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 FAULT SUPERVISION FOR MULTI ROBOTICS SYSTEMS 

 

ABSTRACT 

 

As robotics becomes more common and people start to use it in routine tasks, 

dependability becomes more and more relevant to create trustworthy solutions. A 

commonly used approach to provide reliability and availability is the use of multi robots 

instead of a single robot. However, in case of a large teams of robots (tens or more), 

determining the system status can be a challenge. 

This work presents a runtime monitoring solution for Multi Robotic Systems. It 

integrates Nagios IT Monitoring tool and ROS robotic middleware. One of the potential 

advantages of this approach is that the use of a consolidated IT infrastructure tool enables 

the reuse of several relevant features developed to monitor large datacenters. Another 

important advantage of that this solution does not require additional software at the robot 

side. 

The experimental results demonstrate that the proposed monitoring system has a 

small performance impact on the robot and the monitoring server can easily support 

hundreds or even thousands of monitored robots. 
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 SUPERVISÃO DE FALHAS PARA SISTEMAS MULTI-ROBÔS 

 

RESUMO 

 

À medida que a robótica se torna mais comum e as pessoas começam a utilizá-la 

em suas tarefas de rotina, dependabilidade torna-se cada vez mais importante para a 

construção de uma solução digna de confiança. Uma abordagem comum de prover 

confiabilidade e disponibilidade é o uso de multi robôs ao invés de um único robô devido a 

sua redundância intrísica. Entretanto, no caso de um grande time de robôs (dezenas ou 

mais), uma tarefa aparentemente simples como a determinação do status do sistema pode 

se tornar um desafio. 

Este trabalho apresenta uma ferramenta de monitoramento de sistemas multi robôs 

em tempo de execução. Esta solução integra a ferramenta de monitoramento de TI Nagios 

com o middleware robótico ROS sem a necessidade de instalação de software adicional no 

robô. O uso de uma ferramenta de TI consolidada permite o reuso de diversas 

funcionalidades relevantes já empregadas amplamente no monitoramento de datacenters. 

Os resultados experimentais demonstram que a solução proposta tem um baixo 

impacto no desempenho do robô e o servidor de monitoramento pode facilmente monitorar 

centenas ou até milhares de robôs ao mesmo tempo. 
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1 INTRODUCTION 

Robotics is becoming commonplace and people start to use more mobile robots to 

help and to accomplish a variety of ordinary tasks such as vacuum cleaning, pool cleaning, 

and lawn mowing, among others. In addition, robots are also typically used to execute 

dangerous tasks, unhealthy tasks, go to remote places, among other possibly critical 

applications [GDU2010]. 

In this work robots are classified in two different types: stationary robots and mobile 

robots. Stationary robots are simpler than mobile ones because they are fixed at some 

controlled environment. It is common to use the stationary robots on industry to automate 

repetitive tasks. Also, this kind of robot is built for a very specific application. Typical 

applications of stationary industrial robots include casting, painting, welding, assembly, 

materials handling, product inspection, and testing. All these tasks can be performed with 

more accuracy and speed compared to humans. 

Mobile robotics, on the other hand, is the research area that studies the control of 

autonomous or semi-autonomous vehicles [GDU2010] and [RSI2004]. Currently, there are 

some commercial applications for mobile service robots, such as goods transportation, 

surveillance, inspection, cleaning, and household tasks. Robotics has been evolving fast in 

terms of new functionalities and becoming affordable, increasing its use in several aspects 

of society [PAR2010]. This fact increased the development rate of new and more complex 

robotic applications [PAR2010], which require more complex software stack [ABA2008]. 

Despite these improvements, autonomous mobile robots have not yet made much impact 

upon industrial and domestic applications, mainly due to the lack of dependability, 

robustness, reliability and flexibility in real environments. This requires more research to 

enable the design of more efficient and robust robotic applications.  

According to [LEP2008] one cost-effective way to provide effectiveness and 

robustness to robotic system is to use multi-robots instead of a single robot. Due to the 

application of parallelism, multi-robot systems (MRS) have some advantages over single-

robots systems, such as greater task completion speed. Furthermore, improvements on 

robustness and reliability can be achieved in MRS through the implementation of fault-

tolerant systems. For instance, when one member of the team fails, another can take over 

his work and continue that the task. An MRS of cheaper and simpler robots can typically 
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provide more reliability than a more expensive and complex single robot [LEP2008]. On the 

other hand, MRS also present more complex challenges compared to single robot systems. 

Because they are collective systems, MRS are more complex to manage and coordinate, 

since they require increased communication capabilities in order to coordinate all robots. 

Collectivity is also a factor on troubleshooting, because it is harder to determine the global 

state of the system.  

MRS can be classified as homogeneous or heterogeneous [SVE2005]. 

Homogeneous MRS are systems where all robots have the same specification (hardware 

and software configuration). Heterogeneous MRS can have different kind of robots in the 

same system. In Homogeneous MRS it is easier to replace faulty robots. On the other hand 

heterogeneous MRS can employ different kind of specialized robots to perform different 

tasks.  

Robotic systems can also be classified according to their autonomy level, i.e. its 

ability to decide how to accomplish a task based on its perception of the environment 

[RHB2007]. There are robots with no autonomy at all, called tele-operated, and semi-

autonomous robot. A robot with some level of autonomy can be called an agent. Mobile 

robotics will become commonplace in the society if it can be cost-effective and dependable. 

Currently the cost-effectiveness of robotics is evolving since computers and electronics are 

more accessible. On the other hand, current single mobile robots lack effectiveness and 

dependability. MRS is naturally more robust than single robots due its intrinsic redundancy, 

but it increases the software complexity due to its distributed nature.  

According to [LEP2012] even MRS designed to be robust will face unexpected faults 

from a very large range of possibilities. Detecting the sources of faults is the very first step 

towards a fault tolerant MRS. The large number of robots, the large number of possible 

faults in each robot, and a dynamic environment make the fault monitoring a complex and 

mandatory task for MRS with reliability constraints. 

The goal of this work is to provide means to easily monitor faults at a team of 

heterogeneous robotic agents. The contribution of this work is a proof of concept that 

traditional infrastructure networking monitoring tool can also be used combined with 

robotics. Detect and isolate the defective robot is a first step to achieve robustness, toward 

an adaptive MRS that can execute the desired tasks even with the presence of faults. With 

more dependable robotic systems, more applications can be created to serve the society. 
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In order to achieve the proposed goal, the present work describes the integration 

between a traditional infrastructure networking monitoring tool and a robotics middleware. 

The advantage of combining pre-existing consolidated tools include a reduced development 

cost/time and the possibility to leverage desirable characteristics of well established 

software, such as network scalability, software stability, and software extensibility. 

This work is organized as follows. The section 2  presents theoretical background 

regarding MRS, autonomous agents, and dependability. Section 3 describes the state of 

the art in terms of individual robot fault detection and MRS fault detection. Section 4 

presents the developed architecture and the section 5 describes the implementation of the 

architecture and the experiments performed with it. Section 6 discusses the results 

obtained with the experiments. Section 7 concludes of this research. 



19 

 

2 THEORETICAL BACKGROUND 

This section presents a theoretical background of the main concepts used in this 

research plan. 

2.1 Autonomous Agents  

Functional programs or traditional software work basically receive an input, process 

data and produces some output based on the received input [RHB2007]. However there are 

other kinds of programs that do not work on this traditional approach. This different kind of 

software maintains an ongoing interaction with their environment, they do not compute 

some function based on the input and return an output. Some example of these programs 

includes computer operational systems, process control systems and others. Even more 

complex software that these two previously approaches are the systems called agents 

system, an agent is a reactive system that contains autonomy in order to take actions 

determined by himself to accomplish their goals. These different systems are called agents 

because these systems are active, they are able to figure out one plan to actively pursue 

their goals. [RHB2007]. 

2.1.1 Characteristics of Agents 

Agents are systems situated in some environment. Some typical examples are the 

system stock exchange agents, these systems are developed to observe the stock market 

and, based on this information, take actions. The agent has the capability to perceive its 

environment through its sensors and it is able to cause some effects on the environment via 

its actuators as illustrated in Figure 1. 
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Figure 1 - Agent interaction with the environment [RHB2007] 

According to [RHB2007] the environment occupied by an agent could be either 

physical or virtual (in case of software/simulation environment). For software agent works 

for virtual environment and robotics works for physical environment. The agents can take 

actions that will affect the environment, but they cannot completely control it. For example, 

a lawn-mower robot may not be able to finish its work because of obstacles on the ground. 

The real environment is dynamic and cannot be controlled so even the highly tested robots 

will face some unforeseen situations and fail. 

Important characteristics of agents include [RHB2007]: 

 Autonomy: the capability to operate independently at some level. Agents must be able 

to formulate a plan and execute it in order to achieve a goal.   

 Proactiveness: the ability to exhibit goal-directed behaviour. An agent should actively try 

to initiate work that will lead it to achieve its goals. It should need direction to do so. 

 Reactiveness: the ability to detect and adapt to unexpected changes.  

