

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

Advisor: Prof. Dr. Alexandre de Morais Amory

Porto Alegre

2015

Fault Supervision for

Multi Robotics Systems

Felipe de Fraga Roman

Submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science

at Pontifícia Universidade Católica do

Rio Grande do Sul.

Dados Internacionais de Catalogação na Publicação (CIP)

R758f Roman, Felipe de Fraga

Fault supervision for multi robotics systems / Felipe de Fraga Roman.
– Porto Alegre, 2015.

79 p.

Diss. (Mestrado) – Fac. de Informática, PUCRS.
Orientador: Prof. Dr. Alexandre de Morais Amory.

1. Informática. 2. Robótica. 4. Tolerância a Falhas

(Informática). I. Amory, Alexandre de Morais. II. Título.

CDD 004.36

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

 FAULT SUPERVISION FOR MULTI ROBOTICS SYSTEMS

ABSTRACT

As robotics becomes more common and people start to use it in routine tasks,

dependability becomes more and more relevant to create trustworthy solutions. A

commonly used approach to provide reliability and availability is the use of multi robots

instead of a single robot. However, in case of a large teams of robots (tens or more),

determining the system status can be a challenge.

This work presents a runtime monitoring solution for Multi Robotic Systems. It

integrates Nagios IT Monitoring tool and ROS robotic middleware. One of the potential

advantages of this approach is that the use of a consolidated IT infrastructure tool enables

the reuse of several relevant features developed to monitor large datacenters. Another

important advantage of that this solution does not require additional software at the robot

side.

The experimental results demonstrate that the proposed monitoring system has a

small performance impact on the robot and the monitoring server can easily support

hundreds or even thousands of monitored robots.

Keywords

Multi robot system, fault monitoring.

 SUPERVISÃO DE FALHAS PARA SISTEMAS MULTI-ROBÔS

RESUMO

À medida que a robótica se torna mais comum e as pessoas começam a utilizá-la

em suas tarefas de rotina, dependabilidade torna-se cada vez mais importante para a

construção de uma solução digna de confiança. Uma abordagem comum de prover

confiabilidade e disponibilidade é o uso de multi robôs ao invés de um único robô devido a

sua redundância intrísica. Entretanto, no caso de um grande time de robôs (dezenas ou

mais), uma tarefa aparentemente simples como a determinação do status do sistema pode

se tornar um desafio.

Este trabalho apresenta uma ferramenta de monitoramento de sistemas multi robôs

em tempo de execução. Esta solução integra a ferramenta de monitoramento de TI Nagios

com o middleware robótico ROS sem a necessidade de instalação de software adicional no

robô. O uso de uma ferramenta de TI consolidada permite o reuso de diversas

funcionalidades relevantes já empregadas amplamente no monitoramento de datacenters.

Os resultados experimentais demonstram que a solução proposta tem um baixo

impacto no desempenho do robô e o servidor de monitoramento pode facilmente monitorar

centenas ou até milhares de robôs ao mesmo tempo.

Palavras-chave:

Sistemas multi robôs, monitoramento de falhas.

LIST OF FIGURES

Figure 1 - Agent interaction with the environment [RHB2007] 20

Figure 2 - The dependability concepts [BLU2004] ... 21

Figure 3 - A fault taxonomy [AAV2001] .. 22

Figure 4 - Means - Fault remove techniques [BLU2004] .. 23

Figure 5 – Fault Tolerance Techniques [AAV2004].. 24

Figure 6 – Overview of the RoSHA architecture [RSH2013] 31

Figure 7 – Nagios allows different tests methods [NAG2005] 35

Figure 8 – Nagios executing a remote check using NRPE [NAG2005] 37

Figure 9 – Nagios Notification System overview [NAG2005] 37

Figure 10 – Distributed monitoring with Nagios [NAG2005] 38

Figure 11 - Middleware layer [ELK2012] .. 39

Figure 12 – RQT Monitor main Window [ROD2014] .. 43

Figure 13 – RQT Monitor status viewers [ROD2014] ... 43

Figure 14 – Turtlebot Kobuki [KBK2013] .. 44

Figure 15 - Software Architecture .. 47

Figure 16 – Nagios monitoring a host status .. 49

Figure 17 – Schematic view of the Server scalability experiment. 50

Figure 18 – RQT Screenshot of the Simulator running on a Virtual Machine 53

Figure 19 - Nagios web Portal .. 56

Figure 20 – CPU load (a) memory load (b) and network bandwidth (c) used at the

monitoring server as the number of virtual robots increases .. 61

Figure 21 – CPU load (a) memory load (b) and network bandwidth (c) used at the

monitored robot .. 62

LIST OF TABLES

Table 1 - Database server table vms structure .. 56

Table 2 - Database server table statuses structure .. 57

Table 3 - CPU load (a) memory load (b) and network bandwidth (c) at the real robot

with the monitoring on (every 5 min) and off ... 63

LIST OF LISTING

Listing 1 – Nagios example checking remote TCP port [NAG2005] 35

Listing 2 – Nagios simple plugin source code example [NAG2005] 36

Listing 3 – ROS Message type format.. 40

Listing 4 – ROS Server message format .. 41

Listing 5 – ROS Diagnostic Status message format .. 42

Listing 6 – Kobuki diagnostic raw data ... 45

Listing 7 – ROS Diagnostic plugin syntax .. 47

Listing 8 - ROS Diagnostic plugin output .. 48

Listing 9 - ROS Diagnostic plugin monitoring only Battery 48

Listing 10 – Nagios define host syntax ... 49

Listing 11 – Virtual robot configuration parameters .. 51

Listing 12 – ROS Diagnostic aggregator diagnostics.yaml configuration 52

Listing 13 – ROS laucher file syntax .. 52

Listing 14- Nagios host configuration file example ... 54

Listing 15 – Nagios automated configuration hosts .. 55

Listing 16 – Generated /etc/hostname file .. 58

Listing 17 – Generated Nagios host configuration file .. 58

Listing 18 – Nagios instalation command on Ubuntu ... 71

Listing 19 – Nagios set administrator password ... 71

Listing 20 – Start Nagios service .. 71

Listing 21 – Configure ROS environment ... 72

Listing 22 – ROS create workspace ... 72

Listing 23 – Kobuki Turtlebot installation steps .. 72

Listing 24 – Steps to run Kobuki Turtlebot ... 72

Listing 25 - ROS Diagnostics Nagios plugin source code .. 75

Listing 26 – Virtual Robot source code... 79

LIST OF ABBREVIATIONS AND ACRONYMS

API – Application Protocol Interface

CLI - Command Line Interface

DCIM - Data Center Infrastructure Management

GUI – Graphic User Interface

HTTP - Hypertext Transfer Protocol

MRS - Multiple Robots Systems

NRPE - Nagios Remote Plug-in Executor

PUCRS – Pontifical Catholic University of Rio Grande do Sul

ROS - Robot Operating System

SNMP - Simple Network Management Protocol

SRS - Single-Robot Systems

SSH – Secure Shell

TCP/IP - Transmission Control Protocol and Internet Protocol

XDR - External Data Representation

XML - Extensible Markup Language

XML-RPC - Remote Procedure Call protocol which uses XML

YAML - is a recursive acronym for "YAML Ain't Markup Language"

TABLE OF CONTENTS

1 INTRODUCTION .. 16

2 THEORETICAL BACKGROUND ... 19

2.1 Autonomous Agents... 19

2.2 Dependability ... 21

2.3 Multiple Robots Systems (MRS) .. 26

2.4 Dependable Multiple Robotic Systems .. 26

3 STATE OF THE ART ... 29

3.1 Individual Robot Fault Detection .. 29

3.2 Multiple Robots Fault Monitoring ... 29

4 DEVELOPED ARCHITECTURE .. 33

4.1 Techniques and Tools Analyzed .. 33

4.2 Proposed Multi Robot Monitoring Architecture 46

5 EXPERIMENTAL ENVIRONMENT .. 50

5.1 Server Scalability Experiment .. 50

5.2 Experiment with Real Robot .. 59

6 EXPERIMENTAL RESULTS .. 60

6.1 Server Scalability ... 60

6.2 Virtual Robot Performance ... 61

6.3 Real Robot Performance ... 62

6.4 Limitations and Future Work .. 63

7 CONCLUSION ... 65

REFERENCES ... 66

APPENDIX ... 71

7.1 Nagios installation steps .. 71

7.2 Nagios configuration steps ... 71

7.3 ROS configuration Steps ... 71

7.4 Kobuki Turtlebot installation ... 72

7.5 ROS Diagnostics Nagios plugin source code .. 72

7.6 Virtual Robot source code .. 75

16

1 INTRODUCTION

Robotics is becoming commonplace and people start to use more mobile robots to

help and to accomplish a variety of ordinary tasks such as vacuum cleaning, pool cleaning,

and lawn mowing, among others. In addition, robots are also typically used to execute

dangerous tasks, unhealthy tasks, go to remote places, among other possibly critical

applications [GDU2010].

In this work robots are classified in two different types: stationary robots and mobile

robots. Stationary robots are simpler than mobile ones because they are fixed at some

controlled environment. It is common to use the stationary robots on industry to automate

repetitive tasks. Also, this kind of robot is built for a very specific application. Typical

applications of stationary industrial robots include casting, painting, welding, assembly,

materials handling, product inspection, and testing. All these tasks can be performed with

more accuracy and speed compared to humans.

Mobile robotics, on the other hand, is the research area that studies the control of

autonomous or semi-autonomous vehicles [GDU2010] and [RSI2004]. Currently, there are

some commercial applications for mobile service robots, such as goods transportation,

surveillance, inspection, cleaning, and household tasks. Robotics has been evolving fast in

terms of new functionalities and becoming affordable, increasing its use in several aspects

of society [PAR2010]. This fact increased the development rate of new and more complex

robotic applications [PAR2010], which require more complex software stack [ABA2008].

Despite these improvements, autonomous mobile robots have not yet made much impact

upon industrial and domestic applications, mainly due to the lack of dependability,

robustness, reliability and flexibility in real environments. This requires more research to

enable the design of more efficient and robust robotic applications.

According to [LEP2008] one cost-effective way to provide effectiveness and

robustness to robotic system is to use multi-robots instead of a single robot. Due to the

application of parallelism, multi-robot systems (MRS) have some advantages over single-

robots systems, such as greater task completion speed. Furthermore, improvements on

robustness and reliability can be achieved in MRS through the implementation of fault-

tolerant systems. For instance, when one member of the team fails, another can take over

his work and continue that the task. An MRS of cheaper and simpler robots can typically

17

provide more reliability than a more expensive and complex single robot [LEP2008]. On the

other hand, MRS also present more complex challenges compared to single robot systems.

Because they are collective systems, MRS are more complex to manage and coordinate,

since they require increased communication capabilities in order to coordinate all robots.

Collectivity is also a factor on troubleshooting, because it is harder to determine the global

state of the system.

MRS can be classified as homogeneous or heterogeneous [SVE2005].

Homogeneous MRS are systems where all robots have the same specification (hardware

and software configuration). Heterogeneous MRS can have different kind of robots in the

same system. In Homogeneous MRS it is easier to replace faulty robots. On the other hand

heterogeneous MRS can employ different kind of specialized robots to perform different

tasks.

Robotic systems can also be classified according to their autonomy level, i.e. its

ability to decide how to accomplish a task based on its perception of the environment

[RHB2007]. There are robots with no autonomy at all, called tele-operated, and semi-

autonomous robot. A robot with some level of autonomy can be called an agent. Mobile

robotics will become commonplace in the society if it can be cost-effective and dependable.

Currently the cost-effectiveness of robotics is evolving since computers and electronics are

more accessible. On the other hand, current single mobile robots lack effectiveness and

dependability. MRS is naturally more robust than single robots due its intrinsic redundancy,

but it increases the software complexity due to its distributed nature.

According to [LEP2012] even MRS designed to be robust will face unexpected faults

from a very large range of possibilities. Detecting the sources of faults is the very first step

towards a fault tolerant MRS. The large number of robots, the large number of possible

faults in each robot, and a dynamic environment make the fault monitoring a complex and

mandatory task for MRS with reliability constraints.

