 𝐴(𝑘)Σ(𝑘 − 1)𝐴(𝑘)T + ℛ(𝑘)
4: 𝒦(𝑘) = Σ(𝑘)𝐶(𝑘)T(𝐶(𝑘)Σ(𝑘)𝐶(𝑘)T + 𝒬(𝑘))−1

5: 𝑥(𝑘) = 𝑥(𝑘) + 𝒦(𝑘)(𝑧(𝑘) − 𝐶(𝑘)𝑥(𝑘))
6: Σ(𝑘) = (𝐼 − 𝒦(𝑘)𝐶(𝑘))Σ(𝑘)
7: Return 𝑥(𝑘), Σ(𝑘)

The previous algorithm considers that the system, represented in the state-space
form, can be time-varying. If the working system has constant matrices, then it is possible
to ignore the time dependency of the variables. Moreover, one may notice that if the system
is time-invariant the Σ becomes a constant value, which reduces the filter computational
cost.

2.5 Atomic Force Microscopy
The Atomic Force Microscopy (AFM) belongs to a larger group of instruments

called Scanning Probe Microscopy (SPM), which started in 1982 with the invention of
the Scanning Tunneling Microscope by Gerd Binnig and Heinrich Rohrer. According to
Baró e Reifenberger (2012), the SPM instruments "are based on the strong distance-
dependent interaction between a sharp probe or tip and a sample". These interactions can
be, for example (TSUKRUK; SINGAMANENI, 2011): electrostatic, magnetic, chemical,
conductive, among others physical phenomena.

In the AFM case, the basic concept is to measure the force between the tip (or
probe) and the sample. The most common structure in this type of microscopes is to
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mount the tip on the end of a cantilever, then either its dynamic properties change
due to tip-sample forces or its static deflection can be used as measurement (MEYER;
HUG; BENNEWITZ, 2004). Invented in 1986 by Gerd Binnin, Cal Quate and Christopher
Gerber, the Atomic Force Microscope is very attractive to both industrial and academical
researches (YABLON, 2014).

2.5.1 Operation Principles and Limitations

An Atomic Force Microscope operates using the measurement of forces between
the sample surface and a sharp tip (TSUKRUK; SINGAMANENI, 2011). This nanometer
tip is attached to the end of a cantilever, which is used as a transducer of the interaction.
One method of amplifying and measuring this interaction is through the reflection of a
laser beam with focus in the back side of the cantilever. A photodiode generates a voltage
signal according to the position of the reflected laser beam. This signal is processed by a
Digital Signal Processor (DSP), and then interpreted by a computer, which generates the
scanning images.

Figure 3 – Atomic force microscope simplified schematic.

Based in (BARÓ; REIFENBERGER, 2012).

A simplified schematic of a common AFM scanner structure is depicted in Figure 3.
Analysing the structure, it is possible to define four main components of the instrument
(YABLON, 2014): the cantilever, the optical detection system (photodiode), the AFM
software (DSP and computer) and the x-y-z scanner (piezotube and high voltage systems).
These four main components will be detailed in the following.

The cantilever is the main part of the AFM, as it is responsible to provide the
information of interest. According to Yablon (2014), the cantilever is typically made by
a single-crystal of silicon (Si) or silicon nitride (𝑆𝑖3𝑁4), and can be coated with gold and
aluminium in order to obtain higher levels of reflectivity. The dimensions of the cantilever
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are variable, and depend on the material to be scanned. The probe properties also depend
on the application.

The optical detection system is responsible to track the cantilever as it performs
the scanning. It consists in a position sensitive detector, normally a photodiode, that de-
tects the reflection of a laser applied to the back side of the cantilever (BARÓ; REIFEN-
BERGER, 2012). The AFM software is a critical part of the microscope, as it is responsi-
ble for controlling the motion of the x-y stage, the vertical distance between sample and
probe, the subsequent data processing and image analysis.

Responsible for the microscope movements, the x-y-z scanner may operate either
by considering a stationary tip or a stationary sample. Commercial instruments normally
make use of piezoelectric materials in order to perform the necessary motions (MAROUFI;
MOHEIMANI, 2016). The piezoelectric materials are able to contract or expand accor-
dantly to an applied voltage, being capable to achieve motions in the magnitude of micron
and even nanometers (YABLON, 2014). For example, the microelectromechanical systems
(MEMS) nanopositioners are piezoelectric actuators that have reduced cost and higher
bandwidths (MAROUFI; MOHEIMANI, 2016).

Two main movements must be executed by the scanner. The first one is the ver-
tical movement in the z axis, responsible for the direct interaction between the tip and
the sample surface. The second component is the x-y movement, responsible for the hori-
zontal trajectory of the tip over the sample area. The x-y-z scanner may operate both in
open-loop or closed-loop, according to the microscope structure (MEYER; HUG; BEN-
NEWITZ, 2004).

The scanning pattern executed by the scanner tip, in the x-y plane, is a problem
in particular. Most Atomic Force Microscopes operate using the raster scanning pattern
(MAHMOOD; MOHEIMANI; BHIKKAJI, 2011), which can be seen in Figure 4. Its
trajectory consists in a rectangular movement, being composed by a triangular signal in
one axis, and a stair or ramp signal in the other axis. Atomic force microscopes commonly
operate in open-loop in the x-y axes (MEYER; HUG; BENNEWITZ, 2004); otherwise,
the closed-loop is mainly composed of PI controllers (ABRAMOVITCH et al., 2007;
MAHMOOD; MOHEIMANI; BHIKKAJI, 2011).

Due to the presence of harmonics in the stair and the triangular signals, which
difficult the control task, the raster pattern limits the scanning in higher velocities (RANA;
POTA; PETERSEN, 2014). This fact may excite the instrument mechanical resonance
frequency, and then create image deformations that can lead to possible scanning errors
(MAHMOOD; MOHEIMANI; BHIKKAJI, 2011). In order to mitigate these difficulties,
a possible solution is to substitute the raster scanning for more suitable patterns.

Some examples of patterns are: Cycloid (YONG; MOHEIMANI; PETERSEN,
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Figure 4 – Examples of Scanning Pattern and its Cartesian components.

(a) Raster pattern. (b) Spiral pattern.

(c) Lissajous pattern. (d) Cycloid pattern.

Adapted from (TUMA et al., 2013).

2010), Lissajous (BAZAEI; YONG; MOHEIMANI, 2012) and Arquimedean Spiral (MAH-
MOOD; MOHEIMANI; BHIKKAJI, 2011). Four different examples of scanning patterns
are presented in Figure 4: the traditional raster pattern, the spiral Archimedean pattern,
the Lissajous pattern and the Cycloid pattern, along side with its respective Cartesian
components.

2.5.2 Spiral Scanning Patterns

Among the different scanning patterns available in the AFM area, the Archimedean
Spiral scanning pattern emerges as a good solution due to its unique properties (RANA;
POTA; PETERSEN, 2014). Based in the homonym ancient geometric figure discovered
by Archimedes in 3rd century BC, this pattern has constant distance between the 𝑀

loops, i.e. pitch 𝑃 . The spiral is composed by two different signals, applied to each of the
scanner axes x and y. A frequency-varying spiral pattern and its respective signals are
depicted in the Figure 5, where 𝑅𝑠 is the spiral radius. The number of loops 𝑀 is counted
from the border to the center of the pattern.

The spiral is built from inside out, through the combination of two sinusoidal
signals, applied to the horizontal plane axes of the AFM scanner. Using polar coordinates,
it is possible to define the radius 𝑟 and the angle 𝜃, used to obtain the sinusoidal signal,
as (ZIEGLER et al., 2017):

𝑟 , 𝑅𝑠𝑓(𝑡*)

𝜃 , 2𝜋𝑀𝑓(𝑡*),
(2.32)
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Figure 5 – Archimedean frequency-varying spiral pattern with 𝑅𝑠 = 1𝜇m, 𝑀 = 5 and
𝑃 = 2 × 10−7, and its respective x and y axes components.
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(a) Archimedean spiral pattern with 𝑅𝑠 = 1𝜇m,
𝑀 = 5 and 𝑃 = 2 × 10−7.
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(b) Archimedean spiral pattern x axis.
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(c) Archimedean spiral pattern y axis.

where 𝑓(𝑡*) is a function that determinate the spiral properties, 𝑅𝑠 is the spiral radius
and 𝑀 is the pattern number of loops. The term 𝑡* is a normalized time variable, that
considers 𝑡* = 𝑡/𝑇 , where 𝑡 is the time, and 𝑇 is the required time to complete the scan
pattern.

The scanner tip linear velocity 𝑣 and angular velocity 𝜔 are given by

𝑣 ,
𝑅𝑠𝑓

′(𝑡*)
𝑇

√︁
(2𝜋𝑀𝑓(𝑡*))2 + 1

𝜔 ,
2𝜋𝑀

𝑇
𝑓 ′(𝑡*)

(2.33)

where 𝑓 ′(𝑡*) denotes the derivative of 𝑓(𝑡*) with respect to the normalized time 𝑡*.

The Archimedean Spiral can be generated using two basic different methods. It is
possible to consider a trajectory with a constant angular velocity (CAV) or a constant
linear velocity (CLV) (MAHMOOD; MOHEIMANI, 2010). Both methods have specific
implications in the scanning performance.
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2.5.2.1 CAV spiral

The CAV pattern considers the angular velocity a constant parameter, varying the
linear velocity with the curves radius. The CAV function is defined as (ZIEGLER et al.,
2017)

𝑓(𝑡*) = 𝑡*. (2.34)

Substituting 2.34 in 2.33, we obtain the CAV linear velocity 𝑣𝑎 and angular velocity
𝜔𝑎:

𝑣𝑎 = 𝑅𝑠

𝑇

√︁
(2𝜋𝑀𝑡*)2 + 1,

𝜔𝑎 = 2𝜋𝑀

𝑇
.

(2.35)

It is clear from the above that the angular velocity is a constant value. This fact
results in small linear velocities in the center and large linear velocities in the periphery,
which may lead to under sampling (ZIEGLER et al., 2017).

2.5.2.2 CLV spiral

In the CLV pattern, the linear velocity is considered a constant parameter. There-
fore, the angular velocity varies according to the curves radii. The CLV function is defined
as (ZIEGLER et al., 2017)

𝑓(𝑡*) =
√

𝑡*. (2.36)

Substituting (2.36) in (2.33), the CLV linear velocity 𝑣𝑙 and angular velocity 𝜔𝑙

can be obtained by:

𝑣𝑙 =
𝑅𝑠

√︁
(2𝜋𝑀)2𝑡* + 1
2𝑇

√
𝑡*

𝜔𝑙 = 𝜋𝑀

𝑇
√

𝑡*
.