 Social Ability: the ability to cooperate and coordinate efforts with other agents in order to 

achieve goals. 
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2.2 Dependability 

The dependability of a computer system is the ability to deliver service that can be 

trusted [BLU2004]. There are three concepts that describe the notion of dependability. The 

Figure 2 demonstrates these concepts. 

 

 

Figure 2 - The dependability concepts [BLU2004] 

The dependability attributes could be described as [BLU2004]: 

 Availability: Be available during a period of time and deliver a correct service during 

this time. 

 Reliability: Continuous delivery of correct service during a period of time. 

 Safety: Do not cause catastrophic consequences on the users and the environment. 

 Confidentiality: Does not disclose unauthorized information. 

 Integrity: Absence of improper state alterations. 

 Maintainability: Ability to perform repairs and modifications of the system. 

2.2.1 Threats 

In this section, we present the taxonomy of threats that may affect an autonomous 

system. They consist of failures, errors and faults. System failures are events that deviate 

from the delivery of correct service. An error is an unexpected event that may cause a 

failure. A failure, in turn, occurs when an error reaches the service interface. Finally, a fault 
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is the cause of an error. If a fault produces an error it is active. On the other hand, faults 

that does not produce any errors are called dormant.  

A system can fail in different ways. There are three different taxonomies for faults 

[BLU2004], as we show in the Figure 3. 

 

Figure 3 - A fault taxonomy [AAV2001] 

 

2.2.1.1 Physical Faults 

Physical faults are faults due to adverse physical phenomena. For example, a 

hardware sensor that does not work as expected, returning a non-valid value. A common 

way to detect this kind of problems is comparing the output of two independent identical 

units, like a sensor.  

2.2.1.2 Design Faults 

Design faults are faults unintentionally caused by man during the development of the 

system. This kind of faults could be either hardware or software faults. Redundant elements 

are a common way to detect and avoid this kind of faults. 

2.2.1.3 Interaction Faults 

Interaction faults are faults resulting from the interaction with other systems or users. 

There is a distinction between accidental faults and malicious interaction faults. An operator 

mistake is an example of an accidental fault and an intentional attack is a example of 

malicious fault. 

2.2.2 Means 

For these three categories of faults mentioned before there are different ways to 

prevent these faults. These approaches to prevent the faults are called means in this 

diagram on the Figure 4. 
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Figure 4 - Means - Fault remove techniques [BLU2004] 

 

2.2.2.1 Fault Prevention 

It is a way to prevent the occurrence or introduction of a fault. Fault prevention can 

be considered as a fault avoidance system. 

2.2.2.2 Fault Removal 

It is a way to reduce the number or to reduce the severity of a fault. Fault removal 

can be considered as a fault avoidance system. Both Fault Prevention and Removal are the 

attempt to develop a system without faults. 

2.2.2.3 Fault Tolerance 

It is a way to continue delivering the correct service even when a fault occurs. Fault 

Tolerance implements the concept of fault acceptance, which attempts to reduce the 

consequence of a fault. The main difference between fault tolerance and maintenance is 

that maintenance requires the participation of an external agent and fault tolerance not.  

2.2.2.4 Fault Forecasting 

Is a way to estimate the future incidence or the consequences of faults. Fault 

forecasting also implements the same concept of fault acceptance, i.e., an attempt to 

reduce or estimate the consequence of a fault. 

The development of a dependable computing system usually combines different 

techniques. This work is focused on the Fault Tolerance technique, knowing that fault is 

almost inevitably. Fault tolerance concepts through the redundancy of multiple robotics or 

redundant sensors is a good approach to keep the system working as expected, even after 

faults occur. 
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2.2.3 Fault Tolerance 

Fault tolerance mechanisms typically consist of an error detection and error 

recovering mechanisms [LUS2004], as illustrated in Figure 5. 

 

 

Figure 5 – Fault Tolerance Techniques [AAV2004] 

 

2.2.3.1 Error Detection 

Error detection originates from an error signal from the system. There are two 

classes of error detection: 

1. Concurrent Error Detection: the error detection works at the same time of the 

service delivery 

2. Preemptive Error Detection: check for error while the service delivery is 

suspended. Also check for dormant faults. 

In this work the focus is on the concurrent error detection system that enables the 

service delivery and fault tolerance at the same time. 
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2.2.3.2 Error Recovery 

Recovery [BLU2004] is the process that transforms a system from a state that 

contains faults and errors to a state that can be activated again without presence of any 

error or fault. Error recovery eliminates errors in three forms: 

 Rollback: Return the system to a previous state where the system can be activated 

again. The previous saved state is called a checkpoint or safe point. Rollback is the 

most popular approach to recovery a system, however it is time and resource 

consuming. 

 Rollforward: Put the system in a state where there are no errors or faults. This is a new 

state not previously recorded. Restart the system is a possible solution for this 

approach. Note that rollback and rollforward are not mutually exclusive. Usually rollback 

is the first attempted and then rollforward is a second option. 

 Error Compensation: The erroneous state contains enough redundancy to handle the 

fault situation and enable error elimination. A common approach for error compensation 

is the fault masking. This approach requires three or more identical or similar 

components to be used implementing a vote system where the majority is chosen. 

These three techniques eliminate errors from the system state. Rollback and 

rollforward are invoked on demand. Compensation can be applied either on demand or 

systematically, at pre-scheduled events, independently of the presence of errors.  

2.2.3.3 Fault handling 

Summon [ROG2006], Fault handling prevent fault from being activated again. There 

are four techniques of fault handling as explained below:  

 Diagnosis: Identifies the root cause of error in terms of location and type. 

 Isolation: Perform exclusion of the faulty components from further participation in service 

delivery. The exclusion could be both logical and physical. For physical exclusion the 

fault component must have a spare component for take over the tasks. 

 Reconfiguration: Set up a new configuration avoiding failed components (when it is 

possible). 

 Reinitialization: Checks, updates and records the new configuration and updates system 

tables and records. 
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2.3 Multiple Robots Systems (MRS) 

Multiple Robot Systems are systems comprised of several robots. This kind of 

system show some advantages over Single-Robot Systems (SRS). One of these 

advantages is an increased task completion speed through parallelism. MRS can also 

perform better in tasks that are inherently distributed in space, time, or functionality.  

Furthermore, the cost of multiple single-specialization robots can be lower than that of a 

unique all-capable robot.  Finally, the use of multiple robots can eliminate single points of 

failure, which increase the robustness and reliability of the system through redundancy 

[LEP2008].  

However, there are some drawbacks to MRS. For instance, determining how to 

manage the whole system is usually more complex than in a SRS. The lack of centralized 

control is one of the reasons for increased complexity of MRS [VGO2004]. Also, MRS 

require increased communication to coordinate all the robots in the system. Increasing the 

number of robots can lead to higher levels of interference between themselves, depending 

on the used communication device and protocol. Additionally, each individual robot in the 

MRS should be able to work even when the whole system state is unknown [MJM1995]. 

2.4 Dependable Multiple Robotic Systems 

Summon [LEP2012] defines reliability in robotics as the probability of a determined 

system delivery the correct service without failure during a period of time. Different 

measures of reliability can be given in robotics. For example, an individual component, or 

an individual robot, or even a MRS can be measured. MRS should avoid as much as 

possible to have a single point of failure. Instead, the system must be distributed and able 

to work as a single. Because the large number of individual components/robots, the MRS 

could be fault tolerant to an uncertain environment. Also, the MRS known as swarm robots 

can properly handle a single robot failure. According to [MOH2009], there is a difference 

between MRS and swarm. Swarm is a new approach that takes inspiration from social 

insects to coordinate multi-robot systems. 
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2.4.1 Reliability in Robotics 

Robotics is a research area with a vast amount of literature, even though only a 

limited part of this effort addresses reliability in robotics [MLL1998]. Also the analysis to 

explore the reasons of how the robots fail is not very common in the literature [JCA2003]. 

Centralized approaches to online diagnosis MRS do not scale well basically for two different 

reasons: complexity of the solutions and the need of communicate each individual to a 

central diagnoser [DAI2007].  

Computers use unreliable components and, for this reason, they improve their 

reliability using techniques like error control codes, duplication with comparison, triplication 

with voting, and diagnostics to locate failed components. Similar reliability techniques can 

be applicable for robotics.  

One of the main reasons why mobile robots fail is because the real environment 

cannot be completely mapped and it is naturally dynamic. Because of the dynamic 

environment, fault-tolerant mobile robots have to be able to handle and even learn from 

new situations several times. Because of this complex scenario, there are several 

approaches to implement reliability in robotics. Section 2.4.2 introduces some of these 

techniques and explains dependability in MRS. 

2.4.2 Reliability in Multiple Robotics Systems 

Multiple Robots Systems (MRS) need to be reliable as a whole [LEP2012]. For these 

reasons there are some questions to be addressed: 

• How to detect when robots have failed? 

• How to diagnose robots failures? 

• How to respond to these failures? 

Instead of single-robots systems (SRS) that are designed to be robust as a single, 

multiple robots systems (MRS) are design to be fault tolerant, it means, continue working 

even after a fault occurs. MRS are designed to take advantage of the collective to 

accomplish the work as a team, it means, they need to be able to communicate between 

them and a healthy robot could take over a task from a robot in a faulty state. 