The goal of this work is to provide means to easily monitor faults at a team of

heterogeneous robotic agents. The contribution of this work is a proof of concept that

traditional infrastructure networking monitoring tool can also be used combined with

robotics. Detect and isolate the defective robot is a first step to achieve robustness, toward

an adaptive MRS that can execute the desired tasks even with the presence of faults. With

more dependable robotic systems, more applications can be created to serve the society.

18

In order to achieve the proposed goal, the present work describes the integration

between a traditional infrastructure networking monitoring tool and a robotics middleware.

The advantage of combining pre-existing consolidated tools include a reduced development

cost/time and the possibility to leverage desirable characteristics of well established

software, such as network scalability, software stability, and software extensibility.

This work is organized as follows. The section 2 presents theoretical background

regarding MRS, autonomous agents, and dependability. Section 3 describes the state of

the art in terms of individual robot fault detection and MRS fault detection. Section 4

presents the developed architecture and the section 5 describes the implementation of the

architecture and the experiments performed with it. Section 6 discusses the results

obtained with the experiments. Section 7 concludes of this research.

19

2 THEORETICAL BACKGROUND

This section presents a theoretical background of the main concepts used in this

research plan.

2.1 Autonomous Agents

Functional programs or traditional software work basically receive an input, process

data and produces some output based on the received input [RHB2007]. However there are

other kinds of programs that do not work on this traditional approach. This different kind of

software maintains an ongoing interaction with their environment, they do not compute

some function based on the input and return an output. Some example of these programs

includes computer operational systems, process control systems and others. Even more

complex software that these two previously approaches are the systems called agents

system, an agent is a reactive system that contains autonomy in order to take actions

determined by himself to accomplish their goals. These different systems are called agents

because these systems are active, they are able to figure out one plan to actively pursue

their goals. [RHB2007].

2.1.1 Characteristics of Agents

Agents are systems situated in some environment. Some typical examples are the

system stock exchange agents, these systems are developed to observe the stock market

and, based on this information, take actions. The agent has the capability to perceive its

environment through its sensors and it is able to cause some effects on the environment via

its actuators as illustrated in Figure 1.

20

Figure 1 - Agent interaction with the environment [RHB2007]

According to [RHB2007] the environment occupied by an agent could be either

physical or virtual (in case of software/simulation environment). For software agent works

for virtual environment and robotics works for physical environment. The agents can take

actions that will affect the environment, but they cannot completely control it. For example,

a lawn-mower robot may not be able to finish its work because of obstacles on the ground.

The real environment is dynamic and cannot be controlled so even the highly tested robots

will face some unforeseen situations and fail.

Important characteristics of agents include [RHB2007]:

 Autonomy: the capability to operate independently at some level. Agents must be able

to formulate a plan and execute it in order to achieve a goal.

 Proactiveness: the ability to exhibit goal-directed behaviour. An agent should actively try

to initiate work that will lead it to achieve its goals. It should need direction to do so.

 Reactiveness: the ability to detect and adapt to unexpected changes.

 Social Ability: the ability to cooperate and coordinate efforts with other agents in order to

achieve goals.

21

2.2 Dependability

The dependability of a computer system is the ability to deliver service that can be

trusted [BLU2004]. There are three concepts that describe the notion of dependability. The

Figure 2 demonstrates these concepts.

Figure 2 - The dependability concepts [BLU2004]

The dependability attributes could be described as [BLU2004]:

 Availability: Be available during a period of time and deliver a correct service during

this time.

 Reliability: Continuous delivery of correct service during a period of time.

 Safety: Do not cause catastrophic consequences on the users and the environment.

 Confidentiality: Does not disclose unauthorized information.

 Integrity: Absence of improper state alterations.

 Maintainability: Ability to perform repairs and modifications of the system.

2.2.1 Threats

In this section, we present the taxonomy of threats that may affect an autonomous

system. They consist of failures, errors and faults. System failures are events that deviate

from the delivery of correct service. An error is an unexpected event that may cause a

failure. A failure, in turn, occurs when an error reaches the service interface. Finally, a fault

22

is the cause of an error. If a fault produces an error it is active. On the other hand, faults

that does not produce any errors are called dormant.

A system can fail in different ways. There are three different taxonomies for faults

[BLU2004], as we show in the Figure 3.

Figure 3 - A fault taxonomy [AAV2001]

2.2.1.1 Physical Faults

Physical faults are faults due to adverse physical phenomena. For example, a

hardware sensor that does not work as expected, returning a non-valid value. A common

way to detect this kind of problems is comparing the output of two independent identical

units, like a sensor.

2.2.1.2 Design Faults

Design faults are faults unintentionally caused by man during the development of the

system. This kind of faults could be either hardware or software faults. Redundant elements

are a common way to detect and avoid this kind of faults.

2.2.1.3 Interaction Faults

Interaction faults are faults resulting from the interaction with other systems or users.

There is a distinction between accidental faults and malicious interaction faults. An operator

mistake is an example of an accidental fault and an intentional attack is a example of

malicious fault.

2.2.2 Means

For these three categories of faults mentioned before there are different ways to

prevent these faults. These approaches to prevent the faults are called means in this

diagram on the Figure 4.

23

Figure 4 - Means - Fault remove techniques [BLU2004]

2.2.2.1 Fault Prevention

It is a way to prevent the occurrence or introduction of a fault. Fault prevention can

be considered as a fault avoidance system.

2.2.2.2 Fault Removal

It is a way to reduce the number or to reduce the severity of a fault. Fault removal

can be considered as a fault avoidance system. Both Fault Prevention and Removal are the

attempt to develop a system without faults.

2.2.2.3 Fault Tolerance

It is a way to continue delivering the correct service even when a fault occurs. Fault

Tolerance implements the concept of fault acceptance, which attempts to reduce the

consequence of a fault. The main difference between fault tolerance and maintenance is

that maintenance requires the participation of an external agent and fault tolerance not.

2.2.2.4 Fault Forecasting

Is a way to estimate the future incidence or the consequences of faults. Fault

forecasting also implements the same concept of fault acceptance, i.e., an attempt to

reduce or estimate the consequence of a fault.

The development of a dependable computing system usually combines different

techniques. This work is focused on the Fault Tolerance technique, knowing that fault is

almost inevitably. Fault tolerance concepts through the redundancy of multiple robotics or

redundant sensors is a good approach to keep the system working as expected, even after

faults occur.

24

2.2.3 Fault Tolerance

Fault tolerance mechanisms typically consist of an error detection and error

recovering mechanisms [LUS2004], as illustrated in Figure 5.

Figure 5 – Fault Tolerance Techniques [AAV2004]

2.2.3.1 Error Detection

Error detection originates from an error signal from the system. There are two

classes of error detection:

1. Concurrent Error Detection: the error detection works at the same time of the

service delivery

2. Preemptive Error Detection: check for error while the service delivery is

suspended. Also check for dormant faults.

In this work the focus is on the concurrent error detection system that enables the

service delivery and fault tolerance at the same time.

25

2.2.3.2 Error Recovery

Recovery [BLU2004] is the process that transforms a system from a state that

contains faults and errors to a state that can be activated again without presence of any

error or fault. Error recovery eliminates errors in three forms:

 Rollback: Return the system to a previous state where the system can be activated

again. The previous saved state is called a checkpoint or safe point. Rollback is the

most popular approach to recovery a system, however it is time and resource

consuming.

 Rollforward: Put the system in a state where there are no errors or faults. This is a new

state not previously recorded. Restart the system is a possible solution for this

approach. Note that rollback and rollforward are not mutually exclusive. Usually rollback

is the first attempted and then rollforward is a second option.

 Error Compensation: The erroneous state contains enough redundancy to handle the

fault situation and enable error elimination. A common approach for error compensation

is the fault masking. This approach requires three or more identical or similar

components to be used implementing a vote system where the majority is chosen.

These three techniques eliminate errors from the system state. Rollback and

rollforward are invoked on demand. Compensation can be applied either on demand or

systematically, at pre-scheduled events, independently of the presence of errors.

2.2.3.3 Fault handling

Summon [ROG2006], Fault handling prevent fault from being activated again. There

are four techniques of fault handling as explained below:

 Diagnosis: Identifies the root cause of error in terms of location and type.

 Isolation: Perform exclusion of the faulty components from further participation in service

delivery. The exclusion could be both logical and physical. For physical exclusion the

fault component must have a spare component for take over the tasks.

 Reconfiguration: Set up a new configuration avoiding failed components (when it is

possible).

 Reinitialization: Checks, updates and records the new configuration and updates system

tables and records.

26

2.3 Multiple Robots Systems (MRS)

Multiple Robot Systems are systems comprised of several robots. This kind of

system show some advantages over Single-Robot Systems (SRS). One of these

advantages is an increased task completion speed through parallelism. MRS can also

perform better in tasks that are inherently distributed in space, time, or functionality.

Furthermore, the cost of multiple single-specialization robots can be lower than that of a

unique all-capable robot. Finally, the use of multiple robots can eliminate single points of

failure, which increase the robustness and reliability of the system through redundancy

[LEP2008].

However, there are some drawbacks to MRS. For instance, determining how to

manage the whole system is usually more complex than in a SRS. The lack of centralized

control is one of the reasons for increased complexity of MRS [VGO2004]. Also, MRS

require increased communication to coordinate all the robots in the system. Increasing the

number of robots can lead to higher levels of interference between themselves, depending

on the used communication device and protocol. Additionally, each individual robot in the

MRS should be able to work even when the whole system state is unknown [MJM1995].

2.4 Dependable Multiple Robotic Systems

Summon [LEP2012] defines reliability in robotics as the probability of a determined

system delivery the correct service without failure during a period of time. Different

measures of reliability can be given in robotics. For example, an individual component, or

an individual robot, or even a MRS can be measured. MRS should avoid as much as

possible to have a single point of failure. Instead, the system must be distributed and able

to work as a single. Because the large number of individual components/robots, the MRS

could be fault tolerant to an uncertain environment. Also, the MRS known as swarm robots

can properly handle a single robot failure. According to [MOH2009], there is a difference

between MRS and swarm. Swarm is a new approach that takes inspiration from social

insects to coordinate multi-robot systems.

27

2.4.1 Reliability in Robotics

Robotics is a research area with a vast amount of literature, even though only a

limited part of this effort addresses reliability in robotics [MLL1998]. Also the analysis to

explore the reasons of how the robots fail is not very common in the literature [JCA2003].

Centralized approaches to online diagnosis MRS do not scale well basically for two different

reasons: complexity of the solutions and the need of communicate each individual to a

central diagnoser [DAI2007].

Computers use unreliable components and, for this reason, they improve their

reliability using techniques like error control codes, duplication with comparison, triplication

with voting, and diagnostics to locate failed components. Similar reliability techniques can

be applicable for robotics.

One of the main reasons why mobile robots fail is because the real environment

cannot be completely mapped and it is naturally dynamic. Because of the dynamic

environment, fault-tolerant mobile robots have to be able to handle and even learn from

new situations several times. Because of this complex scenario, there are several

approaches to implement reliability in robotics. Section 2.4.2 introduces some of these

techniques and explains dependability in MRS.

2.4.2 Reliability in Multiple Robotics Systems

Multiple Robots Systems (MRS) need to be reliable as a whole [LEP2012]. For these

reasons there are some questions to be addressed:

• How to detect when robots have failed?

• How to diagnose robots failures?

• How to respond to these failures?

Instead of single-robots systems (SRS) that are designed to be robust as a single,

multiple robots systems (MRS) are design to be fault tolerant, it means, continue working

even after a fault occurs. MRS are designed to take advantage of the collective to

accomplish the work as a team, it means, they need to be able to communicate between

them and a healthy robot could take over a task from a robot in a faulty state.

The main reason of MRS is to achieve significant level of reliability through the

redundancy or multiple robots. The key motivation is that several robots faults can be

28

overcome by the redundancy system. In order to achieve this level of reliability the whole

system must be developed with these faults in mind. Internal and external reasons can

drive the MRS to a fault state. A software design defect is an internal reason that could lead

a robot to a fault state. On the other hand, an unexpected environment changes driving the

robot to a fault state is an example of external problem. Usually problems caused by

external reasons are more difficult to handle or avoid than the internals.