(2.37)

When 𝑡* ≫ 1/(2𝜋𝑀)2, the linear velocity approaches a constant value 𝑣𝑙 =
𝜋𝑀𝑅𝑠/𝑇 . Nevertheless, toward the very beginning of the CLV spiral, the angular ve-
locity value (and the linear velocity, as well), theoretically, approach infinity. This fact
leads to poor sampling in the center of the spiral scan (ZIEGLER et al., 2017).

2.5.2.3 Optimal Archimedean Spiral

Aiming to mitigate the disadvantages of both cases, a composed pattern, called
Optimal Archimedean Spiral (OPT), was proposed by Ziegler et al. (2017). The spiral
optimal parameterization is done such that the scan time is the least possible respecting
the linear and angular velocity constraints of the microscope. It consists in a switched
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trajectory: in the center of the pattern, the OPT follows a constant angular value 𝜔𝑜, and
in the periphery, it follows a constant linear velocity 𝑣𝑜.

The moment for the transition is defined as the normalized instant 𝑡*𝑜. When the
spiral reaches 𝑡*𝑜, the angular velocity 𝜔𝑜 corresponds to a linear velocity 𝑣𝑜 value such
that the transition is smooth, and the radius does not suffer any abrupt variation. The
OPT spiral function 𝑓(𝑡*) of the normalized time 𝑡* is defined by:

𝑓(𝑡*) =

⎧⎨⎩
𝑡*
𝑎

, if 𝑡* 6 𝑡*𝑜√
𝑐1𝑡* + 𝑐2, if 𝑡* > 𝑡*𝑜,

(2.38)

where

𝑎 ,
2𝜋𝑀

𝑇𝜔𝑜

,

𝑐1 ,
2𝑡*

𝑎2 ,

𝑐2 , 1 − 𝑐1.

(2.39)

Therefore, the OPT pattern follows a variable linear velocity in the beginning of
the trajectory, and a variable angular velocity in its end (for 𝑡* > 𝑡*𝑜). The reference for
each axis is given by the relation between polar and Cartesian coordinates:

𝑟x = 𝑟cos(𝜃),

𝑟y = 𝑟sen(𝜃),
(2.40)

where 𝑟 , 𝑅𝑠𝑓(𝑡*), 𝜃 , 2𝜋𝑀𝑓(𝑡*), and 𝑟x and 𝑟y are the reference signal for the x and y
axes, respectively.

By doing so, the OPT is able to take advantage of the benefits of both methods.
From the beginning, the OPT linear velocity increases, as the angular velocity is constant.
When the time 𝑡* reaches the transition instant 𝑡*𝑜, the OPT switches its function to a
constant linear velocity. Then, the angular velocity decreases proportionally, until the
spiral is complete. The switch does not create an abrupt change in the spiral frequencies
values, which is important for the proposed control method of the present work.

According to Ziegler et al. (2017), besides the velocity issues, the OPT pattern has
many advantages over other patterns, such as highly homogeneous sampling and small
information discard over the scanning image. Despite the advantages of the presented
OPT spiral, the only known work that proposed a controller in order to track it was
found in (BAZAEI; MAROUFI; MOHEIMANI, 2017).

2.6 Final Considerations
This chapter presented the main background information that will be used by the

remaining of the dissertation. First, the stability in the sense of Lyapunov was developed,
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including the system with uncertainty approach. In the sequence, the concepts of robust
control were introduced, being followed by the Internal Model Principle definitions and
its application through the Resonant Control. In the sequence, the Kalman Filter, used
to estimated the system states, was reviewed. Finally, the main information regarding
the AFM was presented, including its operation principles and limitations, where the
application of spiral references as an option to improve the scanning performance was
detailed, along side with its implementation difficulties.
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3 Iterative Learning Control for Spiral Track-
ing

This chapter presents the main information regarding the Iterative Learning Con-
trol strategy. First, the basic ideas about the ILC are presented. It includes the ILC
functioning principles, detailing how the controller can makes use of past batches infor-
mations in order to improve the system general performance, main definitions regarding
theorems and how the controller can be properly implemented. In the sequence, a pro-
cedure design for the Iterative Learning Control, based in how the ILC is related to a
system already controlled by a feedback loop, is detailed for the spiral reference tracking.

3.1 Basic Results on Iterative Learning Control
Iterative Learning Control is an area of the control theory that has attracted a

great popularity over the past years (OWENS, 2015). One of the first academic works
about ILC was published in 1978 in Japan, and it became an active research area after
1984 (NORRLOF; GUNNARSSON, 2002). The ILC functioning principle is based on the
notion that tasks performed multiple times can be better executed if the system learns
from its previous executions. Using the information of previous batches, the controller may
use a specific logic in order to reduce the error from the last iteration. After a determinate
number of batches, the error will converge to zero or to a small acceptable value.

In order to further develop the ILC concepts, it is necessary to state the definition
of iteration. One iteration is a complete batch, composed by 𝑁 samples. Each time a new
iteration begins, the batch starts again from the sample time 𝑘 = 1 to the last sample
𝑁 . In order to clearly define the difference between sample and iteration, let us consider
the variable 𝑐𝑗(𝑘). The subscript 𝑗 refers to the iteration and 𝑘 refers to the sample. For
example, 𝑐1(2) is the variable 𝑐 value in sample time 2 on the first iteration. It is important
to notice that the ILC starts operating always from the second iteration, as its algorithm
needs the previous information in order to affect the system.

Now we proceed to the formal concepts about this control strategy. For the ILC
concepts in this section, the system will be represented using the so called lifted form, as
follows (BRISTOW; THARAYIL; ALLEYNE, 2006):

y𝑗 = Gu𝑗 + d, (3.1)
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where⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑗(1)
𝑦𝑗(2)

...
𝑦𝑗(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑔[1](0) 0 . . . 0
𝑔[2](1) 𝑔[1](1) . . . 0

... ... . . . ...
𝑔[𝑁 ](𝑁 − 1) 𝑔[𝑁 − 1](𝑁 − 1) . . . 𝑔[1](𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢𝑗(0)
𝑢𝑗(1)

...
𝑢𝑗(𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
𝑑(1)
𝑑(2)

...
𝑑(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(3.2)

The output y𝑗 ∈ R𝑁 is related with the input u𝑗 ∈ R𝑁 through the unit-pulse re-
sponse matrix G ∈ R𝑁×𝑁 , whose coefficients are given by the system unit-pulse response
at each sample 𝑘 during all the length of each batch 𝑁 . The term d ∈ R𝑁 represents an
exogenous signal, such as noise or disturbances. Note that this notation allows the sys-
tem to be time-varying; otherwise, if the system was time-invariant, then the coefficients
𝑔[1], 𝑔[2], ..., 𝑔[𝑁 − 1] would not change over time. It will be assumed hereafter that the
system is stable.

It is possible to obtain the lifted form from the traditional state-space form of a
linear time-varying system

𝑥(𝑘 + 1) =𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘)

𝑦(𝑘) =𝐶(𝑘)𝑥(𝑘) + 𝐷(𝑘)𝑢(𝑘)
(3.3)

where 𝑥 ∈ R𝑛 is the state vector, 𝑢(𝑘) ∈ R is the control input, and 𝐴, 𝐵, 𝐶 and 𝐷 are
definite and have appropriate dimensions, through the following relation:

𝑔𝑖(𝑘) =

⎧⎨⎩ 𝐷(𝑘), if 𝑖 = 1
𝐶(𝑘)𝐴𝑖−1(𝑘)𝐵(𝑘), if 𝑁 − 1 > 𝑖 > 1

(3.4)

As the ILC is a control strategy, there are many different ways in order to apply
it. Its structure may include filters, proportional, integral and derivative gains, among
other options. The present work will make use of a well-known ILC algorithm, defined as
follows (OWENS, 2015):

u𝑗+1 = Q(u𝑗 + Le𝑗), (3.5)

where u𝑗 ∈ R𝑛 is the ILC control input vector in the j-th iteration, Q ∈ R𝑁×𝑁 is the
Q-Filter, L ∈ R𝑁×𝑁 is the learning function, e𝑗 = r−y𝑗 is the error vector obtained from
the reference trajectory vector 𝑟 ∈ R𝑛, which is considered invariant iterations, i.e. the
same sequence for every iteration, and the output vector 𝑦𝑗. Both Q and L are matrices
that can be obtained from their state-space representation in the same way that the lifted
system using the relation (3.4).

The learning function and the Q-Filter are responsible to weight the effect of the
previous values of the error and the control input, respectively, in the current control
input. Both of them may assume different forms: low-pass filters, band-pass filters, con-
stant gains (BRISTOW; THARAYIL; ALLEYNE, 2006). Moreover, their design may also



Chapter 3. Iterative Learning Control for Spiral Tracking 37

be performed in different ways, from quadratic performance criterion to plant dynamics
inversion.

Figure 6 shows how the ILC controller, detached by the dotted square, is added
in a classic feedback loop. The 𝑀𝑒𝑚𝑜𝑟𝑦 blocks are responsible to save the information
about each iteration, in order to use them in the next execution. Note that the control
input 𝑢 is composed by the feedback controller 𝐶 signal, 𝑢𝐹 𝐵, and the ILC controller
signal, 𝑢𝐼𝐿𝐶 .

Figure 6 – Iterative Learning Control block diagram. The final control input 𝑢 is the
summation of the feedback and the ILC controller outputs 𝑢𝐹 𝐵 and 𝑢𝐼𝐿𝐶 ,
respectively.
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3.1.1 Stability Conditions

In order to define the concepts of stability for a system controlled by ILC, it is
necessary to introduce some convenient postulates (NORRLOF; GUNNARSSON, 2002).
They are important for the theorems that follow and also to define the basic concepts of
the ILC algorithm. The six postulates are listed as follows:

1. Every iteration has a fixed duration time N;

2. The reference 𝑟(𝑘) is given a priori over all the duration time 𝑘 ∈ [0, 𝑁 ];

3. The initial conditions are the same for each iteration. This means that, considering
a state-space representation, 𝑥𝑗(0) = 𝑥0(0), 𝑗 = 0, 1, 2, ...

4. The system dynamics do not change over the iterations;

5. It is possible to measure the output in every sample in order to calculate the re-
spective error;

6. Given a reference 𝑟(𝑘), with a piecewise continuous derivative, there exists a unique
input 𝑢𝑑(𝑘) such that the output is equal to 𝑟(𝑘).
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Another important definition for the stability concepts using ILC is the 𝜖-convergence
(NORRLOF; GUNNARSSON, 2002), which assumes that the sixth postulate is true.

Definition 3.1. (𝜖-convergence): a system using ILC is 𝜖-convergent in a norm ||·|| if

lim sup
𝑗→∞

||𝑢𝑑 − 𝑢𝑗||< 𝜖, (3.6)

for some 𝜖 < ∞.