The main reason of MRS is to achieve significant level of reliability through the 

redundancy or multiple robots. The key motivation is that several robots faults can be 
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overcome by the redundancy system. In order to achieve this level of reliability the whole 

system must be developed with these faults in mind. Internal and external reasons can 

drive the MRS to a fault state. A software design defect is an internal reason that could lead 

a robot to a fault state. On the other hand, an unexpected environment changes driving the 

robot to a fault state is an example of external problem. Usually problems caused by 

external reasons are more difficult to handle or avoid than the internals.  

These are some of the challenges of achieve reliability in MRS: 

 Individual robot failure: The total number of individual components parts in a system is 

directed related with the probability of a fault occurs [JCA2005]. In Carlson and Murphy 

observed many different causes of failures leading to low reliability of robots operated by 

humans. This study also showed that custom designed components are less reliable 

than mass-produced components such as power supply and sensors.  

 Local perspective: Each one of the robots maintains only a local perspective and is not 

able to see the system as a whole. In order to keep the entire system fault tolerant, the 

system should be distributed and not centralized. It allows the system to be more fault 

tolerant and also brings scalability to the MRS. 

 Interference: The existence of MRS sharing the same physical environment can cause 

interference and contention. These issues must be addressed to enable MRS 

application.  

 Software errors: As all complex software systems, the MRS software can also contain 

bugs that raise faults. Because of the complexity these software, defects/bugs could be 

difficult to detect and to fix.  

 Communication failures: In MRS the communication between the individual robot is a 

requirement to enable the whole system works as expected. According to [RCA1993], 

all individual robot have to be able to work even when the communication with others 

are not available. 
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3 STATE OF THE ART 

According to [LEP2012] there are several possibile faults in robotic systems, such 

as: robot sensors faults, uncertain environment models, limited power, and computation 

limits.  

In order to address these complex faulty scenarios there are some tools developed 

that intend to help engineers and developers to handle these problems. Robot middlewares 

are one of these tools developed to abstract part of the complexity of these problems.  

Several robot middlewares [BRG2009], [BRG2010], [MAK2007] address the fault 

detection problem. However, their approach is limited to monitoring a single robot at a time, 

which makes it difficult to observe the system as a whole. Also, most of those approaches 

are driven by the capabilities of robotics middleware and not by the needs of the robotics 

research field. 

3.1 Individual Robot Fault Detection 

According to [MHA2003] the most popular method of fault detection in robot systems 

is comparing sensor values with a pre-determined range of acceptable values (i.e, 

thresholds). Other well-known fault detection method is creating a vote system based on 

different redundant components [RCA2003]. If an individual component is in a faulty state, it 

will vote differently than the majority. This individual component could be ignored and the 

others values are used instead.  

Logging is a fault detection/monitoring technique where data is collected during 

runtime to be analyzed later (i.e., off-line fault detection). During the normal runtime, all 

necessary data is collected and stored in a collector device. One disadvantage of this 

technique is that a huge amount of data could be generated and it cannot be used to issues 

online. Usually Logging needs another tool to monitor the and trigger clean-up actions 

[LOT2011]. Logging could be used for SRS or for MRS. 

3.2 Multiple Robots Fault Monitoring 

Fault detection in MRS [MEN2010] is more complex due to the distributed nature of 

these systems. A networked control system is a requirement to connect all robots in MRS, 

which adds another layer of possible fault scenarios. Furthermore, the network itself is 

subject to faults, performance deterioration or operation interruption. 
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According to [MEN2010], several different methods and techniques to deal with 

these problems can be found in the literature. However, these methods usually follow a 

centralized approach. This introduces an undesirable central point of failure in MRS. A 

technique that could be used to monitor MRS is the Distributed Artificial Intelligence (DAI).  

This methodology is based on the creation of a system of multiple supervision agents that 

are able to communicate directly with each other in order to perform monitoring tasks. 

Summon et al. [CHR2009] states that one of the most important advantages of swarm 

robotic systems is redundancy. If one robot fail, another robot can try to make repairs or 

even take over taks assigned to the failed robot. The solution proposed in this work is 

creating a completely decentralized algorithm to detect non-operational robots in a swarm 

robotic system. Every robot flashes and their neighbors can detect the flashs and start to 

flash in synchrony. Robots in a faulty state do not flash periodically and can be detected by 

others. This innovative approach does not use conventional networking communication to 

perform monitoring tasks. The advantage of this approach over others is that it does not 

generate network traffic and it does not depend on a conventional network. 

The work [KBL2006] proposes common metrics to evaluate the effectiveness of fault-

tolerance solutions. Effectiveness is measured by identifying the influence of fault-tolerance 

towards overall system performance. According to this work only a few fault tolerance 

solutions are designed to consider the distributed and decentralized nature of MRS. An 

appropriate fault tolerant controller that implements fault detection and diagnosis systems is 

necessary for monitoring MRS.  

RoSHA (Multi-Robot Self-Healing Architecture) [RSH2013] is an architecture 

proposal that offers self-healing capabilities for MRS. The authors argued that the 

architecture should be resource efficient and generates minimum impact on the system. 

Scalability is another important requirement. The self-healing add-on should be 

independent from the size of a MRS or from its robot distribution. Beside these envisioned 

features of a self-healing architecture, humans should be still able to oversee and control 

the system. There are five key characteristics of the RoSHA architecture: resource-efficient, 

high degree of configurability, human controllability, extensibility, and modularity. 
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Figure 6 – Overview of the RoSHA architecture  [RSH2013] 

 

Figure 6 shows the RoSHA architecture is divided in 4 components. The monitoring 

component collects information about the current system state. The diagnostic component 

uses the collected information to identify failures and their root causes. Detected faults are 

reported to the recovery manager. This component selects a recovery plan from a set of 

predefined policies to recover from failure. The execution component provides a set of 

generic repair actions. 

The integration of the self-healing add-on in an already existing MRS is essential in 

the sense of practical usage, in order to foster real-world applications and to increase the 

commercial use. This work is a very advanced proposal on how to handle the MRS 

dependability challenges, however this work presents only a proposal on how to address a 

possible solution and do not contain experiment or any artifact that this proposal was 

already implemented or intend to be in the future. 

Kaminka et al. [KAM2002] present an approach to monitor multi-agent systems by 

observing their actions by ‘hearing’ the routine communication among these agents.  The 

results show that the proposed approach has a monitoring performance comparable to a 

human expert. There is no evaluation on the computing performance overhead on the 

agent and the network bandwidth overhead imposed by the communication overhearing 

among the agents. In addition, the authors say that the so called report-based monitoring 
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requires modification on the robot’s software plans and it generates major network 

bandwidth usage. 
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4 DEVELOPED ARCHITECTURE 

This chapter presents in Section 4.1 the used tools initially studied until the actually 

used tools (Nagios and ROS) were selected. Section 4.2 presents the proposed monitoring 

environment and the adaptations required for the integration. 

4.1 Techniques and Tools Analyzed 

This section compares the two main types of tools used in this research: IT 

infrastructure monitoring and robotics middleware.  

4.1.1 IT Infrastructure Monitoring 

The goal of a Data Center Infrastrucutre Management or DCIM is to provide an 

overview of the monitored server status. DCIM tools allow the administrators to log and 

analyze status information related to datacenter servers [COL2012]. There are several 

DCIM tools for commercial use, open-source and free software licenses. Some solutions 

support the development of extensions or plugins. These plugins are used to add 

capabilities to the monitoring tool. The remainder of this section introduces well-known IT 

infrastructure monitoring tools.  

Ganglia [GAN2013] is a "scalable distributed monitoring system" developed for 

cluster based systems. It provides an overview of your entire clustered system. Some of the 

main features about Ganglia are distributed design for clusters, use of technologies such as 

XML, XDR for compact, portable data transport, and data storage and visualization. The 

algorithms were developed to high performance work with concurrency. 

Spiceworks [SPI2013] is a free network/system monitoring tool. This tool uses the 

SNMP protocol since it has low impact (minimal overhead) on the network communication 

with monitoring tasks. Pre-defined alerts can be configured to monitor the system status. 

The administrator is also able to select each of these alerts and see more detailed 

information about the node. 

Zabbix [ZAB2013] is another network monitoring tool which offers a web interface 

console with different views and mappings. The MySQL database is used to store historical 

information. It is developed in C and the web interface is developed in PHP. Some of the 

protocols supported are SNMP, TCP and ICMP. 

http://www.spiceworks.com/
http://www.zabbix.com/
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Nagios is a well-known IT infrastructure monitoring according to [NAG2013]. This 

monitoring system was developed to support scalability and flexibility. Nagios provides 

information about the entire IT infrastructure, allowing detecting, send alerts and also 

repairing problems. Nagios supports the development of extensions or plugins to add 

capabilities to the tool. Nagios is an open source application that monitors virtually any kind 

of device for problems and reports the results. Nagios was designed for Unix-based 

systems. 

4.1.2 Nagios 

This section details Nagios features which motivated us to select it for this research.  

Nagios provides a plataform for executing specific checks on the entire monitored 

system customized by devices. Pratically any kind of device information can be monitored, 

for instance the use of memory, free space on disks, cpu load, the number of processes, 

and many other cutomized information [NAG2005]. Nagios provides an easy web interface 

for graphical view the entire system and simple navigation into nodes showing detailed 

monitoring information. 