These are some of the challenges of achieve reliability in MRS:

 Individual robot failure: The total number of individual components parts in a system is

directed related with the probability of a fault occurs [JCA2005]. In Carlson and Murphy

observed many different causes of failures leading to low reliability of robots operated by

humans. This study also showed that custom designed components are less reliable

than mass-produced components such as power supply and sensors.

 Local perspective: Each one of the robots maintains only a local perspective and is not

able to see the system as a whole. In order to keep the entire system fault tolerant, the

system should be distributed and not centralized. It allows the system to be more fault

tolerant and also brings scalability to the MRS.

 Interference: The existence of MRS sharing the same physical environment can cause

interference and contention. These issues must be addressed to enable MRS

application.

 Software errors: As all complex software systems, the MRS software can also contain

bugs that raise faults. Because of the complexity these software, defects/bugs could be

difficult to detect and to fix.

 Communication failures: In MRS the communication between the individual robot is a

requirement to enable the whole system works as expected. According to [RCA1993],

all individual robot have to be able to work even when the communication with others

are not available.

29

3 STATE OF THE ART

According to [LEP2012] there are several possibile faults in robotic systems, such

as: robot sensors faults, uncertain environment models, limited power, and computation

limits.

In order to address these complex faulty scenarios there are some tools developed

that intend to help engineers and developers to handle these problems. Robot middlewares

are one of these tools developed to abstract part of the complexity of these problems.

Several robot middlewares [BRG2009], [BRG2010], [MAK2007] address the fault

detection problem. However, their approach is limited to monitoring a single robot at a time,

which makes it difficult to observe the system as a whole. Also, most of those approaches

are driven by the capabilities of robotics middleware and not by the needs of the robotics

research field.

3.1 Individual Robot Fault Detection

According to [MHA2003] the most popular method of fault detection in robot systems

is comparing sensor values with a pre-determined range of acceptable values (i.e,

thresholds). Other well-known fault detection method is creating a vote system based on

different redundant components [RCA2003]. If an individual component is in a faulty state, it

will vote differently than the majority. This individual component could be ignored and the

others values are used instead.

Logging is a fault detection/monitoring technique where data is collected during

runtime to be analyzed later (i.e., off-line fault detection). During the normal runtime, all

necessary data is collected and stored in a collector device. One disadvantage of this

technique is that a huge amount of data could be generated and it cannot be used to issues

online. Usually Logging needs another tool to monitor the and trigger clean-up actions

[LOT2011]. Logging could be used for SRS or for MRS.

3.2 Multiple Robots Fault Monitoring

Fault detection in MRS [MEN2010] is more complex due to the distributed nature of

these systems. A networked control system is a requirement to connect all robots in MRS,

which adds another layer of possible fault scenarios. Furthermore, the network itself is

subject to faults, performance deterioration or operation interruption.

30

According to [MEN2010], several different methods and techniques to deal with

these problems can be found in the literature. However, these methods usually follow a

centralized approach. This introduces an undesirable central point of failure in MRS. A

technique that could be used to monitor MRS is the Distributed Artificial Intelligence (DAI).

This methodology is based on the creation of a system of multiple supervision agents that

are able to communicate directly with each other in order to perform monitoring tasks.

Summon et al. [CHR2009] states that one of the most important advantages of swarm

robotic systems is redundancy. If one robot fail, another robot can try to make repairs or

even take over taks assigned to the failed robot. The solution proposed in this work is

creating a completely decentralized algorithm to detect non-operational robots in a swarm

robotic system. Every robot flashes and their neighbors can detect the flashs and start to

flash in synchrony. Robots in a faulty state do not flash periodically and can be detected by

others. This innovative approach does not use conventional networking communication to

perform monitoring tasks. The advantage of this approach over others is that it does not

generate network traffic and it does not depend on a conventional network.

The work [KBL2006] proposes common metrics to evaluate the effectiveness of fault-

tolerance solutions. Effectiveness is measured by identifying the influence of fault-tolerance

towards overall system performance. According to this work only a few fault tolerance

solutions are designed to consider the distributed and decentralized nature of MRS. An

appropriate fault tolerant controller that implements fault detection and diagnosis systems is

necessary for monitoring MRS.

RoSHA (Multi-Robot Self-Healing Architecture) [RSH2013] is an architecture

proposal that offers self-healing capabilities for MRS. The authors argued that the

architecture should be resource efficient and generates minimum impact on the system.

Scalability is another important requirement. The self-healing add-on should be

independent from the size of a MRS or from its robot distribution. Beside these envisioned

features of a self-healing architecture, humans should be still able to oversee and control

the system. There are five key characteristics of the RoSHA architecture: resource-efficient,

high degree of configurability, human controllability, extensibility, and modularity.

31

Figure 6 – Overview of the RoSHA architecture [RSH2013]

Figure 6 shows the RoSHA architecture is divided in 4 components. The monitoring

component collects information about the current system state. The diagnostic component

uses the collected information to identify failures and their root causes. Detected faults are

reported to the recovery manager. This component selects a recovery plan from a set of

predefined policies to recover from failure. The execution component provides a set of

generic repair actions.

The integration of the self-healing add-on in an already existing MRS is essential in

the sense of practical usage, in order to foster real-world applications and to increase the

commercial use. This work is a very advanced proposal on how to handle the MRS

dependability challenges, however this work presents only a proposal on how to address a

possible solution and do not contain experiment or any artifact that this proposal was

already implemented or intend to be in the future.

Kaminka et al. [KAM2002] present an approach to monitor multi-agent systems by

observing their actions by ‘hearing’ the routine communication among these agents. The

results show that the proposed approach has a monitoring performance comparable to a

human expert. There is no evaluation on the computing performance overhead on the

agent and the network bandwidth overhead imposed by the communication overhearing

among the agents. In addition, the authors say that the so called report-based monitoring

32

requires modification on the robot’s software plans and it generates major network

bandwidth usage.

33

4 DEVELOPED ARCHITECTURE

This chapter presents in Section 4.1 the used tools initially studied until the actually

used tools (Nagios and ROS) were selected. Section 4.2 presents the proposed monitoring

environment and the adaptations required for the integration.

4.1 Techniques and Tools Analyzed

This section compares the two main types of tools used in this research: IT

infrastructure monitoring and robotics middleware.

4.1.1 IT Infrastructure Monitoring

The goal of a Data Center Infrastrucutre Management or DCIM is to provide an

overview of the monitored server status. DCIM tools allow the administrators to log and

analyze status information related to datacenter servers [COL2012]. There are several

DCIM tools for commercial use, open-source and free software licenses. Some solutions

support the development of extensions or plugins. These plugins are used to add

capabilities to the monitoring tool. The remainder of this section introduces well-known IT

infrastructure monitoring tools.

Ganglia [GAN2013] is a "scalable distributed monitoring system" developed for

cluster based systems. It provides an overview of your entire clustered system. Some of the

main features about Ganglia are distributed design for clusters, use of technologies such as

XML, XDR for compact, portable data transport, and data storage and visualization. The

algorithms were developed to high performance work with concurrency.

Spiceworks [SPI2013] is a free network/system monitoring tool. This tool uses the

SNMP protocol since it has low impact (minimal overhead) on the network communication

with monitoring tasks. Pre-defined alerts can be configured to monitor the system status.

The administrator is also able to select each of these alerts and see more detailed

information about the node.

Zabbix [ZAB2013] is another network monitoring tool which offers a web interface

console with different views and mappings. The MySQL database is used to store historical

information. It is developed in C and the web interface is developed in PHP. Some of the

protocols supported are SNMP, TCP and ICMP.

http://www.spiceworks.com/
http://www.zabbix.com/

34

Nagios is a well-known IT infrastructure monitoring according to [NAG2013]. This

monitoring system was developed to support scalability and flexibility. Nagios provides

information about the entire IT infrastructure, allowing detecting, send alerts and also

repairing problems. Nagios supports the development of extensions or plugins to add

capabilities to the tool. Nagios is an open source application that monitors virtually any kind

of device for problems and reports the results. Nagios was designed for Unix-based

systems.

4.1.2 Nagios

This section details Nagios features which motivated us to select it for this research.

Nagios provides a plataform for executing specific checks on the entire monitored

system customized by devices. Pratically any kind of device information can be monitored,

for instance the use of memory, free space on disks, cpu load, the number of processes,

and many other cutomized information [NAG2005]. Nagios provides an easy web interface

for graphical view the entire system and simple navigation into nodes showing detailed

monitoring information.

According to [NAG2005], every test performed by Nagios is executed by an external

program called plugin. A set of plugins are distributed with Nagios and can be loaded as

required. For example, there is a generic plugin to test TCP connections called check_tcp

plugin. This plugin can be used to determine if a service is reachable through the network.

Some information about monitored servers may not available through network

services. For instance, there is no network protocol for checking free capacity on a hard

drive. In this case Nagios is able to access the server via a remote shell (SSH for instance)

and capture this information.

35

Figure 7 – Nagios allows different tests methods [NAG2005]

 Figure 7 shows an overview of different test methods supported by Nagios. The

upper box contains all the components that run directly on the Nagios server. Nagios has a

flexible design that allows the development of extensions to communicate and monitor

almost any kind of system through a Nagios plugin. A Nagios plugin is a small piece of

software that must be developed following the Nagios plugin specification in order to

support Nagios API. Plugins used for host and service checks are separate and

independent programs that can also be used outside of Nagios.

In order for Nagios to use an external program, it must follow Nagios plugin rules.

First, the return status generated by the plugin must return OK, Warning, Critical or

Unknown status [NAG2005]. Listing 1 demonstrates the execution of the check_tcp plugin.

It shows Nagios monitoring if the ROS service is active on port 11311, on the target host

192.168.1.3.

nagios@linux:nagios/libexec$./check_tcp -H 192.168.1.3 -p 11311

TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0,

000000;0,000000;0,000000;10,000000

Listing 1 – Nagios example checking remote TCP port [NAG2005]

The ROS core service uses TCP port 11311 by default, so this simple example could

determine if ROS is up and running on a specific host/robot. It is important to notice that this

example only checks ROS core service status, without collecting any information from robot

sensors.

36

The second rule is the use of ‘-’ to separate status code from the detailed textual

status. Listing 1 also presents this part of the Nagios status message.

A Nagios plugin can be a simple bash script developed to execute steps and print

the formatted output on the standard output. Listing 2 shows a simple Nagios plugin source

code.

#!/bin/bash

NAGCHK="/usr/local/nagios/libexec/check_nagios"

PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios"

INFO=‘$NAGCHK $PARAMS‘

STATUS=$?

case $STATUS in

0) echo "OK : " $INFO

;;

*) echo "ERROR : " $INFO | \

/usr/bin/mailx -s "Nagios Error" nagios-admin@example.com

;;

Esac

Listing 2 – Nagios simple plugin source code example [NAG2005]

According to [NAG2005], Nagios also supports the executation of a plugin via SSH

on a remote host. Nagios administrator needs an account on the target system in order to

connect and to execute the plugin. The Nagios Remote Plugin Executor (NRPE) is another

method to execute plugins remotely. This plugin can be useful for indirectly testing

hosts/services that are not reachable from the Nagios server network, as illustrated in

Figure 8.

37

Figure 8 – Nagios executing a remote check using NRPE [NAG2005]

Nagios also has a complete Notification System that could be configured to perform

notification via email/SMS or any other communication protocol according with pre-defined

configurations/rules [NAG2005]. The Figure 9 shows the Notification System details.

Figure 9 – Nagios Notification System overview [NAG2005]

Scalability is another characteristic of Nagios. Several noncentral Nagios instances

could be executed and configured to send their results to a Nagios Central Server using the

Nagios Service Check Acceptor [NAG2005], as illustrated in Figure 10.

38

Figure 10 – Distributed monitoring with Nagios [NAG2005]

According to [NAG2005], Nagios has several reports that can display graphics of

performance data collected from the hosts (e.g. time series dynamic charts). It is available

through third-party software that could be configured to work integrated to Nagios.