It is important to note that stability does not imply a smaller error from one
iteration to the next. For the next concept, let us introduce a generic linear iterative
system

i𝑗+1 = Hi𝑗 + Pp, (3.7)

where i ∈ R𝑁 , p ∈ R𝑁 , H ∈ R𝑁×𝑁 and P ∈ R𝑁×𝑁 .

Now an important property of this class of system, the BIBO stability, is defined.

Definition 3.2. BIBO stability of a linear iterative system: A linear iterative
system is BIBO stable if a bounded input, ||p||< ∞, generates a bounded output, ||i𝑗||<
∞, for all 𝑗.

Using this class of system and this definition, we may now define the first Theorem
regarding the stability of ILC.

Theorem 3.1. BIBO stability of a linear iterative system: A linear iterative
system

i𝑗+1 = Hi𝑗 + Pp (3.8)

is BIBO stable if
𝜌 (𝐻 < 1) , (3.9)

where 𝜌(𝑀) = 𝑚𝑎𝑥
𝑖=1,...,𝑛

|𝜆𝑖(𝑀)|, and 𝜆𝑖(𝑀) is the i-th eigenvalue of the matrix 𝑀 ∈ R𝑛×𝑛.

Proof. Given the iterative system structure described in (3.7), one may note that it is
the same as the traditional discrete-time systems (OWENS, 2015)1, where asymptotic
stability of 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) is equivalent to the eigenvalues of the system being inside
the unitary disc, i.e. 𝜌 (𝐻 < 1) (CHEN, 1999).

Using the previous concepts, it is possible to define the following Theorem for the
stability of a system controlled by ILC algorithm.
1 Note that an iteration system and a discrete-time system are similar as both consist of a vector of

states depending on its previous values and a determinate input.
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Theorem 3.2. Stability of a system controlled by ILC: A system in the form of
(3.1), controlled by the ILC algorithm as in (3.5), is stable if

𝜌 (𝑄(𝐼𝑁×𝑁 − 𝐿𝐺)) < 1. (3.10)

Proof. First, let us consider the algorithm (3.5). If we substitute (3.1) in (3.5):

u𝑗+1 =𝑄(u𝑗 + 𝐿(r − y))

=𝑄(u𝑗 + 𝐿r − 𝐿𝐺u − 𝐿𝐺d))

u𝑗+1 =𝑄(𝐼 − 𝐿𝐺)u𝑗 + 𝑄𝐿(r − d)

(3.11)

Considering that the ILC algorithm is 𝜖-convergent, according to the Definition
3.1, and that the last equation is in the same form of an iterative learning system from
the Theorem 3.1, then the controlled system is stable if 𝜌 (𝑄(𝐼 − 𝐿𝐺)) < 1.

3.2 Iterative Learning Control Procedure Design
Using the basic concepts previously developed, this section will present the pro-

cedures used in order to properly design the controller learning function and Q-Filter. In
order to further develop this chapter, consider the following closed-loop system depicted
in Figure 7.

Figure 7 – Closed-loop system for the first iteration.

The discrete feedback controller 𝐶(𝑧) is responsible to stabilize the discrete system
𝐺(𝑧). In this structure, the sensitivity function is defined as 𝑆(𝑧) = (1 + 𝐺(𝑧)𝐶(𝑧))−1.
Recalling the definition of iteration, which consists in a complete batch of the system, the
error 𝑒1 is given by the sensitivity function and the reference signal 𝑟, of size 𝑁 , given
by 𝑒1(𝑧) = 𝑆(𝑧)𝑟. While the controller may stabilize the system, the iteration may end
with a significant remaining error. And it is in this situation where the Iterative Learning
Control can show its potential.

Now let us consider that the system must repeat the reference tracking several
times. In this second iteration, the reference signal 𝑟 is the same applied to the first one.
According to the ILC main concept, it is possible to make use of the past error value in
order to improve the controller performance. In other words, the information regarding
the previous task can be applied in the current one.
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Figure 8 represents this concept of using the previous error information in the
current iteration. The new batch structure is the same as the last one, with the exception
that the control input generated by the feedback controller is summed with the signal 𝑓2,
which is the first iteration error 𝑒1 mapped by the learning filter 𝐿(𝑧).

Figure 8 – Closed-loop system for the second iteration.

While the first iteration error was computed directly by the subtraction of the
reference and the output signal, in the second iteration the error 𝑒2 is given by 𝑒2(𝑧) =
𝑆(𝑧)𝑟 − 𝑆(𝑧)𝐺(𝑧)𝑓2. As the signal 𝑓2 is defined as 𝑓2(𝑧) = 𝐿(𝑧)𝑒1, we may now define the
second batch error as 𝑒2(𝑧) = 𝑆(𝑧)𝑟 −𝑆(𝑧)𝐺(𝑧)𝐿(𝑧)𝑒1. The question now is how to design
𝐿(𝑧) such that the error can be eliminated or reduced.

Analysing the 𝑒2 equation, one may note that if the learning function is defined as
𝐿(𝑧) = (𝑆(𝑧)𝐺(𝑧))−1, the error converges to zero, i.e. 𝑒2 = 0. Although this solution may
look straightforward, there are situations where the direct inversion may not guarantee the
error equal to zero. For example, if there are uncertainties in the models, some dynamics
may not be fully compensated by the learning function. Another situation is if the transfer
functions has non-minimum phase zeros or unstable poles, which would lead to an unstable
behavior of the learning function.

Even if the direct cancellation of the functions is not possible, the Iterative Learn-
ing Control main idea of using the last tasks information can be continuously applied in
the next batches. While it may not result in an error equal to zero, it can generate better
performance levels over the execution of the system tasks. Figure 9 represents how the
third iteration can be represented: the system output 𝑦3 now depends on the feedback
controller and on the two previously performed iteration.

It is possible to see that the next iteration error can be obtained from the previous
one through the relation 𝑒𝑗+1 = (1 − 𝐺(𝑧)𝑆(𝑧)𝐿(𝑧))𝑒𝑗 (BOEREN et al., 2016). Therefore,
the ILC controller stability would involve the analysis of the relation (1 − 𝐺(𝑧)𝑆(𝑧)𝐿(𝑧))
(BRISTOW; THARAYIL; ALLEYNE, 2006). Nevertheless, it is well-know in the ILC
theory that most applications require a Q-Filter 𝑄(𝑧) in order to achieve a satisfactory
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Figure 9 – Closed-loop system for the third iteration.

tradeoff between stability and performance (BRISTOW; THARAYIL; ALLEYNE, 2006).
The Q-Filter is responsible for filtering the control signal generated by the ILC controller,
as presented in Figure 6. So, the stability condition must consider the relation 𝑄(𝑧)(1 −
𝐺(𝑧)𝑆(𝑧)𝐿(𝑧)) (WU; ZOU, 2009).

A sufficient condition for the controller stability, similar to the one presented in
the basic ILC definition in the Background chapter, can be defined now for the frequency
domain.

Theorem 3.3. ILC stability in frequency domain (BOEREN et al., 2016)2: The
two-norm of the ILC control input, generated in a closed loop with a discrete system
𝐺(𝑒𝑗𝑤), controlled by both a feedback 𝐶(𝑒𝑗𝑤) and an ILC, composed by a Q-Filter 𝑄(𝑒𝑗𝑤)
and a learning function 𝐿(𝑒𝑗𝑤) as presented in 6, controllers, will converge if

|𝑄(𝑒𝑗𝑤)(1 − 𝐺(𝑒𝑗𝑤)𝑆(𝑒𝑗𝑤)𝐿(𝑒𝑗𝑤))|< 1, (3.12)

where 𝑆(𝑒𝑗𝑤) = (1 + 𝐶(𝑒𝑗𝑤)𝐺(𝑒𝑗𝑤))−1 is the sensitivity function and the two-norm ||.|| of
a vector 𝑣

[︁
𝑣1 𝑣2 . . . 𝑣𝑛

]︁
is computed by ||𝑣||=

√︁
𝑣2

1 + 𝑣2
2 + . . . + 𝑣2

𝑛.

Another important point for the Iterative Learning Control design and implemen-
tation is the structures of both the 𝐿(𝑧) and 𝑄(𝑧) filters. As state before, a possible
procedure to design the learning function is to make it 𝐿(𝑧) = (𝑆(𝑧)𝐺(𝑧))−1 and then use
the Q-Filter to enforce robustness in the ILC structure, in order to achieve the condition
|𝑄(𝑒𝑗𝑤)((1 − 𝐺(𝑒𝑗𝑤)𝑆(𝑒𝑗𝑤)𝐿(𝑒𝑗𝑤))|< 1. Nevertheless, both the learning function and the
2 The proof for this theorem can be found in the respective reference.
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Q-Filter discrete transfer functions must respect other two conditions in order to be able
to be applied as filters in the input and error signals.

These conditions are that both discrete functions must be stable, i.e. eigenvalues
with module less than 1, and causal, i.e. the filter does not depends on future values of
the output (CHEN, 1999). If the filter transfer function is not causal, then it is possible
to add fast poles into its denominator. By doing so, the system will respect the causality
property and will not be significantly affected by the artificial poles.

According to the previously presented information, it is possible to resume the ILC
design procedure into two main steps, defined as follows.

1. Design the learning function 𝐿(𝑧) in order to cancel the stable poles and zeros of
the system 𝐺(𝑧), i.e. make 𝐿(𝑧) = (1 + 𝐺(𝑧)𝐶(𝑧))−1, where 𝐶(𝑧) is the feedback
controller and 𝑆(𝑧) is the sensitivity function;

2. Design the Q-Filter 𝑄(𝑧) to satisfy (3.12) without compromising the system band-
width, in order to achieve a satisfactory tradeoff between performance and stability.

3.3 Final Considerations
In this chapter, the Iterative Learning Control was explained, including its main

concepts, stability definitions and application structures. In the sequence, a procedure
design for the spiral reference signal was detailed. The procedure was based in the ILC
relation with a system already controlled by a feedback controller: the residual error
obtained during each task can be used in the next iteration, in order to improve the general
performance. The error is mapped in the next batch through the learning function, which
can be designed such that the system dynamics can be compensated. In order to enforce
robustness, the Q-Filter can be also used in the ILC structure.
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4 Resonant Gain Scheduling Controller

This chapter presents the main contribution of this dissertation: the Resonant Gain
Scheduling Controller. This controller combines the previously shown concepts, and this
section details the procedures used to design and implement the controller. It is divided
in three main parts. The first one presents the augmented system, using the resonant
controller, and the polytopic representation. The second part explains the resonant gain
scheduling controller design procedure using an optimization problem, that makes use of
the augmented and polytopic representation and also the D-stabilization. The third part
presents the final structure of the controller diagram, depicting how the resonant system
and the feedback gains are organized. The diagram also shows how the other parts of the
work, such as the Kalman Filter and the Iterative Learning Control, are integrated to the
closed-loop structure.