According to [NAG2005], every test performed by Nagios is executed by an external 

program called plugin. A set of plugins are distributed with Nagios and can be loaded as 

required. For example, there is a generic plugin to test TCP connections called check_tcp 

plugin. This plugin can be used to determine if a service is reachable through the network.  

Some information about monitored servers may not available through network 

services. For instance, there is no network protocol for checking free capacity on a hard 

drive. In this case Nagios is able to access the server via a remote shell (SSH for instance) 

and capture this information.  
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Figure 7 – Nagios allows different tests methods [NAG2005] 

 Figure 7 shows an overview of different test methods supported by Nagios. The 

upper box contains all the components that run directly on the Nagios server. Nagios has a 

flexible design that allows the development of extensions to communicate and monitor 

almost any kind of system through a Nagios plugin. A Nagios plugin is a small piece of 

software that must be developed following the Nagios plugin specification in order to 

support Nagios API. Plugins used for host and service checks are separate and 

independent programs that can also be used outside of Nagios. 

In order for Nagios to use an external program, it must follow Nagios plugin rules. 

First, the return status generated by the plugin must return OK, Warning, Critical or 

Unknown status [NAG2005]. Listing 1 demonstrates the execution of the check_tcp plugin. 

It shows Nagios monitoring if the ROS service is active on port 11311, on the target host 

192.168.1.3.  

nagios@linux:nagios/libexec$ ./check_tcp -H 192.168.1.3 -p 11311 

TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0, 

000000;0,000000;0,000000;10,000000 

Listing 1 – Nagios example checking remote TCP port [NAG2005] 

The ROS core service uses TCP port 11311 by default, so this simple example could 

determine if ROS is up and running on a specific host/robot. It is important to notice that this 

example only checks ROS core service status, without collecting any information from robot 

sensors. 
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The second rule is the use of ‘-’ to separate status code from the detailed textual 

status. Listing 1 also presents this part of the Nagios status message. 

A Nagios plugin can be a simple bash script developed to execute steps and print 

the formatted output on the standard output. Listing 2 shows a simple Nagios plugin source 

code.  

#!/bin/bash 

NAGCHK="/usr/local/nagios/libexec/check_nagios" 

PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios" 

INFO=‘$NAGCHK $PARAMS‘ 

STATUS=$? 

case $STATUS in 

0) echo "OK : " $INFO 

;; 

*) echo "ERROR : " $INFO | \ 

/usr/bin/mailx -s "Nagios Error" nagios-admin@example.com 

;; 

Esac 

Listing 2 – Nagios simple plugin source code example [NAG2005] 

According to [NAG2005], Nagios also supports the executation of a plugin via SSH 

on a remote host. Nagios administrator needs an account on the target system in order to 

connect and to execute the plugin. The Nagios Remote Plugin Executor (NRPE) is another 

method to execute plugins remotely. This plugin can be useful for indirectly testing 

hosts/services that are not reachable from the Nagios server network, as illustrated in 

Figure 8. 
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Figure 8 – Nagios executing a remote check using NRPE [NAG2005] 

Nagios also has a complete Notification System that could be configured to perform 

notification via email/SMS or any other communication protocol according with pre-defined 

configurations/rules [NAG2005]. The Figure 9 shows the Notification System details. 

 

Figure 9 – Nagios Notification System overview [NAG2005] 

Scalability is another characteristic of Nagios. Several noncentral Nagios instances 

could be executed and configured to send their results to a Nagios Central Server using the 

Nagios Service Check Acceptor [NAG2005], as illustrated in Figure 10. 
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Figure 10 – Distributed monitoring with Nagios [NAG2005] 

According to [NAG2005], Nagios has several reports that can display graphics of 

performance data collected from the hosts (e.g. time series dynamic charts). It is available 

through third-party software that could be configured to work integrated to Nagios.  

 

4.1.3 Robotic Middleware 

According to [ELK2012], a robotic middleware is a layer between the robot operating 

system and software applications, as illustrated in Figure 11. The middleware layer is 

designed to allow reuse of software and reduce costs of development.  
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Figure 11 - Middleware layer [ELK2012] 

 

Modern robots are considered complex distributed systems consisting of a number of 

integrated hardware (such as the embedded computer and specific robotics sensors) and 

software modules. All robot’s modules (hardware and software) work together to achieve 

their goals [MOH2008]. This section describes some of these existent solutions and briefly 

explains some criteria used to select one. 

Miro [SEN2001] and [HUT2002] is a robot middleware developed by University of 

Ulm, Germany. Miro is designed and implemented by applying object oriented design. 

According to [MIR2013] the core components have been object oriented developed using a 

multi-platform framework supporting network and real time communication. 

Orca [AMA2006] is a middleware framework for developing component-based 

robotics. It is designed to support a wide range of applications. The main goal of Orca is to 

enable software reuse in robotics. According to [ORC2013] it provides ways to develop 

nodes that can be composed to create complex robotic systems. 

According to [SAH2006] and [SKJ2006], UPnP middleware was developed under a 

Universal Plug and Play (UPnP) architecture. One of main features of the UPnP 

architecture is the peer-to-peer network connectivity [UPN2013]. UPnP also supports 

standard protocols like TCP/IP, HTTP and XML.  
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Robot Operating System (ROS) is robot middleware designed to reduce the cost of 

development for large-scale robots systems. According to [MQU2009] the ROS main 

characteristics are:  

• Peer to peer communication to reduce traffic in the network; 

• Tools-based: micro kernel designed instead of monolithic kernel; 

• Multi-lingual support; 

•Thin: software development libraries with no dependencies on ROS; 

• Free and open-source under BSD license; 

• Organized in packages in order to build large systems. 

ROS modular design allows managing the complexity of sophisticated robotic 

applications. ROS also promotes code reuse since a single software module can be easily 

used on different applications and robots. Moreover, ROS middleware provides tools for 

fault monitoring and diagnosis [LOT2011]. These tools are useful for development and 

monitoring one specific robot each time and not an entire MRS. For this reason this solution 

addresses only part of the overall problem of runtime monitoring because they allow to 

check the status of one component/module at time. 

4.1.4 ROS Concepts 

ROS [ROS2014] is organized in three levels: filesystem, computation graph and 

community. The first two, which are most relevant for this work, are described next. 

ROS package is the most important concept of the Filesystem level. The package is 

the small unit of software in ROS and it includes processes (called nodes), libraries and all 

required configuration files. Metapackages represent a group packages. 

The structure of the communication on ROS is represented by Messages. Message 

descriptions stored into msg files define the structure of the message. Listing 3 presents an 

example of a message file Message.msg with only one field of string type. 

Message.msg 

string input 

Listing 3 – ROS Message type format 
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Service communication is also defined in a file and provides the interface for the 

nodes to interact with a service. Listing 4 shows an example of a Service file that declares a 

single String attribute for the request and another String attribute for the response. 

 Monitor.srv 

string input 

--- 

string output 

Listing 4 – ROS Server message format 

The Computation Graph abstracts network communication in ROS. It is a graph 

comprised of nodes and topics. Nodes are processes that perform computation and 

communicate with each other by passing messages to a given topic. A topic is the structure 

that receives the message sent by a node. A node sends a message by publishing it to a 

topic and can also read messages by subscribing the topic. In the context of this work, ROS 

suggests the use of /diagnostic topic to publish this kind of diagnostic data and 

/diagnostic_agg topic for grouped diagnostic information [ROD2014]. 

4.1.5 Fault Reporting using ROS Style - ROS Diagnostics 

The Diagnostics stack is the ROS software responsible for analyzing and reporting 

the system state. It consists of libraries and tools for collecting, publishing, and visualizing 

monitoring information. This tool-chain is built around standardized interfaces, named the 

/diagnostic topic for monitoring information. Gathered status data is published continuously 

on the diagnostic topics [ROD2014] [GP22014]. 

Listing 5 shows the diagnostic Status message format 

(diagnostic_msgs/DiagnosticStatus ).  The first field is a byte value that accepts one of the 

possible levels of operations (0, 1, 2 or 3). Second field is a string to identify which 

component is reporting the diagnostic. A message description could also add some more 

details about the diagnostic. The hardware_id field defines a unique hardware 

identificantion (in case of robots that contains more than one component with the same 

name for redundancy purposes). The last field is an array that could store any extra details 

for the diagnostic. For instance, a low battery message could store the remaining 

operational time. 

http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
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# This message holds the status of an individual component of the robot. 

 

# Possible levels of operations 

byte OK=0 

byte WARN=1 

byte ERROR=2 

byte STALE=3 

 

byte level # level of operation enumerated above  

string name # a description of the test/component reporting 

string message # a description of the status 

string hardware_id # a hardware unique string 

KeyValue[] values # an array of values associated with the status 

Listing 5 – ROS Diagnostic Status message format 

 

4.1.6 Diagnostics Aggregator 

According to [ROD2014] ROS also distributes a built-in diagnostic_aggregator 

package. It is designed to subscribe the /diagnostic topic, read the raw published data, 

reorganize all information based on pre defined rules and publish the generated result in 

the /diagnostic_aggregator topic.  