4.1.3 Robotic Middleware

According to [ELK2012], a robotic middleware is a layer between the robot operating

system and software applications, as illustrated in Figure 11. The middleware layer is

designed to allow reuse of software and reduce costs of development.

39

Figure 11 - Middleware layer [ELK2012]

Modern robots are considered complex distributed systems consisting of a number of

integrated hardware (such as the embedded computer and specific robotics sensors) and

software modules. All robot’s modules (hardware and software) work together to achieve

their goals [MOH2008]. This section describes some of these existent solutions and briefly

explains some criteria used to select one.

Miro [SEN2001] and [HUT2002] is a robot middleware developed by University of

Ulm, Germany. Miro is designed and implemented by applying object oriented design.

According to [MIR2013] the core components have been object oriented developed using a

multi-platform framework supporting network and real time communication.

Orca [AMA2006] is a middleware framework for developing component-based

robotics. It is designed to support a wide range of applications. The main goal of Orca is to

enable software reuse in robotics. According to [ORC2013] it provides ways to develop

nodes that can be composed to create complex robotic systems.

According to [SAH2006] and [SKJ2006], UPnP middleware was developed under a

Universal Plug and Play (UPnP) architecture. One of main features of the UPnP

architecture is the peer-to-peer network connectivity [UPN2013]. UPnP also supports

standard protocols like TCP/IP, HTTP and XML.

40

Robot Operating System (ROS) is robot middleware designed to reduce the cost of

development for large-scale robots systems. According to [MQU2009] the ROS main

characteristics are:

• Peer to peer communication to reduce traffic in the network;

• Tools-based: micro kernel designed instead of monolithic kernel;

• Multi-lingual support;

•Thin: software development libraries with no dependencies on ROS;

• Free and open-source under BSD license;

• Organized in packages in order to build large systems.

ROS modular design allows managing the complexity of sophisticated robotic

applications. ROS also promotes code reuse since a single software module can be easily

used on different applications and robots. Moreover, ROS middleware provides tools for

fault monitoring and diagnosis [LOT2011]. These tools are useful for development and

monitoring one specific robot each time and not an entire MRS. For this reason this solution

addresses only part of the overall problem of runtime monitoring because they allow to

check the status of one component/module at time.

4.1.4 ROS Concepts

ROS [ROS2014] is organized in three levels: filesystem, computation graph and

community. The first two, which are most relevant for this work, are described next.

ROS package is the most important concept of the Filesystem level. The package is

the small unit of software in ROS and it includes processes (called nodes), libraries and all

required configuration files. Metapackages represent a group packages.

The structure of the communication on ROS is represented by Messages. Message

descriptions stored into msg files define the structure of the message. Listing 3 presents an

example of a message file Message.msg with only one field of string type.

Message.msg

string input

Listing 3 – ROS Message type format

41

Service communication is also defined in a file and provides the interface for the

nodes to interact with a service. Listing 4 shows an example of a Service file that declares a

single String attribute for the request and another String attribute for the response.

 Monitor.srv

string input

string output

Listing 4 – ROS Server message format

The Computation Graph abstracts network communication in ROS. It is a graph

comprised of nodes and topics. Nodes are processes that perform computation and

communicate with each other by passing messages to a given topic. A topic is the structure

that receives the message sent by a node. A node sends a message by publishing it to a

topic and can also read messages by subscribing the topic. In the context of this work, ROS

suggests the use of /diagnostic topic to publish this kind of diagnostic data and

/diagnostic_agg topic for grouped diagnostic information [ROD2014].

4.1.5 Fault Reporting using ROS Style - ROS Diagnostics

The Diagnostics stack is the ROS software responsible for analyzing and reporting

the system state. It consists of libraries and tools for collecting, publishing, and visualizing

monitoring information. This tool-chain is built around standardized interfaces, named the

/diagnostic topic for monitoring information. Gathered status data is published continuously

on the diagnostic topics [ROD2014] [GP22014].

Listing 5 shows the diagnostic Status message format

(diagnostic_msgs/DiagnosticStatus). The first field is a byte value that accepts one of the

possible levels of operations (0, 1, 2 or 3). Second field is a string to identify which

component is reporting the diagnostic. A message description could also add some more

details about the diagnostic. The hardware_id field defines a unique hardware

identificantion (in case of robots that contains more than one component with the same

name for redundancy purposes). The last field is an array that could store any extra details

for the diagnostic. For instance, a low battery message could store the remaining

operational time.

http://wiki.ros.org/Messages
http://wiki.ros.org/Topics

42

This message holds the status of an individual component of the robot.

Possible levels of operations

byte OK=0

byte WARN=1

byte ERROR=2

byte STALE=3

byte level # level of operation enumerated above

string name # a description of the test/component reporting

string message # a description of the status

string hardware_id # a hardware unique string

KeyValue[] values # an array of values associated with the status

Listing 5 – ROS Diagnostic Status message format

4.1.6 Diagnostics Aggregator

According to [ROD2014] ROS also distributes a built-in diagnostic_aggregator

package. It is designed to subscribe the /diagnostic topic, read the raw published data,

reorganize all information based on pre defined rules and publish the generated result in

the /diagnostic_aggregator topic.

The publisher default interval is 1 Hz but this value can be configured by the user on

the YAML rule file. The diagnostic.yaml rule file also defines groups for aggregating the

information according to the type of data. For example robots with more than one battery

could aggregate all batteries statuses on a Battery group. For instance: My

Robot/Actuators/Motor Group 1/Motor 1 means that Motor 1 belongs to Motor Group 1 and

Motor Group 1 belongs to Actuators and so on. The diagnostic aggregator summarizes the

least relevant systems states and emphasizes the most critical ones

Another tool built-in on ROS is the robot_monitor tool. This is a GUI tool that displays

all results published on the /diagnostic_agg topic in a hierarchical format. It groups the

statuses in terms of their conditions (Ok, Warning, and Critical) and it displays the most

urgent statuses (in Critical condition) first with red color to help the user to focus on the

most important issues.

43

Figure 12 – RQT Monitor main Window [ROD2014]

Figure 13 – RQT Monitor status viewers [ROD2014]

This GUI is divided in three boxes. The first box shows only the errors in a list, the

second one shows the warnings. The third contains a tree with all items organized in a list

view. The colored line in the bottom of the screen is a timeline where each timeframe

represents an update. A detailed window can be opened by clicking in the desired item, as

illustrated in Figure 13.

44

4.1.7 Turtlebot Kobuki

This section presents the iClebo Kobuki [KBK2013] mobile base used in this

research. According to [KBK2013], iClebo Kobuki is a mobile base designed for research in

robotics. Figure 14 shows Turtlebot mounted over a Kobuki mobile base. It provides

sensors and actuators, as summarized next.

Figure 14 – Turtlebot Kobuki [KBK2013]

Functional Specification

 Maximum translational velocity: 70 cm/s

 Maximum rotational velocity: 180 deg/s (>110 deg/s gyro performance will
degrade)

 Payload: 5 kg (hard floor), 4 kg (carpet)

 Cliff: will not drive off a cliff with a depth greater than 5cm

 Threshold Climbing: climbs thresholds of 12 mm or lower

 Rug Climbing: climbs rugs of 12 mm or lower

 Expected Operating Time: 3/7 hours (small/large battery)

 Expected Charging Time: 1.5/2.6 hours (small/large battery)

 Docking: within a 2mx5m area in front of the docking station

Hardware Specification

 PC Connection: USB or via RX/TX pins on the parallel port

 Motor Overload Detection: disables power on detecting high current (>3A)

 Odometry: 52 ticks/enc rev, 2578.33 ticks/wheel rev, 11.7 ticks/mm

 Gyro: factory calibrated, 1 axis (110 deg/s)

 Bumpers: left, center, right

 Cliff sensors: left, center, right

45

 Wheel drop sensor: left, right

 Power connectors: 5V/1A, 12V/1.5A, 12V/5A

 Expansion pins: 3.3V/1A, 5V/1A, 4 x analog in, 4 x digital in, 4 x digital out

 Audio : several programmable beep sequences

 Programmable LED: 2 x two-coloured LED

 State LED: 1 x two coloured LED [Green - high, Orange - low, Green &
Blinking - charging]

 Buttons: 3 x touch buttons

 Battery: Lithium-Ion, 14.8V, 2200 mAh (4S1P - small), 4400 mAh (4S2P -
large)

 Firmware upgradeable: via usb

 Sensor Data Rate: 50Hz

 Recharging Adapter: Input: 100-240V AC, 50/60Hz, 1.5A max; Output: 19V
DC, 3.16A

 Netbook recharging connector (only enabled when robot is recharging):
19V/2.1A DC

 Docking IR Receiver: left, centre, right

 Diameter : 351.5mm / Height : 124.8mm / Weight : 2.35kg (4S1P - small)

iClebo Kobuki [KBK2013] provides C++ drivers for Linux and ROS compatibility.

This robot already implements the diagnostics information necessary to perform real

time monitoring and to integrate it to the IT Monitoring tool. Kobuki driver provides status

information about the Watchdog, Battery, Cliff Sensor and others. Listing 6 is one

example of the Kobuki’s diagnostic raw data.

mobile_base_nodelet_manager: Watchdog: No Signal

mobile_base_nodelet_manager: Analog Input: [4095, 4095, 4095, 4095]

mobile_base_nodelet_manager: Battery: Healthy

mobile_base_nodelet_manager: Cliff Sensor: All right

mobile_base_nodelet_manager: Digital Input: [0, 0, 0, 0]

mobile_base_nodelet_manager: Gyro Sensor: Heading: -19.92 degrees

mobile_base_nodelet_manager: Motor Current: All right

mobile_base_nodelet_manager: Motor State: Motors Enabled

mobile_base_nodelet_manager: Wall Sensor: All right

mobile_base_nodelet_manager: Wheel Drop: All right

Listing 6 – Kobuki diagnostic raw data

46

The watchdog sensors detect when the Kobuki is connected to the computer via

USB, in this example there is no signal from the robot. Analog input represents the status of

the analog sensors present in the robot. Battery shows the robot’s battery status. The Cliff

sensor detects if the robot is in a flat surface or uphill. Digital input are digital buttons

controlled via software. The gyro sensor gets the current robot orientation. Motor Current

monitors the electrical current in the motor and reports its status (in terms of OK, Warning

or Error). Motor State informs whether the motor is enabled or disabled. Wall sensor

detects when the robot hits an obstacle. The wheel drop sensors detects if one of the

wheels is not properly in contact with the surface.

4.2 Proposed Multi Robot Monitoring Architecture

This section describes the proposed Multi Robot Monitoring architecture, with a focus

on the development approach.

The proposed software architecture, illustrated in Figure 15, creates a connection

between Nagios and the ROS diagnostics aggregator topic. This connection is

responsibility of the ROS Diagnostics Nagios Plugin. Most of the robots manufacturers, like

Turtlebot Kobuki, provide drivers that are compatible with ROS diagnostics and diagnostics

aggregator topics. The ROS Diagnostics Nagios plugin connects to the robot’s ROS

diagnostic aggregator node through ROS APIs, gets the requested information and prints

the output on the standard output format required by Nagios engine.

ROS core is a service application listening on a specific TCP/IP port and waiting for

subscriber connections. All communication process is executed using XML-RPC protocol.

Figure 15 shows the architecture.

47

Figure 15 - Software Architecture

Nagios remotely connects to the robot and gets the required information without the

need of any additional software running at the robot side. The only requirement is the

diagnostic aggregator topic, which is already present in most ROS compatible robot

platforms.

A python ROS Diagnostics Nagios plugin was developed to access the robot's ROS

core topic via XML-RPC. This plugin subscribes to the diagnostic aggregator topic of each

monitored robot and parses the information to the Nagios output format. The ROS

Diagnostics Nagios plugin source code is presented on the Appendix.

The plugin supports any number of sensors and arbitrary sensor names. This

enables the plugin to monitor most robots. Listing 7 shows the plugin syntax.