4.1 Augmented System and Polytopic Representation
As presented in the Background chapter, the Internal Model Principle may be

used in order to achieve satisfactory reference tracking. In the present work, the reference
signals have sinusoidal dynamics, which allows the application of the IMP through the
Resonant Control.

A possible approach to integrate the RC dynamics into the closed-loop path is to
define an augmented structure, using the system state-space matrices. By doing so, the
controller gains can be designed such that the resonant system is also considered and
then the reference can be adequately tracked. First, let us consider the following discrete
state-space system:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
(4.1)

where 𝑥 ∈ R𝑛 is the system states vector, 𝑢 ∈ R is the control input, 𝑦 ∈ R is the system
output, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛, 𝐶 ∈ R1×𝑛 and 𝐷 ∈ R.

Using the system matrices, it is possible to define an augmented system making use
of the resonant system matrices, presented in the Background chapter. The augmented
system is given by:

𝑥𝑎(𝑘 + 1) = 𝐴𝑎𝑥𝑎(𝑘) + 𝐵𝑎𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑎𝑥𝑎(𝑘) + 𝐷𝑎𝑢(𝑘)
(4.2)
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where 𝑥𝑎(𝑘) =
[︁
𝑥(𝑘) 𝑥𝑟(𝑘)

]︁T
is the augmented system state vector, which is composed

by the discrete system state vector 𝑥(𝑘) and the discrete resonant state vector 𝑥𝑟(𝑘). The
augmented system matrices are defined as follows:

𝐴𝑎(𝑘) =
⎡⎣ 𝐴 0
−𝐶 𝐴𝑑𝑟(𝑘)

⎤⎦ 𝐵𝑎(𝑘) =
⎡⎣ 𝐵

𝐵𝑑𝑟(𝑘)𝐷

⎤⎦
𝐶𝑎 =

[︁
𝐶 01×2

]︁
𝐷𝑎 = 𝐷.

(4.3)

where 𝐴𝑑𝑟(𝑘) and 𝐵𝑑𝑟(𝑘) are the discrete representation of the resonant matrices 𝐴𝑟(𝑘)
and 𝐵𝑟(𝑘), defined in the Section 2.3.1. The matrices can be discretized using a convenient
discretization method and are replicated here for the convenience of the reader:

𝐴𝑟 =
⎡⎣ 0 𝜔𝑟

−𝜔𝑟 0

⎤⎦ , 𝐵𝑟 =
⎡⎣0
1

⎤⎦ , 𝐶𝑟 =
[︁
0 𝜔𝑟

]︁
(4.4)

As it is possible to see in (4.3), that the augmented system depends on the variation
of the resonant controller, which is defined according to the spiral reference frequency-
varying signal described in Background section. The frequencies values, obtained from the
spiral patterns definitions, belongs to a known range

𝜔 ∈
[︁
𝜔, 𝜔

]︁
, (4.5)

where the extreme limits 𝜔 and 𝜔 are the frequency lower and upper bounds, respectively.
These bounds will be used in order to define the range for the controller design in the
next section. They also describe a convex space in R, whose vertices are defined by

𝜐 , {𝜔 = (𝜔1, ... , 𝜔𝑗) : 𝜔𝑖 ∈ {𝜔, 𝜔}} (4.6)

Considering that the frequency values for the resonant matrices are limited by the
two bounds defined in (4.5), it is possible to define two bounds for the augmented system
matrices that depend on the frequency values. These two different augmented matrices
𝐴𝑎 and 𝐵𝑎 are defined using the structure in (4.3) and the limits defined in the polytope
(4.5).

In the lower limit, or when 𝜔 = 𝜔, the augmented matrices are defined as 𝐴𝑎

and 𝐵𝑎. On the other hand, in the higher limit, when 𝜔 = 𝜔, the augmented matrices
are defined as 𝐴𝑎 and 𝐵𝑎. These two matrices sets will be used for the controller design
presented in the following section.

4.2 Gain Scheduling via Linear Matrix Inequalities
Using the previously defined augmented matrices, constructed using the polytopes

describing the lower and the higher bounds of the resonant system frequencies, the feed-
back gains of the controller can be computed through the Lyapunov stability approach



Chapter 4. Resonant Gain Scheduling Controller 45

organized using LMIs in an optimization problem. The proposed control law takes the
form of a gain scheduling controller, and is defined as:

Definition 4.1. Gain Scheduling controller (BOYD, 1994): a state-feedback con-
troller whose parameters can depend on the system parameters.

In the present work, the controller is function of the parameter 𝜔, recalling that 𝜔

is the reference signal frequency value, obtained from the sinusoidal signals define by the
equations presented in Section 2.5. Therefore, the resonant gain scheduling control law is
defined as follows:

𝑢(𝑘) = (𝐾0 + 𝐾1𝜔)𝑥𝑎(𝑘), (4.7)

where 𝐾0 ∈ R𝑛 =
[︁
𝐾0𝑥 𝐾0𝑟

]︁
and 𝐾1 ∈ R𝑛 =

[︁
𝐾1𝑥 𝐾1𝑟

]︁
are the augmented feedback

gain vectors, composed by the system gains 𝐾0𝑥 and 𝐾1𝑥, and the resonant gains 𝐾0𝑟 and
𝐾1𝑟.

Making use of the control law (4.7) and the augmented matrices defined in the
frequency bounds (4.5), it is possible now to define a Theorem for the calculation of the
resonant gain scheduling feedback gains. This Theorem makes use of the polytopic repre-
sentation, and the control design becomes an optimization problem subject to constraints
in the form of Linear Matrix Inequalities. From convexity arguments, by assuring the sta-
bility of the system for the maximum and minimum values of 𝜔, one achieves the stability
for any 𝜔 ∈

[︁
𝜔, 𝜔

]︁
.

Theorem 4.1. Consider an augmented system in the form of (4.2) and its polytopic
representation (4.5). Suppose there exists a positive definite matrix 𝑄 ∈ R𝑛×𝑛 and a
matrix 𝑌 ∈ R𝑛×𝑛 such that following LMIs are satisfied at the vertices of the polytope
(4.6) ⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T

⋆ 𝑄

⎤⎦ > 0,

⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T

⋆ 𝑄

⎤⎦ > 0,

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T < 0,

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T < 0,

𝑄 > 0.

(4.8)
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Then, the system (4.2) under the control law (4.7), with

𝐿 =
⎡⎣−𝑟 𝑐

𝑐 −𝑟

⎤⎦ ,

𝑀 =
⎡⎣1 0
0 0

⎤⎦ ,

𝐾0 = 𝑌0𝑄
−1,

𝐾1 = 𝑌1𝑄
−1.

(4.9)

is asymptotically stable and the closed-loop poles are placed inside a disk with radius 𝑟

and with center at coordinates 𝑐.

Proof. In order to demonstrate the proof, two conditions are necessary. The condition
𝑉 (𝑥(𝑘)) > 0 holds from the assumption that 𝑃 > 0. For the second condition Δ𝑉 (𝑥(𝑘)) <

0, consider

Δ𝑉 (𝑥(𝑘)) = 𝑉 (𝑥(𝑘 + 1)) − 𝑉 ((𝑥(𝑘)) < 0

= 𝑥(𝑘 + 1)T𝑃𝑥(𝑘 + 1) − 𝑥(𝑘)T𝑇𝑃𝑥(𝑘) < 0
(4.10)

In closed loop, the augmented system (4.2) using the control law (4.7) takes the form of:

𝑥(𝑘 + 1) = (𝐴𝑎 + 𝐵𝑎(𝐾0 + 𝐾1𝜔))𝑥(𝑘). (4.11)

Substituting in (4.10), we have

((𝐴𝑎 + 𝐵𝑎(𝐾0 + 𝐾1𝜔)𝑥(𝑘))T𝑃 ((𝐴𝑎 + 𝐵𝑎(𝐾0 + 𝐾1𝜔)𝑥(𝑘)) − 𝑥(𝑘)T𝑃𝑥(𝑘) < 0,

which is equivalent to

(𝐴𝑎 + 𝐵𝑎(𝐾0 + 𝐾1𝜔)T𝑃 (𝐴𝑎 + 𝐵𝑎(𝐾0 + 𝐾1𝜔) − 𝑃 < 0. (4.12)

Making use of the Schur complement, defined in 2.1, we obtain:⎡⎣𝑃 (𝐴𝑎 + 𝐵𝑎𝐾0 + 𝐾1𝜔𝑖)T

⋆ 𝑃 −1

⎤⎦ > 0,

𝑃 > 0
(4.13)

Then, we may multiple both sides by a diagonal unit matrix 𝐼 ∈ R𝑛×𝑛, such that⎡⎣𝑄 0
0 𝐼𝑛×𝑛

⎤⎦ , (4.14)

where 𝑄 = 𝑃 −1, resulting in:⎡⎣𝑄 𝑄𝐴T
𝑎 + 𝑌 T

0 𝐵T
𝑎 + 𝑌 T

1 𝐵T
𝑎𝜔𝑖

⋆ 𝑄

⎤⎦ > 0,

𝑄 > 0
, (4.15)
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where 𝑌0 = 𝐾0𝑄 and 𝑌1 = 𝐾1𝑄. Considering the polytopic approach, it is possible now
to substitute 𝜔𝑖 by its vertices and their respective augmented matrices. By doing so, we
now have ⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T

⋆ 𝑄

⎤⎦ > 0,

⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T

⋆ 𝑄

⎤⎦ > 0,

𝑄 > 0

(4.16)

Recalling the D-stabilization structure defined in Equation (2.24), it may be adapted to
the augmented system (4.2), its polytopic representation (4.5) and the control law (4.7).
This results in the following equations:

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T < 0,

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T < 0,

(4.17)

where, considering a disk region with radius 𝑟 and center 𝑐 in the complex plane,

𝐿 =
⎡⎣−𝑟 𝑐

𝑐 −𝑟

⎤⎦ , 𝑀 =
⎡⎣1 0
0 0

⎤⎦ . (4.18)

Finally, adding (4.17) to (4.16), we now have:⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T

⋆ 𝑄

⎤⎦ > 0,

⎡⎣𝑄 (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T

⋆ 𝑄

⎤⎦ > 0,

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑖𝑛)T < 0,

𝐿 ⊗ 𝑄 + 𝑀 ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥) + 𝑀 T ⊗ (𝐴𝑎𝑄 + 𝐵𝑎𝑌0 + 𝐵𝑎𝑌1𝜔𝑚𝑎𝑥)T < 0,

𝑄 > 0
(4.19)

It is possible to see that (4.19) is equal to (4.8). Hence, the proof is complete.