The publisher default interval is 1 Hz but this value can be configured by the user on 

the YAML rule file. The diagnostic.yaml rule file also defines groups for aggregating the 

information according to the type of data. For example robots with more than one battery 

could aggregate all batteries statuses on a Battery group. For instance: My 

Robot/Actuators/Motor Group 1/Motor 1 means that Motor 1 belongs to Motor Group 1 and 

Motor Group 1 belongs to Actuators and so on. The diagnostic aggregator summarizes the 

least relevant systems states and emphasizes the most critical ones 

Another tool built-in on ROS is the robot_monitor tool. This is a GUI tool that displays 

all results published on the /diagnostic_agg topic in a hierarchical format. It groups the 

statuses in terms of their conditions (Ok, Warning, and Critical) and it displays the most 

urgent statuses (in Critical condition) first with red color to help the user to focus on the 

most important issues.  
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Figure 12 – RQT Monitor main Window [ROD2014] 

 

Figure 13 – RQT Monitor status viewers [ROD2014] 

 

This GUI is divided in three boxes. The first box shows only the errors in a list, the 

second one shows the warnings. The third contains a tree with all items organized in a list 

view. The colored line in the bottom of the screen is a timeline where each timeframe 

represents an update. A detailed window can be opened by clicking in the desired item, as 

illustrated in Figure 13.  
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4.1.7 Turtlebot Kobuki 

This section presents the iClebo Kobuki [KBK2013] mobile base used in this 

research. According to [KBK2013], iClebo Kobuki is a mobile base designed for research in 

robotics. Figure 14 shows Turtlebot mounted over a Kobuki mobile base. It provides 

sensors and actuators, as summarized next. 

 

Figure 14 – Turtlebot Kobuki [KBK2013] 

 

Functional Specification 

 Maximum translational velocity: 70 cm/s 

 Maximum rotational velocity: 180 deg/s (>110 deg/s gyro performance will 
degrade) 

 Payload: 5 kg (hard floor), 4 kg (carpet) 

 Cliff: will not drive off a cliff with a depth greater than 5cm 

 Threshold Climbing: climbs thresholds of 12 mm or lower 

 Rug Climbing: climbs rugs of 12 mm or lower 

 Expected Operating Time: 3/7 hours (small/large battery) 

 Expected Charging Time: 1.5/2.6 hours (small/large battery) 

 Docking: within a 2mx5m area in front of the docking station 

 

Hardware Specification 

 PC Connection: USB or via RX/TX pins on the parallel port 

 Motor Overload Detection: disables power on detecting high current (>3A) 

 Odometry: 52 ticks/enc rev, 2578.33 ticks/wheel rev, 11.7 ticks/mm 

 Gyro: factory calibrated, 1 axis (110 deg/s) 

 Bumpers: left, center, right 

 Cliff sensors: left, center, right 
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 Wheel drop sensor: left, right 

 Power connectors: 5V/1A, 12V/1.5A, 12V/5A 

 Expansion pins: 3.3V/1A, 5V/1A, 4 x analog in, 4 x digital in, 4 x digital out 

 Audio : several programmable beep sequences 

 Programmable LED: 2 x two-coloured LED 

 State LED: 1 x two coloured LED [Green - high, Orange - low, Green & 
Blinking - charging] 

 Buttons: 3 x touch buttons 

 Battery: Lithium-Ion, 14.8V, 2200 mAh (4S1P - small), 4400 mAh (4S2P - 
large) 

 Firmware upgradeable: via usb 

 Sensor Data Rate: 50Hz 

 Recharging Adapter: Input: 100-240V AC, 50/60Hz, 1.5A max; Output: 19V 
DC, 3.16A 

 Netbook recharging connector (only enabled when robot is recharging): 
19V/2.1A DC 

 Docking IR Receiver: left, centre, right 

 Diameter : 351.5mm / Height : 124.8mm / Weight : 2.35kg (4S1P - small) 

 

iClebo Kobuki  [KBK2013] provides C++ drivers for Linux and ROS compatibility. 

This robot already implements the diagnostics information necessary to perform real 

time monitoring and to integrate it to the IT Monitoring tool. Kobuki driver provides status 

information about the Watchdog, Battery, Cliff Sensor and others. Listing 6 is one 

example of the Kobuki’s diagnostic raw data.  

mobile_base_nodelet_manager: Watchdog: No Signal 

mobile_base_nodelet_manager: Analog Input: [4095, 4095, 4095, 4095] 

mobile_base_nodelet_manager: Battery: Healthy 

mobile_base_nodelet_manager: Cliff Sensor: All right 

mobile_base_nodelet_manager: Digital Input: [0, 0, 0, 0] 

mobile_base_nodelet_manager: Gyro Sensor: Heading: -19.92 degrees 

mobile_base_nodelet_manager: Motor Current: All right 

mobile_base_nodelet_manager: Motor State: Motors Enabled 

mobile_base_nodelet_manager: Wall Sensor: All right 

mobile_base_nodelet_manager: Wheel Drop: All right 

Listing 6 – Kobuki diagnostic raw data 

 



46 

The watchdog sensors detect when the Kobuki is connected to the computer via 

USB, in this example there is no signal from the robot. Analog input represents the status of 

the analog sensors present in the robot. Battery shows the robot’s battery status. The Cliff 

sensor detects if the robot is in a flat surface or uphill. Digital input are digital buttons 

controlled via software. The gyro sensor gets the current robot orientation. Motor Current 

monitors the electrical current in the motor and reports its status (in terms of OK, Warning 

or Error). Motor State informs whether the motor is enabled or disabled. Wall sensor 

detects when the robot hits an obstacle. The wheel drop sensors detects if one of the 

wheels is not properly in contact with the surface. 

4.2 Proposed Multi Robot Monitoring Architecture 

This section describes the proposed Multi Robot Monitoring architecture, with a focus 

on the development approach.  

The proposed software architecture, illustrated in Figure 15, creates a connection 

between Nagios and the ROS diagnostics aggregator topic. This connection is 

responsibility of the ROS Diagnostics Nagios Plugin. Most of the robots manufacturers, like 

Turtlebot Kobuki, provide drivers that are compatible with ROS diagnostics and diagnostics 

aggregator topics. The ROS Diagnostics Nagios plugin connects to the robot’s ROS 

diagnostic aggregator node through ROS APIs, gets the requested information and prints 

the output on the standard output format required by Nagios engine.  

ROS core is a service application listening on a specific TCP/IP port and waiting for 

subscriber connections. All communication process is executed using XML-RPC protocol. 

Figure 15 shows the architecture. 
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Figure 15 - Software Architecture 

Nagios remotely connects to the robot and gets the required information without the 

need of any additional software running at the robot side. The only requirement is the 

diagnostic aggregator topic, which is already present in most ROS compatible robot 

platforms. 

A python ROS Diagnostics Nagios plugin was developed to access the robot's ROS 

core topic via XML-RPC. This plugin subscribes to the diagnostic aggregator topic of each 

monitored robot and parses the information to the Nagios output format. The ROS 

Diagnostics Nagios plugin source code is presented on the Appendix. 

The plugin supports any number of sensors and arbitrary sensor names. This 

enables the plugin to monitor most robots. Listing 7 shows the plugin syntax. 

$ ./ros-diagnostics_agg.py --help 

Usage: ros-diagnostics_agg.py [options] 

Options: 

  -h, --help            show this help message and exit 

  -H HOST, --host=HOST  Define the target host 

  -N NAME, --name=NAME  Define the sensor name 

$ ./ros-diagnostics_agg.py –H <host> 

OK - OK Sensor(s) list: /Camera, /Camera/Cam1, /Laser, /Laser/Laser1, /Laser/Laser2, /Motor, 

/Motor/Motor1, /Motor/Motor2, /Motor/Motor3, /Power, /Power/Laptop Battery, /Power/Robot Battery, 

/Temp, /Temp/Sensor1, /Temp/Sensor2 

Listing 7 – ROS Diagnostic plugin syntax 
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This example shows a robot overall status, which is described as OK. Next it lists the 

name of topics which carry the status of different parts of the robot. The robot overall status 

and its topics can have 3 possible states: Ok, Critical and Warning. The robot overall status 

assumes the most severe status of all monitored topics. The Listing 8 shows topics 

reporting statuses with different states. 

CRITICAL - CRITICAL sensor(s) list: /Camera, /Camera/Cam1, WARNING sensor(s) list: /Power, 

/Power/Laptop, OK sensor(s) list: /Laser, /Laser/Laser1, /Laser/Laser2, /Motor, /Motor/Motor1, 

/Motor/Motor2, /Motor/Motor3, /Power, /Power/Robot Battery, /Temp, /Temp/Sensor1, /Temp/Sensor2 

Listing 8 - ROS Diagnostic plugin output 

The plugin also has the ability to monitor only specific sensors status. Listing 9 

shows, for example, the same plugin used to monitor only batteries status. 

$ ./ros-diagnostics_agg.py -H <host> -N battery 

OK - OK Sensor(s) list: /Power, /Power/Laptop Battery, /Power/Robot Battery 

Listing 9 - ROS Diagnostic plugin monitoring only Battery 

In this case all other sensors not containing battery in the name are ignored by the 

plugin. 