$./ros-diagnostics_agg.py --help

Usage: ros-diagnostics_agg.py [options]

Options:

 -h, --help show this help message and exit

 -H HOST, --host=HOST Define the target host

 -N NAME, --name=NAME Define the sensor name

$./ros-diagnostics_agg.py –H <host>

OK - OK Sensor(s) list: /Camera, /Camera/Cam1, /Laser, /Laser/Laser1, /Laser/Laser2, /Motor,

/Motor/Motor1, /Motor/Motor2, /Motor/Motor3, /Power, /Power/Laptop Battery, /Power/Robot Battery,

/Temp, /Temp/Sensor1, /Temp/Sensor2

Listing 7 – ROS Diagnostic plugin syntax

48

This example shows a robot overall status, which is described as OK. Next it lists the

name of topics which carry the status of different parts of the robot. The robot overall status

and its topics can have 3 possible states: Ok, Critical and Warning. The robot overall status

assumes the most severe status of all monitored topics. The Listing 8 shows topics

reporting statuses with different states.

CRITICAL - CRITICAL sensor(s) list: /Camera, /Camera/Cam1, WARNING sensor(s) list: /Power,

/Power/Laptop, OK sensor(s) list: /Laser, /Laser/Laser1, /Laser/Laser2, /Motor, /Motor/Motor1,

/Motor/Motor2, /Motor/Motor3, /Power, /Power/Robot Battery, /Temp, /Temp/Sensor1, /Temp/Sensor2

Listing 8 - ROS Diagnostic plugin output

The plugin also has the ability to monitor only specific sensors status. Listing 9

shows, for example, the same plugin used to monitor only batteries status.

$./ros-diagnostics_agg.py -H <host> -N battery

OK - OK Sensor(s) list: /Power, /Power/Laptop Battery, /Power/Robot Battery

Listing 9 - ROS Diagnostic plugin monitoring only Battery

In this case all other sensors not containing battery in the name are ignored by the

plugin.

Filtering by name allows more configuration flexiblity. This is achieved by enabling

Nagios to monitor specific sensors independently. For example, Nagios can be configured

to monitor the Motor status every five minutes and the temperature sensor every thirty

seconds.

The monitoring system is completely independent of the robot application. It means

that if the monitor server stops, only the monitor system will stop to working. The robot

application will continue working exactly the same way.

On Nagios configuration each monitored hosts has a configuration file on

/etc/nagios/conf.d/hostname.cfg. This file contains all the informaton about the

host. Basic information of the host includes hostname, alias, IP address, and which checks

must be executed by Nagios. Listing 10 shows an example of this file.

define host{

 host_name host_name

 alias alias

 display_name display_name

 address address

}

49

Listing 10 – Nagios define host syntax

The configuration file defines the specific rules for the host it describes. This means

that every different host/robot monitored by Nagios could have specific configurations. For

example, robots with different number/kind of sensors could be defined properly on this file.

Also the polling interval of each sensor could be defined setting the check_interval

parameter. This flexibility allows Nagios to support heterogeneous MRS.

Once the host is added on Nagios it will be displayed on Nagios portal, which also

shows the last known status of the host.

Figure 16 – Nagios monitoring a host status

On Figure 16, the left column of the table contains the name of the monitored host.

The second column lists all the checks configured for this specific host. The following

columns display, respectively, the status of the check, date/time of the last check, the

number of attempts to execute the check, and any description received from the check

plugin output.

50

5 EXPERIMENTAL ENVIRONMENT

To validate both the proposed architecture and its implementation, two experiments

werer performed: a scalability experiment with up to a hundred homogeneous virtual robots

and an experiment with one real robot.

5.1 Server Scalability Experiment

The experiment described in this section involves a simulated scenario with up to a

hundred simultaneous virtual robots. Its goal is to allow an evaluation of the scalability of

the monitoring server.

Figure 17 illustrates the architecture of the scalability experiment. The Database

server in the left side was created to collect performance data (cpu load, memory usage

and network bandwidth) during the experiment. This database is not actually a requirement

for the monitoring solution, its purpose is only to gather data regarding the experiment.

Nagios server runs the monitoring tool. All required plugins for Nagios are installed

on server side. This enables the implemented solution to work without requiring any

software installed robot-side. All computers (servers and robots) need to be in the same

local IP network or in a VPN. Details of this setup are presented in the following sections.

Figure 17 – Schematic view of the Server scalability experiment.

Nagios server

ROS
plugi

ROS
plugi

ROS
plugi

ROS
plugin

Virtu
al

Virtu
al

Virtu
al

Virtual
robot

Monitoring server

Database

server

cpu load, memory load, network bw

htt
p

char
ts

51

5.1.1 The Virtual Robot Setup

A virtual robot is application was developed for this experiment, using the Python

programming language. It generates diagnostics data in the same format implemented by

ROS diagnostics compliant robots. This application reads a set of configurations and,

based on these configurations, publishes data on the ROS diagnostics topic.

Listing 11 shows the configuration file. It determines the total number of sensor to be

simulated and also the number of sensors in the warning and error state that will be

published. See section 7.6 on Appendix for its source code implementation details.

Configuration

Simulation config

total_errors = 0

total_warnings = 0

Refresh interval in seconds

refresh_interval = 300

Robot configuration

Motors config

number_of_motors = 3

Temperature config

number_of_sensors = 2

Laser config

number_of_lasers = 2

Cameras config

number_of_cameras = 1

Battery config

The intial battery level - 100 is considered full charge

initial_battery_level = 100

Error battery level for diagnostics

error_battery_level = 10

Warn battery level for diagnostics

warn_battery_level = 20

Listing 11 – Virtual robot configuration parameters

All virtual robot diagnostic information is combined in a diagnostic aggregator node,

which defines rules to parse the raw diagnostic information and categorize it into a more

readable and meaningful way on the /diagnostics_agg topic.

After the simulator node is running, all simulated data is published on the diagnostic

topic at a frequency of 1Hz. There is a file that defines the rules that are interpreted by

diagnostic_agg node in order to read all diagnostic raw data, to compile the information

according to the groups defined in this file, and to publish the final result in the

52

/diagnostic_agg topic. Listing 12 shows the rules file definition in a YAML format, which

defines the publication rate and analyser roles.

pub_rate: 1.0 # Optional

base_path: '' # Optional, prepended to all diagnostic output

analyzers:

 power:

 type: GenericAnalyzer

 path: 'Power'

 timeout: 5.0

 contains: ['Battery']

 motor:

 type: GenericAnalyzer

 path: 'Motor'

 timeout: 5.0

 contains: ['Motor']

 temp:

 type: GenericAnalyzer

 path: 'Temp'

 timeout: 5.0

 contains: ['Sensor']

 laser:

 type: GenericAnalyzer

 path: 'Laser'

 timeout: 5.0

 contains: ['Laser']

 camera:

 type: GenericAnalyzer

 path: 'Camera'

 timeout: 5.0

 contains: ['Cam']

Listing 12 – ROS Diagnostic aggregator diagnostics.yaml configuration

ROS provides a launcher application that reads a launch file and runs all nodes and

applications defined on this file. Listing 13 provides an example of a launch file.

<launch>

 <arg name="battery_runtime" default="60"/>

 <node kg="rbx2_utils" name="simulator3" type="simulator.py" output="screen" clear_params="true">

 </node>

 <!-- Load diagnostics -->

 <node pkg="diagnostic_aggregator" type="aggregator_node" name="diag_agg" >

 <rosparam command="load" file="/home/lsa/catkin_ws/src/simulator/ utils/diagnostics.yaml"

/>

 </node>

 <node pkg="rqt_robot_monitor" type="rqt_robot_monitor" name="rqt_robot_monitor" />

</launch>

Listing 13 – ROS laucher file syntax

The launch file in Listing 13 directs the launcher to execute the simulator node, the

aggregator_node and the rqt_robot_monitor. This monitor provides a Graphic User

Interface to display all information generated by the simulator.

Figure 18 illustrates the rqt_robot_monitor capturing the diagnostic information

generated by the developed application. This figure shows a list of the monitored devices

and their statuses. The panel in the left shows the detailed information of the selected

device.

53

Figure 18 – RQT Screenshot of the Simulator running on a Virtual Machine

Each virtual robot runs on a virtual machine with 256 Mbytes of RAM and 1

processor. These machines execute Ubuntu 12.04 running ROS hydro. The VM image of a

robot is configured to automatically start all the necessary services to run the simulation.

When a new instance of the virtual robot VM starts up, it automatically sends its IP

address to the Nagios server, in order to be register itself in the monitoring server. This

behaviour was implemented to ease the management of a large number of virtual

machines. It is not a requirement for the proposed monitoring solution, since the robots can

be registered by the operator.

A script was created to collect performance data in a VM during runtime and send

this information to the database server. This is a bash script that runs on the guest OS and

gets the CPU usage from /proc filesystem, the memory usage from free unix command,

and the bandwidth transmitted from /sys/class/net. This information is sent every

minute. The script runs both in Nagion Server and in the robots.

5.1.2 Monitoring Server

The Nagios monitoring server runs on a virtual machine created with 2 Gbytes of

RAM and 2 processors running Ubuntu 13.10. It runs Nagios server, MySQL database

54

server, Apache HTTP server configured with PHP module enabled, and the proposed ROS

plug-in used to collect ROS diagnostic information from the remote robots.

Each host that should be monitored by Nagios must be added on Nagios

configurations files. A new file must be created on /etc/nagios3/conf.d/ following the

format presented in Listing 14.

A simple configuration file for monitoring the local host

This can serve as an example for configuring other servers;

Custom services specific to this host are added here, but services

defined in nagios2-common_services.cfg may also apply.

define host{

 use generic-host ; Name of host template to use

 host_name localhost

 alias localhost

 address 127.0.0.1

 }

Define a service to check the disk space of the root partition

on the local machine. Warning if < 20% free, critical if

< 10% free space on partition.

define service{

 use generic-service ; Name of service template to use

 host_name localhost

 service_description Disk Space

 check_command check_all_disks!20%!10%

 }

Define a service to check the number of currently logged in

users on the local machine. Warning if > 20 users, critical

if > 50 users.

define service{

 use generic-service ; Name of service template to use

 host_name localhost

 service_description Current Users

 check_command check_users!20!50

 }

Define a service to check the number of currently running procs

on the local machine. Warning if > 250 processes, critical if

> 400 processes.

define service{

 use generic-service ; Name of service template to use

 host_name localhost

 service_description Total Processes

 check_command check_procs!250!400

 }

Define a service to check the load on the local machine.

define service{

 use generic-service ; Name of service template to use

 host_name localhost

 service_description Current Load

 check_command check_load!5.0!4.0!3.0!10.0!6.0!4.0

 }

Listing 14- Nagios host configuration file example

Because of the large number of virtual robots to be added on Nagios for the

scalability experiment, a script was developed to connect to the Database server and to

automatically add a new host on Nagios. This is done by adding a new host on the

/etc/hostname in Nagios server. The script, showed on Listing 15, is necessary because

robots must be reachable by Hostname (ROS requirement).

#!/bin/bash

clear

echo ===

55

echo "Update VM list"

echo "Require root login"

echo ===

echo ===

read -p "Apache IP address: " -e -i hostname.com.br host

echo ===

echo ===

echo "Restore /etc/hosts from /etc/hosts.orig"

cp /etc/hosts.orig /etc/hosts

echo ===

echo ===

echo "Download VMs list"

cd ~

wget -c "$host/mestrado/apache/dump.php" --

echo ===

echo ===

echo "Configure VMs list"

cat dump.php

cat dump.php >> /etc/hosts

rm /root/dump.php

echo ===

echo ===

echo "Download Nagios CFG files from VMs"

cd ~

rm -rf temp

mkdir temp

cd temp

wget -r --no-parent http://$host/mestrado/apache/cfg

cd $host

cd mestrado

cd apache

cd cfg

cp *.cfg /etc/nagios3/conf.d

cd /etc/nagios3/conf.d

chmod 755 *

cd ~

/etc/init.d/nagios3 restart

echo ===

Listing 15 – Nagios automated configuration hosts

After all hosts are correctly configured on Nagios, the Nagios web portal can display

their updated statuses. Figure 19 is a screenshot of the Nagios running and monitoring

robots.