Therefore, the resonant gain scheduling controller gains are obtained through the
solution of the optimization problem 4.1 that uses the polytopic representation of the
augmented system, which is defined by the system and the resonant system matrices, and
a specific region in the complex plane. Moreover, the control law makes direct use of the
frequency value in order to upgrade its action over the system.
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4.3 Final Structure
The final structure diagram of the system control loop is depicted in Figure 10,

where all the previous discussed strategies are represented as blocks, with 𝐾𝑟(𝜔) = 𝐾0𝑟 +
𝐾1𝑟𝜔 and 𝐾𝑥(𝜔) = 𝐾0𝑥 + 𝐾1𝑥𝜔. Note that this block diagram may be applied for both
horizontal axes of the AFM, only requiring the appropriate changes regarding each axes
particularities.

Figure 10 – Final structure of the proposed controller.

𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝐾𝑟(𝜔)
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𝑆𝑦𝑠𝑡𝑒𝑚
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−
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𝑢𝑓

𝑢𝐼𝐿𝐶

𝑢𝐹 𝐹

𝑒 𝑥𝑟 𝑢𝑟

𝑢𝑥

𝑢 𝑦

𝑥
𝑦

∙

∙
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∙

The diagram functioning can be describe as follows: first, the reference signal 𝑟𝑒𝑓

is compared to the system output measure 𝑦 using a subtraction. This operation generates
an error 𝑒, that becomes the input of the resonant system 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡. The resonant system
output is the resonant states, that are multiplied by their respective feedback gains 𝐾𝑟(𝜔),
generating the control input 𝑢𝑟.

The feedforward block 𝐹𝐹 (𝜔) multiplies the reference by the inverse of the system
gain, generating the control input 𝑢𝐹 𝐹 . This gain is obtained, considering the following
state-space model

𝑥(𝑘 + 1) =𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) =𝐶𝑥(𝑘)
(4.20)

where 𝑥 ∈ R𝑛 is the state vector, 𝑢(𝑘) ∈ R is the control input, and 𝐴, 𝐵 and 𝐶 are
definite and have appropriate dimensions, using the following equation (CHEN, 1999)

𝐹𝐹 (𝜔) = (−𝐶(𝐴 − 𝐼 + 𝐵𝐾𝑥(𝜔))−1𝐵)−1 (4.21)

where 𝐾𝑥(𝜔) ∈ R𝑛 is the feedback gain computed through the optimization problem
previously presented. By doing so, the feedforward block improves the tracking by com-
pensating the system gain.

After the first iteration, the Iterative Learning Control block 𝐼𝐿𝐶 starts to act,
improving the feedforward response using the previous batches input and error infor-
mation in order to generate the control input 𝑢𝐼𝐿𝐶 . The block 𝐼𝐿𝐶 represents the ILC
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structure shown in Figure 6, recalling that it has memory blocks in order to store the past
information about the error 𝑒 and the control input 𝑢𝐼𝐿𝐶 .

Despite the fact that the resonant gain scheduling controller is a discrete controller,
the present work applies it in order to perform the reference tracking in a continuous
system model. This procedure is done is order to simulate the control of a real system.
In this context, the Kalman Filter is applied to estimated the system states 𝑥, necessary
for the state-feedback structure, using the output measure 𝑦 of the system block 𝑆𝑦𝑠𝑡𝑒𝑚.
Therefore, the control input 𝑢𝑥 is generated by the multiplication of the feedback gain
𝐾𝑥(𝜔) with the states estimated by the Kalman Filter block 𝐾𝐹 .

As the resonant states are produced using an "artificial" resonant system, their
values are available during the entire simulation and need not be estimated. The block
𝐾𝐹 contains the Kalman Filter along with a discrete version of the AFM system, in order
to generate the estimated states necessary for its functioning according to Algorithm 1.

The summation of all the four different control inputs is 𝑢, which is the continuous
system input signal. One important remark is that the feedback gain varies according to
the reference frequency, so the closed-loop system gain must be upgraded at each sample
time in order that the feedforward controller operates correctly.

4.4 Final Considerations
This chapter presented the main contribution of the dissertation, the resonant gain

scheduling controller for spiral reference tracking. The feedback controller was designed
using a polytopic representation of the uncertain parameter and an augmented system
composed by the controlled and the resonant systems matrices. The controller gains are
obtained through an optimization problem structured using the Linear Matrix Inequalities
approach. The chapter concluded with a block diagram of the system final structure,
depicting and explaining the relation between the aforementioned resonant gain scheduling
controller and the other strategies presented in the work, such as the Kalman Filter and
the Iterative Learning Control.
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5 Simulations Results

In this chapter, the results obtained through simulations are presented. First, the
system used for the simulations is presented, being followed by its numerical representa-
tion. After, the reference signal used in the simulations is explained. In the sequence, a
comparative controller composed of a proportional-integral controller is detailed and its
parameters defined, being followed by the proposed controller parametrization.

Finally, the graphical results obtained are presented for the proportional-integral
controller, the resonant gain scheduling controller and its respective applications with the
Iterative Learning Control. The analysis on error reduction, ILC stability and errors and
control inputs signals are also presented. In the sequence, the section is concluded with
the numerical results of the simulation, which allow a further discussion in the controllers
performances.

5.1 Simulation parameters
The section presents the main information about the numerical simulations per-

formed in order to demonstrate the proposed resonant gain scheduling controller and the
Iterative Learning Control performance. First, it details the numerical model of a AFM
nanopositioner system used in the simulations. After, a new scanning reference pattern is
presented, based in the OPT pattern definitions.

Then a comparative proposed controller, composed of a proportional-integral con-
troller plus a feedforward and Iterative Learning Control structure, is presented, in order
to allow a performance comparison. The software used to perform the simulation was the
Matlab version 2011b. The LMIs programming was performed using the Yalmip toolbox
(LOFBERG, 2004), and they were solved using the semidefinite programming package
SDPT3 (TOH; TODD; TUTUNCU, 1999).

5.1.1 Microelectromechanical Systems

The Atomic Force Microscopes operation depends directly of its nanopositioning
system. This equipment is responsible for generating the microscope x-y-z scanning move-
ments necessary for the sample imaging. The most common nanopositioner used in AFM
applications is the piezoelectric tube, due its simple structure and low cost (YABLON,
2014). Basically, they consist in cylinders with four internal and external metal electrodes,
the latter divided into four quadrants. In order to generate movement, a voltage must be
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applied to one of the external electrodes, resulting in the bending of the tube, which is
translated into motion (TSUKRUK; SINGAMANENI, 2011).

Nevertheless, traditional piezoelectric tubes may present limitations like cross-
coupling between the axes and limited bandwidth (MAROUFI; MOHEIMANI, 2016). In
this context, the microelectromechanical systems (MEMS) nanopositioners received more
attention in recent researches. The MEMS is piezoelectric tube with advantages such that
high bandwidth, reduce footprints (smaller dimensions) and low fabricating costs for bulk
production (BAZAEI et al., 2016).

The numerical system used in the simulations is a model obtained from a two
degree of freedom (DOF) MEMS nanopositioner described in (MAROUFI; MOHEIMANI,
2016). In order to augment the system damping, the authors applied a damping controller
in the form of

𝐶(𝑠) = 5𝑠

𝑠 + 88000 , (5.1)

using an analogue circuit and applied in the MEMS system through a feedback loop.

The state-space continuous matrices that describe the linear time-invariant SISO
model of the damped nanopositioner, used for both axes simulations, are given by (BAZAEI;
MAROUFI; MOHEIMANI, 2017), with 𝐷𝑐 = 0:

𝐴𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5649 20677 −644 −2813 −5007
−20677 −20979 1503 12935 21177

644 1503 −170 −319611 −14364
−2813 −12935 319611 −4668 −9134
−5007 −21177 14364 −9134 −18127

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

90
104
−5
24
42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐶𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

89
−104

5
24
42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(5.2)

The discrete version of the system and all other discretizations along the work of
were obtained through the Tustin discretization method, using a sample time of 𝑇𝑠 =
20𝜇s1. The sample time value was chosen according to (ZIEGLER et al., 2017).

5.1.2 Repetitive Archimedean Spiral

In order to perform the simulations and analyze the controller performance, the
present work proposes the tracking of the so-called Repetitive Archimedean Spiral (RAS).
In this pattern, the previously presented OPT pattern is modified such as the generated
reference is composed of a closed path: when each of the spiral axes signals ends, they are
mirrored in such a way that the spiral returns to its center.

These spirals may be applied, for example, in the monitoring of living samples
through AFM, where a continuous image acquisition is necessary. In this context, the
1 During the simulations, the Tustin method demonstrated the best results for the LMIs procedures,

being chosen as the work method.
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Iterative Learning Control justifies its application, as the same reference pattern is con-
tinuously repeated over the iterations.

The RAS pattern uses the same procedures and parameters presented in the Back-
ground chapter for the OPT pattern. After generating spiral x and y components, their
signal are appropriately mirrored such that when combined, they generate a spiral with
a closed path. Figure 11 presents the RAS pattern used in the simulations of the next
sections. The RAS parameters are: radius 𝑅𝑠 = 1𝜇m, spiral total time 𝑇 = 0.0074𝑠,
switching time 𝑡*0 = 7.8 × 10−4𝑠, constant linear velocity 𝑣 = 0.00445𝑚/𝑠 and constant
angular velocity of 𝜔 = 6000𝜋.

Figure 11 – RAS pattern with 𝑅𝑠 = 1𝜇m, 𝑀 = 5 and 𝑃 = 1 × 10−7, and its respective
x and y axes components. The black lines represent first half of the pattern,
while the gray ones represent the last half.
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(a) RAS pattern with 𝑅𝑠 = 1𝜇m, 𝑀 = 5 and
𝑃 = 1 × 10−7.
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(b) RAS pattern x axis.
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(c) RAS pattern y axis.

Figure 12 presents the linear and angular velocities signals for the previous RAS
reference. It is possible to see that the angular velocity starts in a constant value switching
to a varying function after the switching time. On the other hand, the linear velocity varies
in the beginning of the spiral until the switching time, where it maintains a constant value.
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After half of the reference time, both velocity signals are mirrored, as defined by the RAS
pattern.

Figure 12 – RAS pattern angular and linear velocities signals.
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(a) Angular velocity.
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(b) Linear velocity.

5.1.3 Proportional-Integral Controller plus Iterative Learning Control

In order to perform a performance comparison, a proportional-integral (PI) con-
troller with feedforward will be also simulated along with the resonant gain scheduling
controller. Aiming to improve the text reading, from now on this controller will be refereed
only as proportional-integral controller. As the numerical system (5.2) is considered the
same for both axes, the control parameters further defined are also applied for both axes.