Filtering by name allows more configuration flexiblity. This is achieved by enabling 

Nagios to monitor specific sensors independently. For example, Nagios can be configured 

to monitor the Motor status every five minutes and the temperature sensor every thirty 

seconds. 

The monitoring system is completely independent of the robot application. It means 

that if the monitor server stops, only the monitor system will stop to working. The robot 

application will continue working exactly the same way. 

On Nagios configuration each monitored hosts has a configuration file on 

/etc/nagios/conf.d/hostname.cfg. This file contains all the informaton about the 

host. Basic information of the host includes hostname, alias, IP address, and which checks 

must be executed by Nagios. Listing 10 shows an example of this file. 

define host{ 

 host_name host_name 

 alias  alias 

 display_name display_name 

 address  address 

} 
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Listing 10 – Nagios define host syntax 

The configuration file defines the specific rules for the host it describes. This means 

that every different host/robot monitored by Nagios could have specific configurations. For 

example, robots with different number/kind of sensors could be defined properly on this file. 

Also the polling interval of each sensor could be defined setting the check_interval 

parameter. This flexibility allows Nagios to support heterogeneous MRS. 

Once the host is added on Nagios it will be displayed on Nagios portal, which also 

shows the last known status of the host. 

 
Figure 16 – Nagios monitoring a host status 

 

On Figure 16, the left column of the table contains the name of the monitored host. 

The second column lists all the checks configured for this specific host. The following 

columns display, respectively, the status of the check, date/time of the last check, the 

number of attempts to execute the check, and any description received from the check 

plugin output. 
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5 EXPERIMENTAL ENVIRONMENT 

To validate both the proposed architecture and its implementation, two experiments 

werer performed: a scalability experiment with up to a hundred homogeneous virtual robots 

and an experiment with one real robot. 

5.1 Server Scalability Experiment 

The experiment described in this section involves a simulated scenario with up to a 

hundred simultaneous virtual robots. Its goal is to allow an evaluation of the scalability of 

the monitoring server.  

Figure 17 illustrates the architecture of the scalability experiment. The Database 

server in the left side was created to collect performance data (cpu load, memory usage 

and network bandwidth) during the experiment. This database is not actually a requirement 

for the monitoring solution, its purpose is only to gather data regarding the experiment.   

Nagios server runs the monitoring tool. All required plugins for Nagios are installed 

on server side. This enables the implemented solution to work without requiring any 

software installed robot-side. All computers (servers and robots) need to be in the same 

local IP network or in a VPN. Details of this setup are presented in the following sections. 

 

Figure 17 – Schematic view of the Server scalability experiment. 
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5.1.1 The Virtual Robot Setup 

A virtual robot is application was developed for this experiment, using the Python 

programming language. It generates diagnostics data in the same format implemented by 

ROS diagnostics compliant robots. This application reads a set of configurations and, 

based on these configurations, publishes data on the ROS diagnostics topic.  

Listing 11 shows the configuration file. It determines the total number of sensor to be 

simulated and also the number of sensors in the warning and error state that will be 

published. See section 7.6 on Appendix for its source code implementation details. 

######################################################################## 

# Configuration 

######################################################################## 

 

######################################################################## 

# Simulation config 

total_errors = 0 

total_warnings = 0 

######################################################################## 

# Refresh interval in seconds 

refresh_interval = 300 

######################################################################## 

# Robot configuration 

######################################################################## 

######################################################################## 

# Motors config 

number_of_motors = 3 

######################################################################## 

# Temperature config 

number_of_sensors = 2 

######################################################################## 

# Laser config 

number_of_lasers = 2 

######################################################################## 

# Cameras config 

number_of_cameras = 1 

######################################################################## 

# Battery config 

# The intial battery level - 100 is considered full charge 

initial_battery_level = 100 

# Error battery level for diagnostics 

error_battery_level = 10 

# Warn battery level for diagnostics 

warn_battery_level = 20 

Listing 11 – Virtual robot configuration parameters 

 

All virtual robot diagnostic information is combined in a diagnostic aggregator node, 

which defines rules to parse the raw diagnostic information and categorize it into a more 

readable and meaningful way on the /diagnostics_agg topic. 

After the simulator node is running, all simulated data is published on the diagnostic 

topic at a frequency of 1Hz. There is a file that defines the rules that are interpreted by 

diagnostic_agg node in order to read all diagnostic raw data, to compile the information 

according to the groups defined in this file, and to publish the final result in the 
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/diagnostic_agg topic. Listing 12 shows the rules file definition in a YAML format, which 

defines the publication rate and analyser roles. 

pub_rate: 1.0 # Optional 

base_path: '' # Optional, prepended to all diagnostic output 

analyzers: 

  power: 

    type: GenericAnalyzer 

    path: 'Power' 

    timeout: 5.0 

    contains: ['Battery'] 

  motor: 

    type: GenericAnalyzer 

    path: 'Motor' 

    timeout: 5.0 

    contains: ['Motor'] 

  temp: 

    type: GenericAnalyzer 

    path: 'Temp' 

    timeout: 5.0 

    contains: ['Sensor'] 

  laser: 

    type: GenericAnalyzer 

    path: 'Laser' 

    timeout: 5.0 

    contains: ['Laser'] 

  camera: 

    type: GenericAnalyzer 

    path: 'Camera' 

    timeout: 5.0 

    contains: ['Cam'] 

Listing 12 – ROS Diagnostic aggregator diagnostics.yaml configuration 

ROS provides a launcher application that reads a launch file and runs all nodes and 

applications defined on this file. Listing 13 provides an example of a launch file. 

<launch> 

   <arg name="battery_runtime" default="60"/>  

   <node kg="rbx2_utils" name="simulator3" type="simulator.py" output="screen" clear_params="true"> 

   </node> 

   <!-- Load diagnostics --> 

   <node pkg="diagnostic_aggregator" type="aggregator_node" name="diag_agg" > 

 <rosparam command="load" file="/home/lsa/catkin_ws/src/simulator/ utils/diagnostics.yaml" 

/> 

   </node> 

   <node pkg="rqt_robot_monitor" type="rqt_robot_monitor" name="rqt_robot_monitor" /> 

</launch> 

Listing 13 – ROS laucher file syntax 

The launch file in Listing 13 directs the launcher to execute the simulator node, the 

aggregator_node and the rqt_robot_monitor. This monitor provides a Graphic User 

Interface to display all information generated by the simulator. 

Figure 18 illustrates the rqt_robot_monitor capturing the diagnostic information 

generated by the developed application. This figure shows a list of the monitored devices 

and their statuses. The panel in the left shows the detailed information of the selected 

device.   
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Figure 18 – RQT Screenshot of the Simulator running on a Virtual Machine 

Each virtual robot runs on a virtual machine with 256 Mbytes of RAM and 1 

processor. These machines execute Ubuntu 12.04 running ROS hydro. The VM image of a 

robot is configured to automatically start all the necessary services to run the simulation.  

When a new instance of the virtual robot VM starts up, it automatically sends its IP 

address to the Nagios server, in order to be register itself in the monitoring server. This 

behaviour was implemented to ease the management of a large number of virtual 

machines. It is not a requirement for the proposed monitoring solution, since the robots can 

be registered by the operator. 

A script was created to collect performance data in a VM during runtime and send 

this information to the database server. This is a bash script that runs on the guest OS and 

gets the CPU usage from /proc filesystem, the memory usage from free unix command, 

and the bandwidth transmitted from /sys/class/net. This information is sent every 

minute. The script runs both in Nagion Server and in the robots. 

5.1.2 Monitoring Server 

The Nagios monitoring server runs on a virtual machine created with 2 Gbytes of 

RAM and 2 processors running Ubuntu 13.10. It runs Nagios server, MySQL database 
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server, Apache HTTP server configured with PHP module enabled, and the proposed ROS 

plug-in used to collect ROS diagnostic information from the remote robots. 

Each host that should be monitored by Nagios must be added on Nagios 

configurations files. A new file must be created on /etc/nagios3/conf.d/ following the  

format presented in Listing 14. 

# A simple configuration file for monitoring the local host 

# This can serve as an example for configuring other servers; 

# Custom services specific to this host are added here, but services 

# defined in nagios2-common_services.cfg may also apply. 

define host{ 

        use                     generic-host            ; Name of host template to use 

        host_name               localhost 

        alias                   localhost 

        address                 127.0.0.1 

        } 

# Define a service to check the disk space of the root partition 

# on the local machine.  Warning if < 20% free, critical if 

# < 10% free space on partition. 

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       localhost 

        service_description             Disk Space 

        check_command                   check_all_disks!20%!10% 

        } 

# Define a service to check the number of currently logged in 

# users on the local machine.  Warning if > 20 users, critical 

# if > 50 users. 

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       localhost 

        service_description             Current Users 

        check_command                   check_users!20!50 

        } 

# Define a service to check the number of currently running procs 

# on the local machine.  Warning if > 250 processes, critical if 

# > 400 processes. 

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       localhost 

        service_description             Total Processes 

  check_command                   check_procs!250!400 

        } 

# Define a service to check the load on the local machine.  

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       localhost 

        service_description             Current Load 

 check_command            check_load!5.0!4.0!3.0!10.0!6.0!4.0 

        } 

Listing 14- Nagios host configuration file example 

 

Because of the large number of virtual robots to be added on Nagios for the 

scalability experiment, a script was developed to connect to the Database server and to 

automatically add a new host on Nagios. This is done by adding a new host on the 

/etc/hostname in Nagios server. The script, showed on Listing 15, is necessary because 

robots must be reachable by Hostname (ROS requirement). 