56

Figure 19 - Nagios web Portal

5.1.3 Database Server

As previously defined, the database server collects the data that allows performance

measurement in this experiment. There are two different servers configured on its Virtual

Machine: The first one is a MySQL database server and an Apache HTTP Server.

The first one is a database that stores all VMs contact information and their status

information. The data model for this information contains two tables. The VM table is

described in Table 1 and the statuses table is decribed in Table 2.

Field name Data type Descrition

id int(11)

A unique ID to identify the

Virtual Machine.

hostname varchar(255)

The hostname of the Virtual

Machine. ROS requires a

valid hostname configured

to allow roscore remote

connections.

ip varchar(255)

The Virtual Machine IP

address.

date date The date of the last VM

contact.

time time The time of the last VM

contact.

Table 1 - Database server table vms structure

57

Field name Data type Descrition

id int(11)

A unique ID to identify the

row.

hostname varchar(255)

The VM hostname that send

the status.

ip varchar(255)

The VM current IP address.

date date The date of the status.

time time The time of the status.

CPU Float The current % of the CPU

use.

Memory Falta o tipo The current % of the memory

use.

Bandwidth Falta o tipo Total bytes of the

Bandwidth transmitted (send

and received).

Comment Long text An addition field used to

facilitate group and

organize all received data.

Table 2 - Database server table statuses structure

The second service running on this machine is the Apache HTTP server configured

with PHP module enabled. It hosts PHP scripts that receive data from VMs through HTTP

POST requests and handle it properly.

The add.php script receives a HTTP POST containing the information specified on

the VM table and updates the database. If it is a new VM, it inserts a new row in the table. If

it is an existent VM, it updates its entry.

The add script also facilitates the configuration robots on Nagios. It does so by

outputting host entries that can be appended to the /etc/hostname file on the Nagios

server. This ouput is presented in Listing 16. This configuration allows the Nagios machine

to contact all VMs without a DNS server configured on the network.

58

IP Hostname

10.32.168.80 lsa-vm-simulator-10_32_168_80

10.32.168.81 lsa-vm-simulator-10_32_168_81

10.32.177.29 lsa-vm-simulator-10_32_177_29

10.32.177.31 lsa-vm-simulator-10_32_177_31

Listing 16 – Generated /etc/hostname file

The second step of this script is to automatically generate a Nagios configuration file

on the /etc/nagios3/conf directory. This configuration file, showed in Listing 17,

defines all information that should be monitored by Nagios for each specific host. When this

file is copied to its directory and the Nagios service is restarted, robots are added on

Nagios.

A simple configuration file for monitoring the local host

This can serve as an example for configuring other servers;

Custom services specific to this host are added here, but services

defined in nagios2-common_services.cfg may also apply.

define host{

 use generic-host ; Name of host template to use

 host_name lsa-vm-simulator-10_32_177_31

 alias lsa-vm-simulator-10_32_177_31

 address 10.32.177.31

 }

Define a service to check the robot sensors status

All sensors

define service{

 use generic-service ; Name of service template to use

 host_name lsa-vm-simulator-10_32_177_31

 service_description Robot all sensors

 check_command check-all

 }

Battery

define service{

 use generic-service ; Name of service template to use

 host_name lsa-vm-simulator-10_32_177_31

 service_description Robot / Laptop battery

 check_command check-battery

 }

Listing 17 – Generated Nagios host configuration file

The status.php is a script created to measure the VMs runtime information, this script

receives a HTTP post containing all the statuses information and stores the data in the

database. As previously stated, all the VMs in this experiment run this script every minute.

This is done through a crontab task.

59

5.2 Experiment with Real Robot

The experiment with real robot uses a Kobuki-based Turtlebot robot equipped with a

Microsoft Kinect as a depth sensor to avoid obstacles. Two Core i7 with 8GB memory

laptops were used to run the application. The robot is programmed to perform autonomous

navigation with collision avoidance.

The robot executes the ROS kobuki_node1 to access/control the mobile base, the

freenect_stack2 to access the Kinect, and ROS move_base3 navigation system. The

kobuki_node locally produces diagnostic information from the mobile base in real-time.

The monitoring solution was used to periodically collect diagnostic data during the

robot’s operation. The implementation of the architecture was the same as the one

described in the previous experiment. Due to that, the same server infrastructure was used.

1
 http://wiki.ros.org/kobuki_node

2
 http://wiki.ros.org/freenect_stack

3
 http://wiki.ros.org/move_base

60

6 EXPERIMENTAL RESULTS

This section discusses the results obtained from the executed experiments.

6.1 Server Scalability

This experiment evaluates the scalability of the monitoring server as the number of

monitored virtual robots increases up to 108. The monitoring server and the virtual robot

configurations are described in Chapter 5.

We evaluate the Nagios server latency, which measures the delay to execute each

check. Zero latency means that the server executed the checks at the exact time they were

scheduled for execution. The acceptable check latency is typically lower than 15 seconds

[NAG2005]. Larger latency indicates saturation of the Nagios server, meaning it is

executing more checks than supported by the server computer. The latency was evaluated

with 1, 30, 60, and 100 virtual robots connected to the monitoring server. The latency

results range from 0.1 to 1 second for 1 to 60 virtual robots. With 100 virtual robots the

average latency is 1.9 seconds, reaching the maximum value of 18.9 seconds in a single

measurement.

Figure 20 shows the monitoring server’s performance while the number of monitored

virtual robots increases from 1, 30, 60, 100 instances. The performance parameters

evaluated are CPU load, memory load, and network bandwidth. These parameters are

collected during 100 minutes in 5 minutes intervals. For each of the 3 parameters, their

average, median, and standard deviation are presented in the following charts. The same

data is also displayed in tabular format in the top right corner of each chart.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100 110

#
 jo

b
s

ru
n

n
in

g

VMs

CPU Load

avg med

(a)

avg med stddev

1 27,55 25,50 14,64

30 617,45 456,00 422,14

60 2447,41 2020,00 1657,87

100 2968,94 2336,00 2257,38

(a)

(b)

61

Figure 20 – CPU load (a) memory load (b) and network bandwidth (c) used at the
monitoring server as the number of virtual robots increases

One can observe in Figure 20Erro! Fonte de referência não encontrada.(b) that

the server’s average memory load increased from about 60% to 80% as the number of

virtual robot increased. The network bandwidth in Figure 20(c) increased from about 5 to 15

Kbytes/min. The server latency result with 100 virtual robots corroborates with CPU load

results observed in Figure 20(a). One can observe that the CPU load is high (both avg and

stddev), causing fluctuations in the latency measurement. These latency and CPU load

results indicate that 100 robots are starting to saturate the minimalist server described in

Section 5.1.2. On the other hand, it is reported that Nagios can monitor thousands of

computers [NMP2014] when a normal fully-configured server is used instead of VMs. If we

assume one computer per robot, it means that thousands of robots could be monitored.

6.2 Virtual Robot Performance

This experiment collects performance data at the robot side, in this case, from a

virtual robot VM. Performance data (CPU load, memory load, network bandwidth) was

collected during 60 hours with different monitoring frequencies (no monitoring, every 5

minutes, and every 1 minute). The observed results are illustrated in Figure 21, where the

average, median, and standard deviation are presented in each chart.

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

%

VMs

Memory Load

avg med

(b)

avg med stddev

1 58,71 59,00 0,78

30 61,27 59,00 7,89

60 66,33 53,00 21,03

100 76,63 76,00 2,63

(b)

(c)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110

K
b

yt
e

/m
in

VMs

Network Bandwidth
avg med

(c)

avg med stddev

1 2,78 0,00 21,44

30 5,12 0,35 13,28

60 13,21 2,43 21,23

100 14,09 0,68 38,64

(b)

(c)

62

Figure 21 – CPU load (a) memory load (b) and network bandwidth (c) used at the monitored robot

These results show that the monitoring process has a small impact on the monitored

VMs, even considering the minimal resources allocated for each VM, as described in

Chapter 5.

6.3 Real Robot Performance

This experiment evaluates the impact of the monitoring system on a real robot

performing a common mobile robot software application for autonomous navigation. The

robot’s hardware and software configuration are described in Section 5.2.

0

2

4

6

8

10

12

14

16

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

#
 jo

b
s

ru
n

n
in

g

avg med

CPULoad

(a)

37

38

39

40

41

42

43

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

avg med

Memory Load

(b)

%

0

10

20

30

40

50

60

70

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

K
b

yt
e

/m
in

avg med

Network Bandwidth

(c)

63

Table 3 shows the performance data (CPU load, memory load, network bandwidth)

collected during 30 minutes of navigation. First, data is collected when the monitoring

server is off, then the same navigation task is repeated with the monitoring server on. As

mentioned before, the proposed system required no additional software or specific

configuration on the real robot.

Item Monitor Status Average Median Std dev

CPU
Load

Monitor Off 123,83 125,50 23,28

Monitor On 136,00 140,00 27,21

% of change 9,83% 13,36% 16,86%

Memory
Load

Monitor Off 42,00 42,00 0,00

Monitor On 41,84 42,00 0,37

% of change -0,38% 0,00% N/A

Network

BW

Monitor Off 19,00 12,46 14,76

Monitor On 26,56 21,80 19,16

% of change 39,76% 74,89% 29,80%

Table 3 - CPU load (a) memory load (b) and network bandwidth (c) at the real robot with the monitoring on (every
5 min) and off

6.4 Limitations and Future Work

There are limitations in the usage of Nagios and ROS. One important limitation is

that Nagios was orignally developed to monitor servers instead of robots. Due to this,

Nagios requires a restart when a new host/robot is added or removed. This operation takes

few seconds, depending on how many hosts are configured. This, however, is an

implementation issue, not a limitation of the monitoring architecture.

Another important feature that was not explored in this work is Nagios support of

asynchronous operations, which consists in listening for traps or interruptions instead of

polling hosts. This feature would allow robots to instantly send a Nagios alerts and updates.

Nagios has a very flexible configuration stack, allowing for example the configuration

of different polling intervals for each robot or for each sensor of an individual robot. This

feature allows closer monitoring for more sensitive statuses. Another important feature not

64

explored by this work is Configuration Templates. This feature could be useful to monitor

large sets of heterogeneous robots. Different templates could be defined for each kind of

robot on a heterogeneous MRS. These templates can also be used to quickly add or

remove robots on Nagios whitout redefining sensor rules.

Because of the simplicity of Nagios protocol (reads the standard output in a specific

pre determined format) it is possible to implement a Nagios plugin to theoretically monitor

any kind of device/robot on different robots middleware. The same instance of Nagios

server could run multiple developed plugins allowing, for example, monitoring a MRS

running different kind of robot middlewares.

As future work we intend to use the proposed approach as a supervisory system to

monitor and to log events of one or multiple industrial robots. In the near future we intend to

use this monitoring information to create a self-healing and autonomic MRS.

65

7 CONCLUSION

This work presented a lightweight and easy to configure monitoring infrastructure to

monitor the status of a large number of different robots during runtime. The proposed

approach integrates consolidated tools for IT monitoring (Nagios) and robotics (ROS),

which proved to be very efficient for the robotic domain.

In terms of usability, the proposed approach requires no modification or additional

software on the robot side. On the server side the proposed ROS plug-in must be installed

and the server must be able to access the robots via their IP addresses. The source code

for this plugin is available in the Appendix and can be used for any ROS compliant robot.

Experimental results show that it is possible to monitor 100 robots even with a

minimally configured Nagios Server. It has been reported [NMP2014] that a fully configured

Nagios Server could monitor thousands of computers. The results also show that the

monitoring related overhead on real robots is negligible compared to the resources required

to perform an autonomous navigation task.

Given the obtained results, it is possible to conclude this research achieves the goal

of providing means to monitor faults in a MRS. The results also show that the proposed

approach is easy to implement, has minimal impact on the robots, and provides a high

usability overview of the MRS status.

66

REFERENCES

[AAV2001] A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental concepts of

dependability. University of Newcastle upon Tyne, Computing Science,

2001.

[AAV2004] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” Dependable and

Secure Computing, IEEE on, vol. 1, no. 1, pp. 11–33, 2004.