Commonly, atomic force microscopes operate in open-loop or with proportional-
integral controllers (BARÓ; REIFENBERGER, 2012; MEYER; HUG; BENNEWITZ,
2004). According to Habibullah, Pota e Petersen (2014a), the correct scanning of spiral
patterns is not possible in open-loop, as the amplitude dependent phase shifts may lead
to inaccurate tracking. Nevertheless, the PI controllers are a good cost/benefit option for
most applications (ŻAK, 2003), such as the AFM scanners (WU; ZOU; SU, 2009).

The continuous PI parallel structure is defined as (ŻAK, 2003):

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫︁ 𝑡

0
𝑒(𝜏)𝑑𝜏, (5.3)

where 𝐾𝑝 is the proportional gain, 𝐾𝑖 is the integral gain, and the error 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)
is obtained by the subtraction of the reference signal 𝑟(𝑡) and the output signal 𝑦(𝑡).

As the present work deals with discrete controllers, the PI must be represented
as a discrete function. Considering that 𝑢(0) = 0, a possible representation is given as
follows:

𝑢(𝑘) = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖𝑇𝑠

𝑁∑︁
𝑖=1

𝑒𝑖(𝑘). (5.4)
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In discrete time, the integral term becomes a summation, that accumulates the
error values over the 𝑁 samples, spaced by the sample time 𝑇𝑠. The PI parameters were
tuned maintaining a balance between bandwidth and phase margin, which resulted in
𝐾𝑝 = 1 and 𝐾𝑖 = 10000. The feedforward gain compensation is obtained using the
procedure of the resonant gain scheduling controller, with the exception that the system
does not have any state feedback gain.

The Iterative Learning Control was designed using the previously presented proce-
dure in section 3.2, where the learning function is designed such that 𝐿(𝑧) = (𝑆(𝑧)𝐺(𝑧))−1,
while the Q-filter 𝑄(𝑧) must assure the stability. First, the system transfer function was
obtained directly from the discrete representation of the system presented in (5.2), through
the relation 𝐺1(𝑧) = 𝐶(𝑧𝐼𝑛×𝑛 − 𝐴)−1𝐵 + 𝐷.

𝐺1(𝑧) = 0.01984𝑧5 + 0.0861𝑧4 + 0.1271𝑧3 + 0.06698𝑧2 − 0.006496𝑧 − 0.01264
𝑧5 − 0.4051𝑧4 − 0.7987𝑧3 + 0.08418𝑧2 + 0.8281𝑧 − 0.427 . (5.5)

For the PI controller, the transfer function was defined as the following transfer
function:

𝐶1(𝑧) = 1.1𝑧 − 0.9
𝑧 − 1 . (5.6)

The learning function 𝐿1(𝑧) = (𝐺1(𝑧)𝑆1(𝑧))−1, where 𝑆1(𝑧) = (1 + 𝐶1(𝑧)𝐺1(𝑧))−1,
was first defined as:

𝐿1(𝑧) = 𝑎(𝑧)
𝑏(𝑧) , (5.7)

where

𝑎(𝑧) =(𝑧 − 0.7215)(𝑧 − 0.8821)(𝑧2 − 1.319𝑧 + 0.5981)(𝑧2 − 1.413𝑧 + 0.7697)

(𝑧 − 0.6391)(𝑧2 + 1.636𝑧 + 0.9896)(𝑧2 + 1.634𝑧 + 0.9888)
(5.8)

and

𝑏(𝑧) =(𝑧 + 1.0002)(𝑧 − 1.0006)(𝑧 − 0.7215)(𝑧 − 0.3487)(𝑧2 − 1.319𝑧 + 0.5981)

(𝑧 + 1.911)(𝑧2 + 1.777𝑧 + 0.9563)(𝑧2 + 1.636𝑧 + 0.9896)
(5.9)

An analysis of the transfer function revealed that the denominator has unstable
poles at 1.0006, −1.911 and −1.0002. These unstable poles are removed from the filter
𝐿(𝑧), and, in order to maintain the transfer function causality, two fast poles are inserted
in −0.05 and −0.04. Finally, the learning function becomes:

𝐿1(𝑧) = 𝑎(𝑧)
𝑏(𝑧) , (5.10)

where

𝑎(𝑧) =(𝑧 − 0.7215)(𝑧 − 0.8821)(𝑧2 − 1.319𝑧 + 0.5981)(𝑧2 − 1.413𝑧 + 0.7697)

(𝑧 − 0.6391)(𝑧2 + 1.636𝑧 + 0.9896)(𝑧2 + 1.634𝑧 + 0.9888)
(5.11)
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and

𝑏(𝑧) =(𝑧 − 0.7215)(𝑧 − 0.3487)(𝑧 + 0.05)(𝑧 + 0.04)(𝑧2 − 1.319𝑧 + 0.5981)

(𝑧 − 0.3487)(𝑧2 + 1.777𝑧 + 0.9563)(𝑧2 + 1.636𝑧 + 0.9896)
(5.12)

In order to respect the ILC stability condition, a low-pass filter was designed with
cut-off frequency of 6 × 104 rad/s. Its discrete transfer function is given by

𝑄1(𝑧) = 0.375𝑧 + 0.375
𝑧 − 0.25 . (5.13)

Recalling the ILC properties from Theorem 3.3, stability is guaranteed if |𝑄2(𝑧)(1−
𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧))|< 1. This condition can be better visualized using a Bode diagram,
where it is equivalent to the magnitude does not pass the 0 dB level (BOEREN et al.,
2016). Figure 13 shows the Bode magnitude response for three different functions: the con-
dition |1−𝐺1(𝑧)𝑆1(𝑧)𝐿1(𝑧)|, the Q-Filter and their combination |𝑄1(1−𝐺1(𝑧)𝑆1(𝑧)𝐿1(𝑧))|.
It is possible to see that the condition from Theorem 3.3 is respected, as the magnitude
signal is always lower than 0 dB, i.e., lower than one.

Figure 13 – PI plus ILC controller bode magnitude responses of: the designed Q-Filter
𝑄1(𝑧), (1 − 𝐺1(𝑧)𝑆1(𝑧)𝐿1(𝑧)) and (𝑄1(1 − 𝐺1(𝑧)𝑆1(𝑧)𝐿1(𝑧))).
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5.1.4 Resonant Gain Scheduling plus Iterative Learning Control parameters

The Kalman Filter matrices that represent the system and sensors uncertainties
and the states initial estimation covariance, are given, respectively, by ℛ = 𝐼5×5, 𝒬 =
1 and Σ = 𝐼5×5. The feedback gains for the resonant gain scheduling controller were
computed using the procedure detailed in Chapter 4. According to the RAS reference
parameters previously defined, the frequency set is defined by equation (5.14).

𝜔 ∈
[︁
𝜔 = 4457.2 𝑟𝑎𝑑

𝑠
, 𝜔 = 6000𝜋 𝑟𝑎𝑑

𝑠

]︁
, (5.14)
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The main parameters were the discretized version of the system (5.2), the RAS
reference frequency set (5.14) and the D-stabilization disk region with radius 0.96 and the
center in the complex plane origin. The gains are given by equation (5.15). Recalling that
the numerical system, defined in (5.2) is used for both axes, the same control parameters
will also be applied in both axes.

𝐾0 =
[︁
−0.02012 0.00422 −0.00158 −0.00425 0.00056 3.58858 3.79579

]︁
𝐾1 = 10−4 ×

[︁
−0.00208 0.00075 0.00072 0.00044 −0.00015 −0.14602 1.07701

]︁
(5.15)

In order to present the ILC parameters, first it is necessary to present the sys-
tem closed-loop and the controller transfer functions. They are defined for the highest
frequency case, i.e. 𝜔 = 𝜔. Using the system presented in (5.2) and the feedback gains
presented in (5.15), the closed-loop discrete transfer function 𝐺2(𝑧) = 𝐶(𝑧𝐼𝑛×𝑛 − 𝐴 +
𝐵(𝐾0𝑥 + 𝐾1𝑥𝜔))−1𝐵 + 𝐷 was defined as

𝐺2(𝑧) = 0.01984𝑧5 + 0.08658𝑧4 + 0.127𝑧3 + 0.06699𝑧2 − 0.006428𝑧 − 0.01265
𝑧5 − 0.381𝑧4 − 0.8043𝑧3 + 0.0844𝑧2 + 0.8315𝑧 − 0.4276 . (5.16)

As presented in the Resonant Gain Scheduling chapter, the controller gains also
affects the resonant system. Therefore, using the schematic of Chapter 4, it is possible to
see that the controller 𝐶(𝑧), for 𝜔, is given by

𝐶2(𝑧) = 𝐶𝑟(𝐴𝑟 + 𝐵𝑟(𝐾0𝑟 + 𝐾1𝑟𝜔))−1𝐵𝑟 = 10−5 × (0.182𝑧2 − 0.7698𝑧 + 1.096)
𝑧2 − 8.092𝑧 + 6.023 . (5.17)

The learning function of the ILC controller was designed as 𝐿2(𝑧) = (𝐺2(𝑧)𝑆2(𝑧))−1,
recalling that 𝑆2(𝑧) = (1 + 𝐺2(𝑧)𝐶2(𝑧))−1. Using the previous transfer functions, the fol-
lowing learning function was designed:

𝐿2(𝑧) = 𝑐(𝑧)
𝑑(𝑧) , (5.18)

where

𝑐(𝑧) =(𝑧 − 0.8293)(𝑧 − 0.7077)2(𝑧2 − 1.321𝑧 + 0.6053)2

(𝑧 − 7.263)(𝑧2 + 1.648𝑧 + 0.9981)2
(5.19)

and

𝑑(𝑧) =(𝑧 − 7.263)(𝑧 + 2.035)(𝑧 + 0.9156)(𝑧 − 0.8293)(𝑧 − 0.7077)(𝑧 − 0.3485)

(𝑧2 − 1.321𝑧 + 0.6053)(𝑧2 + 1.761𝑧 + 0.982)(𝑧2 + 1.648𝑧 + 0.9981)
(5.20)

An analysis of the transfer function denominator reveals that there are unstable
poles at 7.263 and −2.035 and an unstable zero at 7.263. In order to keep the filter stable
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and causal, the unstable poles and zero are removed from the filter and a fast pole is
inserted in −0.05. With these modifications, the learning function now becomes:

𝐿2(𝑧) = 𝑐(𝑧)
𝑑(𝑧) , (5.21)

where

𝑐(𝑧) = (𝑧 − 0.9991)4(𝑧 − 0.8293)(𝑧 − 0.778)4(𝑧 − 0.7077)2 (5.22)

and

𝑑(𝑧) =(𝑧 − 0.9156)(𝑧 − 0.9909)2(𝑧 − 0.9991)2(𝑧 − 0.8293)

(𝑧 − 0.7077)(𝑧 − 0.3485)(𝑧 + 0.05)(𝑧 − 0.778)2
(5.23)

A low-pass filter, with cut-off frequency of 4 × 104 rad/s, was designed in order to
respect the stability condition for the ILC. The filter transfer function is defined as

𝑄2(𝑧) = 0.2857𝑧 + 0.2857
𝑧 − 0.4286 . (5.24)

Similarly as presented for the PI controller, Figure 14 shows the Bode magnitude
response for three different functions: the condition |1 − 𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧)|, the Q-Filter
and their combination |𝑄2(1 − 𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧))|. According to Theorem 3.3, stability
is guaranteed, as the condition |𝑄2(𝑧)(1 − 𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧))|< 1 is satisfied using the
designed Q-filter.