#!/bin/bash 

clear 

echo =================================================================== 
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echo "Update VM list" 

echo "Require root login" 

echo =================================================================== 

 

 

echo =================================================================== 

read -p "Apache IP address: " -e -i hostname.com.br host 

echo =================================================================== 

 

echo =================================================================== 

echo "Restore /etc/hosts from /etc/hosts.orig"  

cp /etc/hosts.orig /etc/hosts 

echo =================================================================== 

 

echo =================================================================== 

echo "Download VMs list" 

cd ~ 

wget -c "$host/mestrado/apache/dump.php" -- 

echo =================================================================== 

 

echo =================================================================== 

echo "Configure VMs list" 

cat dump.php 

cat dump.php >> /etc/hosts 

rm /root/dump.php 

echo =================================================================== 

 

echo =================================================================== 

echo "Download Nagios CFG files from VMs" 

cd ~ 

rm -rf temp 

mkdir temp 

cd temp 

wget -r --no-parent http://$host/mestrado/apache/cfg 

cd $host 

cd mestrado 

cd apache 

cd cfg 

cp *.cfg /etc/nagios3/conf.d 

cd /etc/nagios3/conf.d 

chmod 755 * 

cd ~ 

/etc/init.d/nagios3 restart 

echo =================================================================== 

 

Listing 15 – Nagios automated configuration hosts 

 

After all hosts are correctly configured on Nagios, the Nagios web portal can display 

their updated statuses. Figure 19 is a screenshot of the Nagios running and monitoring 

robots. 
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Figure 19 - Nagios web Portal 

 

5.1.3 Database Server 

As previously defined, the database server collects the data that allows performance 

measurement in this experiment. There are two different servers configured on its Virtual 

Machine: The first one is a MySQL database server and an Apache HTTP Server. 

The first one is a database that stores all VMs contact information and their status 

information. The data model for this information contains two tables. The VM table is 

described in Table 1 and the statuses table is decribed in Table 2. 

Field name Data type Descrition 

id int(11) 

 

A unique ID to identify the 

Virtual Machine. 

hostname varchar(255) 

 

The hostname of the Virtual 

Machine. ROS requires a 

valid hostname configured 

to allow roscore remote 

connections. 

ip varchar(255) 

 

The Virtual Machine IP 

address. 

date date The date of the last VM 

contact. 

time time The time of the last VM 

contact. 

 
Table 1 - Database server table vms structure 
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Field name Data type Descrition 

id int(11) 

 

A unique ID to identify the 

row. 

hostname varchar(255) 

 

The VM hostname that send 

the status. 

ip varchar(255) 

 

The VM current IP address. 

date date The date of the status. 

time time The time of the status. 

CPU Float The current % of the CPU 

use. 

Memory Falta o tipo The current % of the memory 

use. 

Bandwidth Falta o tipo Total bytes of the 

Bandwidth transmitted (send 

and received). 

Comment Long text An addition field used to 

facilitate group and 

organize all received data. 

 
Table 2 - Database server table statuses structure 

The second service running on this machine is the Apache HTTP server configured 

with PHP module enabled. It hosts PHP scripts that receive data from VMs through HTTP 

POST requests and handle it properly. 

The add.php script receives a HTTP POST containing the information specified on 

the VM table and updates the database. If it is a new VM, it inserts a new row in the table. If 

it is an existent VM, it updates its entry. 

The add script also facilitates the configuration robots on Nagios. It does so by 

outputting host entries that can be appended to the /etc/hostname file on the Nagios 

server. This ouput is presented in Listing 16. This configuration allows the Nagios machine 

to contact all VMs without a DNS server configured on the network. 
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IP   Hostname 

10.32.168.80  lsa-vm-simulator-10_32_168_80 

10.32.168.81  lsa-vm-simulator-10_32_168_81 

10.32.177.29  lsa-vm-simulator-10_32_177_29 

10.32.177.31  lsa-vm-simulator-10_32_177_31 

Listing 16 – Generated /etc/hostname file 

The second step of this script is to automatically generate a Nagios configuration file 

on the /etc/nagios3/conf directory. This configuration file, showed in Listing 17, 

defines all information that should be monitored by Nagios for each specific host. When this 

file is copied to its directory and the Nagios service is restarted, robots are added on 

Nagios.  

# A simple configuration file for monitoring the local host 

# This can serve as an example for configuring other servers; 

# Custom services specific to this host are added here, but services 

# defined in nagios2-common_services.cfg may also apply. 

define host{ 

        use                     generic-host            ; Name of host template to use 

        host_name               lsa-vm-simulator-10_32_177_31 

        alias                   lsa-vm-simulator-10_32_177_31 

        address                 10.32.177.31 

        } 

# Define a service to check the robot sensors status  

# All sensors 

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       lsa-vm-simulator-10_32_177_31 

        service_description             Robot all sensors 

        check_command                   check-all 

        } 

# Battery 

define service{ 

        use                             generic-service         ; Name of service template to use 

        host_name                       lsa-vm-simulator-10_32_177_31 

        service_description             Robot / Laptop battery 

        check_command                   check-battery 

        } 

Listing 17 – Generated Nagios host configuration file 

The status.php is a script created to measure the VMs runtime information, this script 

receives a HTTP post containing all the statuses information and stores the data in the 

database. As previously stated, all the VMs in this experiment run this script every minute. 

This is done through a crontab task.  
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5.2 Experiment with Real Robot 

The experiment with real robot uses a Kobuki-based Turtlebot robot equipped with a 

Microsoft Kinect as a depth sensor to avoid obstacles. Two Core i7 with 8GB memory 

laptops were used to run the application. The robot is programmed to perform autonomous 

navigation with collision avoidance.  

The robot executes the ROS kobuki_node1 to access/control the mobile base, the 

freenect_stack2  to access the Kinect, and ROS move_base3 navigation system. The 

kobuki_node locally produces diagnostic information from the mobile base in real-time.  

The monitoring solution was used to periodically collect diagnostic data during the 

robot’s operation. The implementation of the architecture was the same as the one 

described in the previous experiment. Due to that, the same server infrastructure was used. 

                                            
1
 http://wiki.ros.org/kobuki_node 

2
 http://wiki.ros.org/freenect_stack 

3
 http://wiki.ros.org/move_base 
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6 EXPERIMENTAL RESULTS 

This section discusses the results obtained from the executed experiments.  

6.1 Server Scalability 

This experiment evaluates the scalability of the monitoring server as the number of 

monitored virtual robots increases up to 108. The monitoring server and the virtual robot 

configurations are described in Chapter 5. 

We evaluate the Nagios server latency, which measures the delay to execute each 

check. Zero latency means that the server executed the checks at the exact time they were 

scheduled for execution. The acceptable check latency is typically lower than 15 seconds 

[NAG2005]. Larger latency indicates saturation of the Nagios server, meaning it is 

executing more checks than supported by the server computer. The latency was evaluated 

with 1, 30, 60, and 100 virtual robots connected to the monitoring server. The latency 

results range from 0.1 to 1 second for 1 to 60 virtual robots. With 100 virtual robots the 

average latency is 1.9 seconds, reaching the maximum value of 18.9 seconds in a single 

measurement. 

Figure 20 shows the monitoring server’s performance while the number of monitored 

virtual robots increases from 1, 30, 60, 100 instances. The performance parameters 

evaluated are CPU load, memory load, and network bandwidth. These parameters are 

collected during 100 minutes in 5 minutes intervals. For each of the 3 parameters, their 

average, median, and standard deviation are presented in the following charts. The same 

data is also displayed in tabular format in the top right corner of each chart. 
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Figure 20 – CPU load (a) memory load (b) and network bandwidth (c) used at the 
monitoring server as the number of virtual robots increases 

One can observe in Figure 20Erro! Fonte de referência não encontrada.(b) that 

the server’s average memory load increased from about 60% to 80% as the number of 

virtual robot increased. The network bandwidth in Figure 20(c) increased from about 5 to 15 

Kbytes/min.  The server latency result with 100 virtual robots corroborates with CPU load 

results observed in Figure 20(a). One can observe that the CPU load is high (both avg and 

stddev), causing fluctuations in the latency measurement. These latency and CPU load 

results indicate that 100 robots are starting to saturate the minimalist server described in 

Section 5.1.2. On the other hand, it is reported that Nagios can monitor thousands of 

computers [NMP2014] when a normal fully-configured server is used instead of VMs. If we 

assume one computer per robot, it means that thousands of robots could be monitored. 