[ABA2008] A. Basu, M. Gallien, C. Lesire, and T. Nguyen, [Online] “Incremental

component-based construction and verification of a robotic system,” ECAI,

2008.

[AMA2006] A. Makarenko, A. Brooks, and T. Kaupp, "Orca: Components for Robotics,"

In International Conference on Intelligent Robots and Systems (IROS), pp.

163-168, 2006.

[BLU2004] B. Lussier, R. Chatila, F. Ingrand, M.-O. Killijian, and D. Powell, “On fault

tolerance and robustness in autonomous systems”, in Proceedings of the

3rdI ARP-IEEE/RASEURON Joint Workshop on Technical Challenges for

Dependable Robots in Human Environments, 2004.

[BRG2009] B. Davide, P. Scandurra. "Component-based robotic engineering (part

i)". Robotics & Automation Magazine, IEEE 16.4 (2009): 84-96, 2009.

[BRG2010] Brugali, Davide, and A. Shakhimardanov. "Component-based robotic

engineering (part ii)." Robotics & Automation Magazine, IEEE 100-112,

2010.

[CHR2009] Christensen, A. Lyhne, R. O'Grady, and M. Dorigo. "From fireflies to fault-

tolerant swarms of robots." Evolutionary Computation, IEEE on 13.4 (2009):

754-766, 2009.

[COL2012] C. Dave. "Data center infrastructure management." Data Center

Knowledge, 2012.

[DAI2007] Daigle, Matthew J., Xenofon D. Koutsoukos, and Gautam Biswas.

"Distributed diagnosis in formations of mobile robots." Robotics, IEEE 353-

369, 2007.

67

[ELK2012] E. Ayssam, T. Sobh. "Robotics middleware: a comprehensive literature

survey and attribute-based bibliography." Journal of Robotics, 2012.

[GAN2013] Ganglia Website. [Online] Available from: http://ganglia.sourceforge.net,

2013.

[GDU2010] G. Dudek and M. Jenkin, Computational principles of mobile robotics.

Cambridge university press, 2010.

[GP12014] G. Patrick. “ROS By Example HYDRO - Volume 1”. P. 214, 2014.

[GP22014] G. Patrick. “ROS By Example HYDRO - Volume 2. Packages and

Programs for Advanced Robot Behaviors”. 2014.

[HUT2002] H. Utz, S. Sablatng, S. Enderle, G. Kraetzschmar, "Miro- Middleware for

Mobile Robot Applications," IEEE 493-497, 2002.

[JCA2003] J. Carlson and R. R. Murphy, “Reliability analysis of mobile robots,” in

Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE 274–281,

2003.

[JCA2005] J. Carlson and R. R. Murphy, “How ugvs physically fail in the field,”

Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 423–437, 2005.

[KAM2002] G. Kaminka, D. V. Pynadath, and M. Tambe, “Monitoring teams by

overhearing: A multi-agent plan-recognition approach,” Journal of Artificial

Intelligence Research, no. 17, pp. 83–135, 2002.

[KBK2013] iClebo Kobuki web site. [Online] Available from:

http://kobuki.yujinrobot.com, 2013.

[KBL2006] Kannan, Balajee, and Lynne E. Parker. "Fault-tolerance based metrics for

evaluating system performance in multi-robot teams." Proceedings of

Performance Metrics for Intelligent Systems Workshop, 2006.

[LEP2008] L. E. Parker, “Multiple mobile robot systems,” Springer Handbook of

Robotics, pp. 921–941, 2008.

[LEP2012] L. E. Parker, “Reliability and fault tolerance in collective robot systems,”

Handbook on Collective Robotics: Fundamentals and Challenges, 2012.

[LOT2011] Lotz, Alex, Andreas Steck, and Christian Schlegel. "Runtime monitoring of

robotics software components: Increasing robustness of service robotic

68

systems." Advanced Robotics (ICAR), 2011 15th International Conference

on. IEEE, 2011.

[MAK2007] Makarenko, Alexei, Alex Brooks, and Tobias Kaupp. "On the benefits of

making robotic software frameworks thin." International Conference on

Intelligent Robots and Systems. Vol. 2, 2007.

[MEN2010] Mendes, Mário JGC, and J. da Costa. "A multi-agent approach to a

networked fault detection system." IEEE. Control and Fault-Tolerant

Systems (SysTol), 2010.

[MHA2003] M. Hashimoto, H. Kawashima, and F. Oba, “A multi-model based fault

detection and diagnosis of internal sensors for mobile robot,” in Intelligent

Robots and Systems, 2003. Proceedings. 2003 IEEE/RSJ International

Conference on, vol. 4. IEEE, pp. 3787–3792, 2003.

[MIR2013] Miro – Middleware for Robots Website. [Online] Available from:

http://www.ohloh.net/p/miro-middleware, 2013.

[MJM1995] M. J. Mataric, M. Nilsson, and K. Simsarin, “Cooperative multi-robot box-

pushing,” in Intelligent Robots and Systems 95.’Human Robot Interaction

and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International

Conference on, vol. 3. IEEE, pp. 556–561, 1995.

[MLL1998] M. L. Leuschen, I. D. Walker, and J. R. Cavallaro, “Robot reliability through

fuzzy markov models” in Reliability and Maintainability Symposium, 1998.

Proceedings., Annual. IEEE, pp. 209–214, 1998.

[MOH2008] Mohamed, Nader, Jameela Al-Jaroodi, and Imad Jawhar. “Middleware for

robotics: A survey Robotics, Automation and Mechatronics”, 2008 IEEE

Conference on IEEE, 2008.

[MOH2009] Mohan, Yogeswaran, and S. G. Ponnambalam. "An extensive review of

research in swarm robotics." Nature & Biologically Inspired Computing,

2009. NaBIC 2009. World Congress on. IEEE, 2009.

[MQU2009] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA

workshop on open source software, vol. 3, no. 3.2, 2009.

[NAG2005] Barth, Wolfgang. Nagios - System and Network Monitorin, 2005.

69

[NAG2013] Nagios, “Nagios - the industry standard in it infrastructure monitoring, 2013.

Available from: http://nagios.org,” [Online]. Available: http://nagios.org,

2013.

[NMP2014] Maximizing Performance In Nagios. [Online] Available from:

http://assets.nagios.com/downloads/nagiosxi/docs/Maximizing-

Performance-In-Nagios-

[ORC2013] Orca: Components for Robotics Website. [Online] Available from

http://orca-robotics.sourceforge.net/. 2013.

[PAR2010] P. A. R. Fagundes, “Plataforma de controlo e simulacao robotica,” 2010.

[RCA1993] R. C. Arkin, T. Balch, and E. Nitz, “Communication of behavorial state in

multi-agent retrieval tasks,” in Robotics and Automation, 1993.

Proceedings., 1993 IEEE International Conference on. IEEE, pp. 588–594,

1993.

[RCA2003] R. Canham, A. H. Jackson, and A. Tyrrell, “Robot error detection using an

artificial immune system,” in Evolvable Hardware, 2003. Proceedings.

NASA/DoD Conference on. IEEE, pp. 199–207, 2003.

[RHB2007] R. H. Bordini, J. F. H¨ubner, and M. Wooldridge, Programming multi-agent

systems in AgentSpeakusingJason. Wiley. com, vol. 8, 2007.

[ROD2014] Diagnostic System for Robots Running ROS. [Online] Available from:

http://www.ros.org/reps/rep-0107.html, 2014.

[ROG2006] L. D. Rogério. Adaptability and Fault Tolerance. University of Kent, UK.

2006.

[ROS2014] ROS Website. [Online] Available from: http://www.ros.org, 2014.

[RSH2013] Kirchner, Dominik, Stefan Niemczyk, and Kurt Geihs. "RoSHA: A Multi-

Robot Self-Healing Architecture⋆." 17th RoboCup International Symposium,

Eindhoven, Netherlands. 2013.

[RSI2004] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile

Robots. The MIT press, 2004.

70

[SAH2006] S. Ahn, J. Lee, K. Lim, H. Ko, Y. Kwon, and H. Kim, "Requirements to

UPnP for Robot Middleware," in Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), Oct, 2006.

[SEN2001] S. Enderle, H. Utz, S. Sablatng, S. Simon, G. Kraetzschmar, and G. Palm,

"Miro: Middleware for autonomous mobile robots," IFAC Conference on

Telematics Applications in Automation and Robotics, 2001.

[SKJ2006] S. Ahn, K. Lim, J. Lee, H. Ko, Y. Kwon and H. Kim, "UPnP Robot

Middleware for Ubiquitous Robot Control," The 3rd International

Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006),

2006.

[SPI2013] Spirceworks Website. [Online] Available from: http://www.spiceworks.com/

2013.

[SVE2005] S. Verret, “Current state of the art in multirobot systems,” Defence

Research and Development Canada-Suffield, 2005.

[UPN2013] UPnP Website. [Online] Available from: http://www.upnp.org, 2013.

[VGO2004] V. Goldmanand S. Zilberstein, “Decentralized control of cooperative

systems: Categorization and complexity analysis,” J. Artif. Intell.

Res.(JAIR), vol. 22, pp. 143–174, 2004.

[ZAB2013] Zabbix Website. [Online] Available from: http://www.zabbix.com, 2013.

71

APPENDIX

7.1 Nagios installation steps

The detailed steps to download, install and configured Nagios could be accessed on

[NAG2005]. Running Linux Ubuntu 13.04 the apt-get package management system can

install and configure in a few steps:

Executed as root:

Install packages Listing 18:

sudo apt-get install -y nagios3

Listing 18 – Nagios instalation command on Ubuntu

This command will download, install and pre-configured all Nagios requirements for

work like Apache HTTP server, MySQL database and libraries.

Set admin password, Listing 19:

sudo htpasswd -c /etc/nagios3/htpasswd.users nagiosadmin

Listing 19 – Nagios set administrator password

Start the service, see Listing 20:

sudo /etc/init.d/nagios start

Listing 20 – Start Nagios service

7.2 Nagios configuration steps

On Ubunto 13.04 the initial verion of Nagios comes with a defect that generate a alert, this

is a filled bug #615848 – “You can either give the nagios user permission to that file or just

ignore the file during check”. Search for this bug on the Nagios website for more details.

7.3 ROS configuration Steps

A detailed page on how to install and configure ROS on Ubuntu could be found at:

http://wiki.ros.org/hydro/Installation/Ubuntu

72

Another source explains step by step detailed on how to install and configure ROS is

[GP12014] and [GP22014].

After ROS installation steps is completed successfully, configure environment variables

Listing 21:

source /opt/ros/<distro>/setup.bash

Listing 21 – Configure ROS environment

Create a ROS Workspace, see Listing 22:

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/src

catkin_init_workspace

cd ~/catkin_ws/

catkin_make

source devel/setup.bash

Listing 22 – ROS create workspace

7.4 Kobuki Turtlebot installation

On Ubuntu 12.04 execute the steps, see Listing 23:

apt-get install ros-hydro-turtlebot*

apt-get install ros-hydro-kobuki*

run only at first time

rosrun kobuki_ftdi create_udev_rules

Listing 23 – Kobuki Turtlebot installation steps

Steps to execute Kobuki, see Listing 24:

Connect the robot on the USB and run:

roslaunch turtlebot_bringup minimal.launch

Keyboard robot control:

roslaunch turtlebot_teleop keyboard_teleop.launch

GUI

rosrun rqt_runtime_monitor rqt_runtime_monitor

Listing 24 – Steps to run Kobuki Turtlebot

7.5 ROS Diagnostics Nagios plugin source code

The source code of the ROS Diagnostics Nagios plugin developed in Python to

integrate Nagios with ROS Diagnostics.