Figure 14 – Resonant Gain Scheduling plus ILC controller bode magnitude responses
of: the designed Q-Filter 𝑄2(𝑧), (1 − 𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧)) and (𝑄2(1 −
𝐺2(𝑧)𝑆2(𝑧)𝐿2(𝑧))).
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5.2 Proportional-Integral Controller Results
This section presents the graphical results obtained by the simulation of the pre-

sented numerical model and the RAS reference using the proportional-integral controller.
Figure 15 presents the output and input responses, of both axes, for the proportional-
integral controller. The controller was not able to achieve a satisfactory tracking of the
sinusoidal reference, which generated a visible magnitude error in the output signal.

Figure 15 – RAS x and y axes output and input responses for the proportional-integral
controller. The vertical lines represent the switching times.
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(a) X axis reference and output responses.

0 0.005 0.01 0.015
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−6

Time [seconds]

Y
a
x
is
[m

et
er
s]

 

 

Reference
Output 1

(b) Y axis reference and output responses.
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(c) X axis input response.
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(d) Y axis input response.

The error signals from each one of the spiral components are depicted in Figure
16, along side with the respective generated spiral. In order to make the plots cleaner,
from now on only half of the RAS pattern is depicted. As expected from its components,
the spiral presents a poor tracking in the center (beginning) of the signal. Although the
reference tracking looks correct after half of the graphic radius, actually the output has
a loop phase lag, generated in the center. This fact created the difference between the
reference and the output in the periphery (half) of the spiral.
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Figure 16 – RAS error signals for both axes and spiral response for the proportional-
integral controller.
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(a) X axis error signal.
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(b) Y axis error signal.
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(c) RAS spiral reference an output responses,
between ±1.1𝜇, for the proportional-integral
controller. The black point represents the
frequency switching time.

5.3 Proportional-Integral Controller plus Iterative Learning Control
Results
Now, the results regarding the addition of the Iterative Learning Control to the

proportional-integral controller are presented. In Figure 17 the output responses for both
RAS pattern axes, along side with its respective control inputs are depicted. The presented
graphics correspond to the last iteration outputs and control inputs computed after 120
iterations. It is possible to see that the ILC improved the signals tracking, reducing the
previous magnitude error.

The ILC effect on the tracking can be better visualized in Figure 18, where the
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Figure 17 – RAS x and y axes output and input responses for the proportional-integral
plus Iterative Learning Control controller (last iteration). The vertical lines
represent the switching times.
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(a) X axis reference and output responses.
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(b) Y axis reference and output responses.
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(c) X axis input response.
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(d) Y axis input response.

error signals for both axes are presented for the first and last iteration. The spiral response
generated by the last iteration is also depicted. As expected, the ILC was able to reduce
the tracking error, improving the control performance in general. While the spiral response
still has a phase lag, it is smaller than without the ILC addition.

Another important result is the ILC error behavior along the performed iterations.
As the reference is repeatedly applied, it is expected that the error decreases over the
batch with stable dynamics, as proposed in the ILC design. The 𝑟𝑚𝑠 tracking error in
each iteration, i.e. 𝐸𝑟𝑚𝑠, is computed using the following equation

𝐸𝑟𝑚𝑠 =
√︃∑︀𝑁

𝑖=1(r𝑖 − y𝑖)2

𝑁
, (5.25)

where r is the reference signal vector, y is the output vector, and 𝑁 = 𝑇/𝑇𝑠 is the number
of samples.
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Figure 18 – RAS error signals for both axes and spiral response for the proportional-
integral controller plus Iterative Learning Control.

0 0.005 0.01 0.015
−3

−2

−1

0

1

2

3
x 10

−7

Time [seconds]

X
a
x
is
E
rr
o
r
[m

et
er
s]

 

 

First iteration error
Last iteration error

(a) X axis error signal for the first and last iter-
ation.
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(b) Y axis error signal for the first and last iter-
ation.
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(c) RAS spiral reference and output responses,
between ±1.1𝜇, for the comparative con-
troller plus Iterative Learning Control (last
iteration). The black point represents the
frequency switching time.

In Figure 19 the 𝑟𝑚𝑠 error evolution over the iterations is presented for both axes.
Just as expected from the ILC design, the error presents a stable dynamics, achieving a
constant value after 100 iterations.
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Figure 19 – RAS x and y axes 𝑟𝑚𝑠 errors over the iterations for the proportional-integral
controller plus Iterative Learning Control.
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(a) X axis 𝑟𝑚𝑠 error over the iterations.
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(b) Y axis 𝑟𝑚𝑠 error over the iterations.

5.4 Resonant Gain Scheduling Controller Results
Now, the graphical results regarding the main contribution of this work, i.e. the

resonant gain scheduling controller, are presented. In Figure 20, the output and input
responses for both x and y axes are depicted. As it is possible to see, the proposed
controller was able to achieve satisfactory results for the RAS pattern tracking. Analysing
the control input signals, it is notable that the resonant controller does not require larger
control efforts than the proportional-integral controller.

Figure 21 presents the error signals for both axes and the spiral response. It is
possible to see that the errors are smaller than the ones obtained with the proportional-
integral controller. The spiral center is a critical part of the tracking, as the higher angular
velocity values are located there. The proportional-integral controller is not able to deal
with this high speed transitions. On the other hand, the resonant controller is capable of
following the sinusoidal signal, as it takes the signal frequency in consideration.



Chapter 5. Simulations Results 63

Figure 20 – RAS x and y axes output and input responses for the resonant gain scheduling
controller. The vertical lines represent the switching times.
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(a) X axis reference and output responses.
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(b) Y axis reference and output responses.
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(c) X axis input response.
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(d) Y axis input response.
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Figure 21 – RAS error signals for both axes and spiral response for the resonant gain
scheduling controller.
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(a) X axis error signal.
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(b) Y axis error signal.
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(c) RAS spiral reference and output responses,
between ±1.1𝜇, for the resonant gain
scheduling controller. The black point rep-
resents the frequency switching time.
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5.5 Error reduction through the attenuation of non-smooth areas
When the RAS signal is generated, a small non-smooth area is created in the

point where the spiral is mirrored. As the proposed controller makes use of the sinusoidal
dynamics of the reference, any rough area may degrade the controller performance. This
behavior can be observed in Figure 21, where the x and y axes errors graphics depict two
areas with peaks in the signal due to this non-smooth area.

A possible solution is to filter the reference signal in order to eliminate any irregular
sections of the signal. Although this procedure may reduce the problem, the filter must
be projected such that the reference does not lose its interesting properties.

In order to exemplify the idea, two different low-pass filters will be applied to the
previously used reference. The first one, 𝐹𝐵1, has a cut-off frequency of 1 × 105 rad/s and
the second one, 𝐹𝐵2, 1 × 104 rad/s. The respective transfer functions are given by

𝐹𝐵1(𝑧) = 0.5𝑧 + 0.5
𝑧

𝐹𝐵2(𝑧) = 0.09091𝑧 + 0.09091
𝑧 − 0.8182

(5.26)

Figure 22 presents a comparison between of the Y axis error graphics generated
by the reference filtered by 𝐹𝐵1 and 𝐹𝐵2. As it is possible to see, the filters helped to
achieve smaller errors than the original one, depicted in Figure 21b. The more aggressive
the filter, i.e. the more frequencies attenuated, the more reduced was the peak at half of
the signal.

Nevertheless, if the filter is too aggressive, it may affect frequency components that
are necessary in order to form the sinusoid signal, such that the spiral radius and loops
are not respected any more. Figure 23 presents the attenuated spirals, generated after the
filtering generated by the functions 𝐹𝐵1 and 𝐹𝐵2, compared to the original RAS pattern.
As expected, the attenuation of the filter 𝐹𝐵2 degraded the spiral dynamics more than
the filter 𝐹𝐵1.
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Figure 22 – Y axis error comparison for different filtered references.
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(a) References for the y axis filtered by 𝐹𝐵1.
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(b) Error for the y axis reference filtered by 𝐹𝐵1.
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(c) Reference for the y axis filtered by 𝐹𝐵2.
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(d) Error for the y axis reference filtered by 𝐹𝐵2.

Figure 23 – Effect of the filtering over the spirals for tracking error attenuation.
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(a) Spiral generated after its components being
filtered by 𝐹𝐵1.
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(b) Spiral generated after its components being
filtered by 𝐹𝐵2.
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5.6 Resonant Gain Scheduling Controller plus Iterative Learning
Control Results
This section presents the graphical results for the proposed resonant gain schedul-

ing controller with the Iterative Learning Control addition. Figure 24 depicts the output
and input responses, of both axes, for the proposed controller with ILC after 300 itera-
tions. As the error already was small, the ILC was not able to improve significantly the
tracking results.

Figure 24 – RAS x and y axes output and input responses for the resonant gain scheduling
controller plus the Iterative Learning Control (last iteration). The vertical
lines represent the switching times.
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(a) X axis reference and output responses.

0 0.005 0.01 0.015
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−6

Time [seconds]

Y
a
x
is
[m

et
er
s]

 

 

Reference
Output 1

(b) Y axis reference and output responses.
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(c) X axis input response.
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(d) Y axis input response.

Figure 25 presents the error signals, of both x and y axes, for the first and last
iterations, along side with the spiral response for the last iteration. It is possible to see a
small performance improvement with the ILC addition. As the resonant gain scheduling
already had good performance, the ILC was not able to achieve greater improvement.

In Figure 26 the 𝑟𝑚𝑠 error evolution over the iterations is depicted. These results
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Figure 25 – RAS error signals for both axes and spiral response for the resonant gain
scheduling controller plus the Iterative Learning Control.
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(a) X axis error signal for the first and last iter-
ation.
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(b) Y axis error signal for the first and last iter-
ation.
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(c) RAS spiral reference and output responses,
between ±1.1𝜇, for the proposed controller
plus Iterative Learning Control (last itera-
tion). The black point represents the fre-
quency switching time.

are important in order to show that the ILC is able to achieve a stable behavior and
converge to a constant error value. The 𝑟𝑚𝑠 tracking error, i.e. 𝐸𝑟𝑚𝑠, was computed using
the equation (5.25).

As the resonant gain scheduling controller is more complex than the proportional-
integral one, the ILC required more iterations in order to achieve a constant error value.
Although the errors dynamics are more erratic than the ones found in the comparative
controller, they proved to converge after approximately 260 iterations.
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Figure 26 – RAS x and y axes 𝑟𝑚𝑠 error over the iterations for the resonant gain schedul-
ing controller.
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(a) X axis 𝑟𝑚𝑠 error over the iterations.

0 50 100 150 200 250 300
1.495

1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54
x 10

−9

Iteration

Y
a
x
is
E
r
r
o
r

(b) Y axis 𝑟𝑚𝑠 error over the iterations.

5.7 Performance for Higher Velocity
In order to further demonstrate the resonant gain scheduling controller perfor-

mance, a simulation was performed for a reference with higher velocity values. Now, the
RAS pattern is given by the following parameters: radius 𝑅𝑠 = 1𝜇m, spiral total time
𝑇 = 0.00148𝑠, switching time 𝑡*0 = 1.55 × 10−4𝑠, constant linear velocity 𝑣 = 0.0223𝑚/𝑠

and constant angular velocity of 𝜔 = 15000𝜋. This value is two times higher than the
reference pattern used in Bazaei, Maroufi e Moheimani (2017), that is the only work
regarding the control of the OPT pattern (ZIEGLER et al., 2017).

Figure 27 presents the output responses, for the previously defined spiral, for both
the PI and the resonant gain scheduling controllers. As it is possible to see, the faster
RAS pattern reduced the tracking performance of both controllers, as the frequency values
become too higher in order to be properly tracked. Nevertheless, the proposed controller
is still able to deliver a better response than the proportional-integral controller, with the
main drawback localized at the center of the spiral.
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Figure 27 – RAS spiral reference and output responses, between ±1.1𝜇, for a higher veloc-
ity with both controllers. The black point represents the frequency switching
time.
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(a) RAS spiral reference and output responses
for the resonant gain scheduling controller.
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(b) RAS spiral reference and output responses
for the proportional-integral controller.

5.8 Final Considerations
This chapter presented the main results obtained by this dissertation proposal:

the resonant gain scheduling controller. In order to stablish a performance comparison
with the resonant gain scheduling controller, a proportional-integral controller, usual in
Atomic Force Microscopes equipment, was also presented. Both controllers also received
the addition of an Iterative Learning Control in order to improve the tracking performance.
The results demonstrate the proposed controller superior performance in comparison to
the comparative techniques.

So as to quantify the graphical results previously presented, the 𝑟𝑚𝑠 values of the
tracking errors of the RAS pattern were computed. The 𝑟𝑚𝑠 tracking error 𝐸𝑟𝑚𝑠 was
computed using the equation (5.25). For the complete spiral case, the error 𝐸𝑟𝑚𝑠 was
computed using the following equation

𝐸𝑟𝑚𝑠 =
√︃∑︀𝑁

𝑖=1((rx𝑖 − yx𝑖)2 + (ry𝑖 − yy𝑖)2)
𝑁

, (5.27)

where rx, ry, yx and yy are the reference and output signals vectors for the x and y
axes, respectively.

The numerical results for the controllers regarding the RAS pattern are presented
in Table 1. As it is possible to see, the proposed resonant gain scheduling controller
achieved better results in comparison the comparative proportional-integral controller. It
is important to notice that the ILC addition improved the performance of both strategies,
mainly in the comparative one.
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Table 1 – RMS error values for the RAS pattern of both controllers.

Proposed Controller Comparative Controller
𝐸𝑟𝑚𝑠(×10−8) 𝐸𝑟𝑚𝑠(×10−8)

Without ILC 0.2315 15.93
With ILC (last iteration) 0.2295 12.52

Table 2 presents the numerical results for the components of the RAS pattern,
detailing the 𝑟𝑚𝑠 error for both the x and y axes and their respective control inputs. The
input signal 𝑢𝑟𝑚𝑠 was computed using a similar procedure that the 𝑟𝑚𝑠 error.

Table 2 – RMS error and input (×10−7) values for the RAS pattern of both controllers
for the x and y axes.

Axes Proposed Controller Comparative Controller
𝐸𝑟𝑚𝑠 (×10−8) 𝑢𝑟𝑚𝑠 𝐸𝑟𝑚𝑠(×10−8) 𝑢𝑟𝑚𝑠

Without ILC x 0.13776 4.2458 10.146 4.9385
y 0.15318 4.2399 10.138 4.9289

With ILC x 0.13741 4.2454 7.9750 4.8914
(last iteration) y 0.15116 4.2404 7.9760 4.8871

It is notable that the smaller 𝑟𝑚𝑠 error values of the proposed resonant gain
scheduling controller do not require bigger control inputs when compared to the proportional-
integral controller. This is due to the proposed controller property of using the signal
frequency dynamics into consideration for the input calculation.

Finally, the ILC control input two-norm convergence, as stated in Theorem 3.3, is
presented in Figure 28 for the x axis. The y axis signals are very similar to the x axis ones.
As it is possible to see, both controllers achieved the convergence stated in the Theorem.

Figure 28 – Two-norm of the ILC control input signals for the proportional-integral and
the resonant gain scheduling controllers for the x axis.
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(a) Proportional-integral controller ILC control
input two-norm.
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(b) Resonant gain scheduling controller ILC
control input two-norm.
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6 Conclusions

This dissertation proposed a control structure in order to perform the tracking of
frequency and amplitude-varying sinusoidal signals. These signals can be used in order
to generate spiral patterns, which are reference signals used in different relevant appli-
cations, such as the Atomic Force Microscopy. In order to consider the variability in the
reference parameters, which makes the direct application of the Internal Model Principle
not suitable, the dissertation used a robust control strategy in an augmented framework.
The system model and the reference parameters were structured as Linear Matrix In-
equalities, which were solved as optimization problems.

In order to improve the tracking performance, the work also used feedforward con-
trol strategies, namely the system gain compensation and the Iterative Learning Control.
Moreover, a Kalman Filter was designed so as to simulate the controller application in a
real system, where only the output could be measured and the system states, necessary
for the feedback controller, needed to be estimated. The proposed controller performance
was compared to a proportional-integral controller, commonly found in atomic force mi-
croscopes, with a feedforward gain compensation and an Iterative Learning controller,
projected in a similar way to the proposed controller.

In order to perform the simulations, a new scanning pattern, called Repetitive
Arquimedean Spiral, was proposed. It consists, basically, in a mirrored version of the
Optimal Archimedean Spiral, where now the spiral consists in a closed path. This pattern
can be used in applications where the continuous scanning of the sample is necessary,
such as in a video recording, where the spiral must be able to start and end in the same
point using a smooth dynamic. As the scanning pattern is repeated multiple times, the
Iterative Learning Control strategy was a suitable option.

A set of simulations were performed in order to demonstrate the performance of
the proposed resonant gain scheduling controller. The graphical and numerical results
demonstrated that the proposed controller obtained good results, being able to achieve
satisfactory reference tracking. This is due to the resonant gain scheduling controller
capacity of using the knowledge of the frequency value at each sample time. On the other
hand, the proportional-integral controller is not adequate to perform this task, which
generated inferior results. Although the proposed controller achieved better performance,
it did no require bigger control efforts than the comparative one.

As expected, the Iterative Learning Control addition to both controllers improved
the tracking performance, considering that the same scanning pattern must be tracked
multiple times. The improvement could better be visualized for the proportional-integral
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controller rather than the resonant gain scheduling controller. As the proposed controller
already have a small tracking error, the comparative controller could benefit further by
the ILC structure.

In conclusion, the dissertation objective was accomplished with the resonant gain
scheduling controller. Different control strategies were presented, all of them studied in
order to achieve satisfactory tracking of amplitude and frequency-varying sinusoidal sig-
nals. The numerical simulations, using a numerical model of a real system, demonstrated
the dissertation ideas and procedures relevance.

6.1 Future Work Perspectives
For future works, the main perspective is the validation of the presented control

structure in a real application. Besides the focus on Atomic Force Microscopes, which were
the focus of the dissertation, there are other applications where this work may be suitable.
It is possible to cite some examples as the Fiber Scanners (LEE et al., 2010), applied in
the medical area in order to perform internal body imaging, and the Pico-Projectors
(SCHOWENGERDT et al., 2009), used in modern smartphones and computers for image
projecting and scanning.

Besides the satisfactory results presented in the dissertation, the Internal Model
Principle stability guarantee is lost due to the reference time-varying properties. Never-
theless, the IMP has different application approaches that can be more suitable for the
work problem. One example is the work presented by Isidori e Byrnes (1990), which uses
a different approach of the Internal Model Principle. In order to give the main idea about
this approach, let us consider the following differential equations:

𝑥̇ =𝑓(𝑥, 𝑢) (6.1a)

𝑤̇ =𝑠(𝑤), (6.1b)

where the first equation describes a system with states 𝑥 ∈ R𝑛 and input 𝑢 ∈ R𝑚, and the
second one regards the reference signal, now generated by a so-called exosystem 𝑤 ∈ R.

According to Chen e Huang (2015), it is possible to design a control law that ren-
ders the system (6.1a) capable of tracking (6.1b), based on the existence of a determinate
invariant manifold where the trajectories of the error will converge to zero as time tends
to infinity. If there is such set, then a control law (ISIDORI; BYRNES, 1990)

𝑢(𝑤) =𝐶(𝑤) + 𝐾𝑒(𝑤), (6.2)

is able to render the manifold invariant, which is achieved by the 𝐶(𝑤) term, and able
to annihilate the tracking error 𝑒 = (𝑥 − 𝜋(𝑤)). The term 𝜋(𝑤) is a mapping of 𝑥 that
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satisfies (ISIDORI; BYRNES, 1990)

𝜕𝜋

𝜕𝑤
𝑠(𝑤) = 𝑓(𝜋(𝑤), 𝑢(𝑤)), (6.3)

where 𝑓(𝜋(𝑤), 𝑢(𝑤)) is the augmented system, such as proposed by the original IMP.

The presented ideas are suitable for the OPT spiral problem, if we consider that the
amplitude and frequency-varying sinusoidal signals are references that can be represented
as appropriate exosystems.

A further study on the feedforward control strategies, such as the reviewed Iter-
ative Learning Control, is also an interesting point. Considering the present dissertation
application, where the Atomic Force Microscopy scanners may perform tasks multiple
times with the same scanning pattern, the Iterative Learning Control emerges as a suit-
able option. The simulation results demonstrated the control strategy potential in the
performance increasing of spiral patterns tracking. For future works, a further study on
the design of the Q-filter and the learning function is suggested, as these structures are
the main parts of the Iterative Learning Control and can be designed using different ap-
proaches. For example, one may suggest an ILC design through an optimization problem
structured using LMIs, such as the one used in the Resonant Gain Scheduling controller
design.
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