#!/usr/bin/env python

import sys

sys.path.append("/opt/ros/hydro/lib/python2.7/dist-packages")

73

import os

os.environ['PATH'] = "/opt/ros/hydro/bin:" + os.environ['PATH']

from optparse import OptionParser

import rospy

import rosnode

import os

import roslib

import sys

roslib.load_manifest('linux_hardware')

from linux_hardware.msg import LaptopChargeStatus

from diagnostic_msgs.msg import DiagnosticStatus, DiagnosticArray, KeyValue

Exit statuses recognized by Nagios

UNKNOWN = -1

OK = 0

WARNING = 1

CRITICAL = 2

STALE = 3

COUNT_sensors = 0

TEMPLATE FOR READING PARAMETERS FROM COMMANDLINE

parser = OptionParser()

parser.add_option("-H", "--host", dest="host", default='localhost', help="Define the target host")

parser.add_option("-N", "--name", dest="name", default='all', help="Define the sensor name")

(options, args) = parser.parse_args()

Set turtlebot ROS Master URI

os.environ['ROS_MASTER_URI'] = 'http://' + options.host + ':11311'

total_level = None

OK_sensors = None

WARNING_sensors = None

CRITICAL_sensors = None

STALE_sensors = None

def callback(data):

 global total_level

 global OK_sensors

 global WARNING_sensors

 global CRITICAL_sensors

 global STALE_sensors

 global COUNT_sensors

 ready = False

 while not ready:

 for current in data.status:

 # Debug all information

 #from pprint import pprint

 #pprint(options.host)

 # Filter if name is received

 if (options.name == "all" or options.name in current.name):

 # Calculate the total level

 if current.level >= total_level:

 total_level = current.level

 # Parse current.name string and keep only the part after the :

 parse_name = current.name

 # Count how many sensors were found

 COUNT_sensors = COUNT_sensors + 1

 # Create CRITICAL sensors list

 if current.level == CRITICAL:

 if CRITICAL_sensors != None:

 CRITICAL_sensors = str(CRITICAL_sensors) + str(parse_name) + str(', ')

 else:

 CRITICAL_sensors = str(parse_name) + str(', ')

 # Create WARNING sensors list

74

 if current.level == WARNING:

 if WARNING_sensors != None:

 WARNING_sensors = str(WARNING_sensors) + str(parse_name) + str(', ')

 else:

 WARNING_sensors = str(parse_name) + str(', ')

 # Create OK sensors list

 if current.level == OK:

 if OK_sensors != None:

 OK_sensors = str(OK_sensors) + str(parse_name) + str(', ')

 else:

 OK_sensors = str(parse_name) + str(', ')

 # Create STALE sensors list

 if current.level == STALE:

 if STALE_sensors != None:

 STALE_sensors = str(STALE_sensors) + str(parse_name) + str(', ')

 else:

 STALE_sensors = str(parse_name) + str(', ')

 ready = True

 time = rospy.get_time()

 #percentage = int(float(percentage))

 rospy.signal_shutdown(0)

def listener():

 rospy.init_node('ros_diagnostics', anonymous=True, disable_signals=True)

 rospy.Subscriber("diagnostics_agg", DiagnosticArray , callback)

 rospy.spin()

def myhook():

 description = None

 if STALE_sensors != None:

 if (description != None):

 description = str(description) + str("STAKE sensor(s) list: " + str(STALE_sensors))

 else:

 description = str("STALE sensor(s) list: " + str(STALE_sensors))

 if CRITICAL_sensors != None:

 if (description != None):

 description = str(description) + str("CRITICAL sensor(s) list: " + str(CRITICAL_sensors))

 else:

 description = "CRITICAL sensor(s) list: " + str(CRITICAL_sensors)

 if WARNING_sensors != None:

 if (description != None):

 description = str(description) + str("WARNING sensor(s) list: " + str(WARNING_sensors))

 else:

 description = str("WARNING sensor(s) list: " + str(WARNING_sensors))

 if OK_sensors != None:

 if (description != None):

 description = str(description) + str("OK sensor(s) list: " + str(OK_sensors))

 else:

 description = str("OK sensor(s) list: " + str(OK_sensors))

 # Remove last comma

 if description != None:

 description = description[:-2]

 if COUNT_sensors == 0:

 print "CRITICAL - %s" % (description)

 exiting(CRITICAL)

 if total_level >= CRITICAL:

 print "CRITICAL - %s" % (description)

 exiting(CRITICAL)

 elif total_level == WARNING:

 print "WARNING - %s" % (description)

 exiting(WARNING)

 else:

 print "OK - %s" % (description)

 exiting(OK)

75

def exiting(value):

 try:

 sys.stdout.flush()

 os._exit(value)

 except:

 pass

if __name__ == '__main__':

 try:

 master = rospy.get_master()

 master.getPid()

 except Exception:

 print "UNKNOWN - Roscore not available"

 exiting(UNKNOWN)

 try:

 if len(sys.argv) < 1:

 print "usage %s -N <name of sensor>" % (sys.argv[0])

 exiting(UNKNOWN)

 rospy.on_shutdown(myhook)

 listener()

 except rospy.ROSInterruptException:

 exit

Listing 25 - ROS Diagnostics Nagios plugin source code

7.6 Virtual Robot source code

This source code is a ROS node developed in Python to generate randon diagnostic

information based on pre-defined rules and publish the generated information on ROS

diagnostics topic.

The ROS Diagnostic aggregator node (distributed with ROS) reads this information

and based on a XML rules file group and publish the information on the ROS Diagnostic

agg topic. Once the information is published on diagnostic_agg topic it is avaiable to be

accessed from Nagios through the ROS Diagnostics Nagios plugin.

#!/usr/bin/env python

import roslib; # roslib.load_manifest('pr2_motors_analyzer')

import rospy, random, md5

from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue

Configuration

Simulation config

total_errors = 0

total_warnings = 0

Refresh interval in seconds

refresh_interval = 300

Robot configuration

Motors config

number_of_motors = 3

76

Temperature config

number_of_sensors = 2

Laser config

number_of_lasers = 2

Cameras config

number_of_cameras = 1

Initial runtime setup

Battery config

The intial battery level - 100 is considered full charge

initial_battery_level = 100

Error battery level for diagnostics

error_battery_level = 10

Warn battery level for diagnostics

warn_battery_level = 20

Runtime error control

current_errors = 0

current_warnings = 0

def motor(msg):

 global current_errors

 global current_warnings

 for cont in range(1,number_of_motors + 1):

 status = DiagnosticStatus()

 status.name = "Motor " + str(cont)

 status.hardware_id = md5.new(str(status.name)).hexdigest()

 random.seed()

 level = random.randint(0, 100)

 #print level

 if level < 95:

 status.message = 'Running'

 status.level = DiagnosticStatus.OK

 elif level < 99:

 status.message = 'Warning'

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 status.message = 'Stopped'

 status.level = DiagnosticStatus.ERROR

 current_errors += 1

 msg.status.append(status)

 return msg

def camera(msg):

 global current_errors

 global current_warnings

 for cont in range(1,number_of_cameras + 1):

 status = DiagnosticStatus()

 status.name = "Cam " + str(cont)

 status.hardware_id = md5.new(str(status.name)).hexdigest()

 random.seed()

 level = random.randint(0, 100)

 #print level

 if level < 95:

 status.message = 'OK'

 status.level = DiagnosticStatus.OK

 elif level < 99:

 status.message = 'Warning'

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 status.message = 'Error'

 status.level = DiagnosticStatus.ERROR

77

 current_errors += 1

 msg.status.append(status)

 return msg

def temperature(msg):

 global current_errors

 global current_warnings

 for cont in range(1,number_of_sensors + 1):

 status = DiagnosticStatus()

 status.name = "Sensor " + str(cont)

 status.hardware_id = md5.new(str(status.name)).hexdigest()

 random.seed()

 level = random.randint(0, 100)

 #print level

 if level < 95:

 temp = random.randint(15, 50)

 status.message = str(temp) + ' degrees'

 status.level = DiagnosticStatus.OK

 elif level < 99:

 temp = random.randint(51, 80)

 status.message = str(temp) + ' degrees'

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 temp = random.randint(80, 99)

 status.message = str(temp) + ' degrees'

 status.level = DiagnosticStatus.ERROR

 current_errors += 1

 msg.status.append(status)

 return msg

def laser(msg):

 global current_errors

 global current_warnings

 for cont in range(1,number_of_lasers + 1):

 status = DiagnosticStatus()

 status.name = "Laser " + str(cont)

 status.hardware_id = md5.new(str(status.name)).hexdigest()

 random.seed()

 level = random.randint(0, 100)

 #print level

 if level < 95:

 status.message = 'Normal'

 status.level = DiagnosticStatus.OK

 elif level < 99:

 status.message = 'Warning'

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 status.message = 'Error'

 status.level = DiagnosticStatus.ERROR

 current_errors += 1

 msg.status.append(status)

 return msg

def battery(msg):

 global current_errors

 global current_warnings

 # Initialize the diagnostics status

 status = DiagnosticStatus()

 status.name = "Robot Battery"

 current_battery_level = random.randint(1, 100)

 if current_battery_level < error_battery_level:

 status.message = "Low " + str(current_battery_level) + "%"

 status.level = DiagnosticStatus.ERROR

 current_errors += 1

 elif current_battery_level < warn_battery_level:

 status.message = "Warning " + str(current_battery_level) + "%"

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 status.message = "OK " + str(current_battery_level) + "%"

78

 status.level = DiagnosticStatus.OK

 # Add the raw battery level to the diagnostics message

 status.values.append(KeyValue("Level", str(current_battery_level)))

 msg.status.append(status)

 return msg

def laptop_battery(msg):

 global current_errors

 global current_warnings

 # Initialize the diagnostics status

 status = DiagnosticStatus()

 status.name = "Laptop Battery"

 current_battery_level = random.randint(1, 100)

 if current_battery_level < error_battery_level:

 status.message = "Low " + str(current_battery_level) + "%"

 status.level = DiagnosticStatus.ERROR

 current_errors += 1

 elif current_battery_level < warn_battery_level:

 status.message = "Warning " + str(current_battery_level) + "%"

 status.level = DiagnosticStatus.WARN

 current_warnings += 1

 else:

 status.message = "OK " + str(current_battery_level) + "%"

 status.level = DiagnosticStatus.OK

 # Add the raw battery level to the diagnostics message

 status.values.append(KeyValue("Level", str(current_battery_level)))

 msg.status.append(status)

 return msg

def generate_values_internal(msg):

 global current_errors

 global current_warnings

 msg.header.stamp = rospy.Time.now()

 msg = motor(msg)

 msg = battery(msg)

 msg = temperature(msg)

 msg = laser(msg)

 msg = camera(msg)

 msg = laptop_battery(msg)

 return msg

def generate_values():

 global total_errors

 global total_warnings

 global current_errors

 global current_warnings

 msg = DiagnosticArray()

 loop2 = 0

 while True:

 loop2 = loop2 + 1

 current_errors = 0

 current_warnings = 0

 generate_values_internal(msg)

 print '###'

 print 'Generate_values runtime count ' + str(loop2)

 #print 'total_errors = ' + str(total_errors)

 #print 'current_errors = ' + str(current_errors)

 #print 'total_warnings = ' + str(total_warnings)

 #print 'current_warnings = ' + str(current_warnings)

 print '###'

 # Avoid stuck the simulator

 if (loop2 > 100000):

 break

 if (total_warnings == current_warnings):

 if (total_errors == current_errors):

 #print "match"

 break

79

 return msg

def update_config():

 global total_errors

 global total_warnings

 global refresh_interval

 global number_of_motors

 global number_of_sensors

 global number_of_lasers

 global number_of_cameras

 total_errors = 0

 total_warnings = 0

 return False

if __name__ == '__main__':

 # Create initial values

 rospy.init_node('simulator3')

 pub = rospy.Publisher('/diagnostics', DiagnosticArray)

 loop = 0

 my_rate = rospy.Rate(1)

 update_config()

 while not rospy.is_shutdown():

 #print "loop = " + str(loop)

 #print "refresh_interval = " + str(refresh_interval)

 if ((loop % refresh_interval) == 0):

 print '###'

 print 'Refresh interval ' + str(refresh_interval) + ' seconds...'

 msg = generate_values()

 #print msg

 print '###'

 # Check if the config was changed, if yes force reload sensor values

 if (update_config() == True):

 print '###'

 print 'Simulator configuration updated sucessfully'

 print '###'

 msg = generate_values()

 pub.publish(msg)

 loop = loop + 1

 my_rate.sleep()

Listing 26 – Virtual Robot source code