6.2 Virtual Robot Performance 

This experiment collects performance data at the robot side, in this case, from a 

virtual robot VM. Performance data (CPU load, memory load, network bandwidth) was 

collected during 60 hours with different monitoring frequencies (no monitoring, every 5 

minutes, and every 1 minute). The observed results are illustrated in Figure 21, where the 

average, median, and standard deviation are presented in each chart.  
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Figure 21  – CPU load (a) memory load (b) and network bandwidth (c) used at the monitored robot 

 

These results show that the monitoring process has a small impact on the monitored 

VMs, even considering the minimal resources allocated for each VM, as described in 

Chapter 5.  

6.3 Real Robot Performance 

This experiment evaluates the impact of the monitoring system on a real robot 

performing a common mobile robot software application for autonomous navigation. The 

robot’s hardware and software configuration are described in Section 5.2.  

0

2

4

6

8

10

12

14

16

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

#
 jo

b
s 

ru
n

n
in

g

avg med

CPULoad

(a)

37

38

39

40

41

42

43

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

avg med

Memory Load

(b)

%

0

10

20

30

40

50

60

70

Nagios Disabled Nagios Enable 5 minutes Nagios Enable 1 minute

K
b

yt
e

/m
in

avg med

Network Bandwidth

(c)



63 

 

Table 3 shows the performance data (CPU load, memory load, network bandwidth) 

collected during 30 minutes of navigation. First, data is collected when the monitoring 

server is off, then the same navigation task is repeated with the monitoring server on. As 

mentioned before, the proposed system required no additional software or specific 

configuration on the real robot. 

 

Item Monitor Status Average Median Std dev 

CPU 
Load 

Monitor Off 123,83 125,50 23,28 

Monitor On 136,00 140,00 27,21 

% of change 9,83% 13,36% 16,86% 

Memory 
Load 

Monitor Off 42,00 42,00 0,00 

Monitor On 41,84 42,00 0,37 

% of change -0,38% 0,00% N/A 

Network 

BW 

Monitor Off 19,00 12,46 14,76 

Monitor On 26,56 21,80 19,16 

% of change 39,76% 74,89% 29,80% 

Table 3 - CPU load (a) memory load (b) and network bandwidth (c) at the real robot with the monitoring on (every 
5 min) and off 

 

6.4 Limitations and Future Work 

There are limitations in the usage of Nagios and ROS. One important limitation is 

that Nagios was orignally developed to monitor servers instead of robots. Due to this, 

Nagios requires a restart when a new host/robot is added or removed. This operation takes 

few seconds, depending on how many hosts are configured. This, however, is an 

implementation issue, not a limitation of the monitoring architecture.  

Another important feature that was not explored in this work is Nagios support of 

asynchronous operations, which consists in listening for traps or interruptions instead of 

polling hosts. This feature would allow robots to instantly send a Nagios alerts and updates.  

Nagios has a very flexible configuration stack, allowing for example the configuration 

of different polling intervals for each robot or for each sensor of an individual robot. This 

feature allows closer monitoring for more sensitive statuses. Another important feature not 
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explored by this work is Configuration Templates. This feature could be useful to monitor 

large sets of heterogeneous robots. Different templates could be defined for each kind of 

robot on a heterogeneous MRS. These templates can also be used to quickly add or 

remove robots on Nagios whitout redefining sensor rules. 

Because of the simplicity of Nagios protocol (reads the standard output in a specific 

pre determined format) it is possible to implement a Nagios plugin to theoretically monitor 

any kind of device/robot on different robots middleware. The same instance of Nagios 

server could run multiple developed plugins allowing, for example, monitoring a MRS 

running different kind of robot middlewares.  

As future work we intend to use the proposed approach as a supervisory system to 

monitor and to log events of one or multiple industrial robots. In the near future we intend to 

use this monitoring information to create a self-healing and autonomic MRS. 
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7 CONCLUSION 

This work presented a lightweight and easy to configure monitoring infrastructure to 

monitor the status of a large number of different robots during runtime. The proposed 

approach integrates consolidated tools for IT monitoring (Nagios) and robotics (ROS), 

which proved to be very efficient for the robotic domain. 

In terms of usability, the proposed approach requires no modification or additional 

software on the robot side. On the server side the proposed ROS plug-in must be installed 

and the server must be able to access the robots via their IP addresses. The source code 

for this plugin is available in the Appendix and can be used for any ROS compliant robot. 

Experimental results show that it is possible to monitor 100 robots even with a 

minimally configured Nagios Server.  It has been reported [NMP2014] that a fully configured 

Nagios Server could monitor thousands of computers. The results also show that the 

monitoring related overhead on real robots is negligible compared to the resources required 

to perform an autonomous navigation task.  

Given the obtained results, it is possible to conclude this research achieves the goal 

of providing means to monitor faults in a MRS. The results also show that the proposed 

approach is easy to implement, has minimal impact on the robots, and provides a high 

usability overview of the MRS status. 
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APPENDIX 

7.1 Nagios installation steps 

The detailed steps to download, install and configured Nagios could be accessed on 

[NAG2005]. Running Linux Ubuntu 13.04 the apt-get package management system can 

install and configure in a few steps: 

Executed as root: 

Install packages Listing 18: 

 

# sudo apt-get install -y nagios3 

 

Listing 18 – Nagios instalation command on Ubuntu 

 

This command will download, install and pre-configured all Nagios requirements for 

work like Apache HTTP server, MySQL database and libraries. 

Set admin password, Listing 19: 

 

# sudo htpasswd -c /etc/nagios3/htpasswd.users nagiosadmin 

 

Listing 19 – Nagios set administrator password 

Start the service, see Listing 20: 

 

# sudo /etc/init.d/nagios start 

 

Listing 20 – Start Nagios service 

 

7.2 Nagios configuration steps 

On Ubunto 13.04 the initial verion of Nagios comes with a defect that generate a alert, this 

is a filled bug #615848 – “You can either give the nagios user permission to that file or just 

ignore the file during check”. Search for this bug on the Nagios website for more details. 

7.3 ROS configuration Steps 

A detailed page on how to install and configure ROS on Ubuntu could be found at: 

http://wiki.ros.org/hydro/Installation/Ubuntu 
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Another source explains step by step detailed on how to install and configure ROS is 

[GP12014] and [GP22014]. 

After ROS installation steps is completed successfully, configure environment variables 

Listing 21: 

 

source /opt/ros/<distro>/setup.bash 

 

Listing 21 – Configure ROS environment 

Create a ROS Workspace, see Listing 22: 

  

mkdir -p ~/catkin_ws/src 

cd ~/catkin_ws/src 

catkin_init_workspace 

cd ~/catkin_ws/ 

catkin_make 

source devel/setup.bash 

 

Listing 22 – ROS create workspace 

7.4 Kobuki Turtlebot installation 

On Ubuntu 12.04 execute the steps, see Listing 23: 

 

apt-get install ros-hydro-turtlebot* 

apt-get install ros-hydro-kobuki* 

run only at first time 

rosrun kobuki_ftdi create_udev_rules  

 

Listing 23 – Kobuki Turtlebot installation steps 

 

Steps to execute Kobuki, see Listing 24: 

 

# Connect the robot on the USB and run: 

roslaunch turtlebot_bringup minimal.launch 

# Keyboard robot control: 

roslaunch turtlebot_teleop keyboard_teleop.launch  

# GUI 

rosrun rqt_runtime_monitor rqt_runtime_monitor 

 

Listing 24 – Steps to run Kobuki Turtlebot 

 

7.5 ROS Diagnostics Nagios plugin source code 

The source code of the ROS Diagnostics Nagios plugin developed in Python to 

integrate Nagios with ROS Diagnostics. 

#!/usr/bin/env python 

 

import sys 

sys.path.append("/opt/ros/hydro/lib/python2.7/dist-packages") 
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import os 

os.environ['PATH'] = "/opt/ros/hydro/bin:" + os.environ['PATH'] 

 

from optparse import OptionParser 

 

import rospy 

import rosnode 

import os 

import roslib 

import sys 

roslib.load_manifest('linux_hardware') 

from linux_hardware.msg import LaptopChargeStatus 

from diagnostic_msgs.msg import DiagnosticStatus, DiagnosticArray, KeyValue 

 

# Exit statuses recognized by Nagios 

UNKNOWN = -1 

OK = 0 

WARNING = 1 

CRITICAL = 2 

STALE = 3 

COUNT_sensors = 0 

 

# TEMPLATE FOR READING PARAMETERS FROM COMMANDLINE 

parser = OptionParser() 

parser.add_option("-H", "--host", dest="host", default='localhost', help="Define the target host") 

parser.add_option("-N", "--name", dest="name", default='all', help="Define the sensor name") 

(options, args) = parser.parse_args() 

 

# Set turtlebot ROS Master URI 

os.environ['ROS_MASTER_URI'] = 'http://' + options.host  + ':11311' 

 

total_level = None 

OK_sensors = None 

WARNING_sensors = None 

CRITICAL_sensors = None 

STALE_sensors = None 

 

 

def callback(data): 

    global total_level 

    global OK_sensors 

    global WARNING_sensors 

    global CRITICAL_sensors 

    global STALE_sensors 

    global COUNT_sensors 

 

    ready = False 

 

    while not ready: 

        for current in data.status: 

          # Debug all information   

          #from pprint import pprint 

          #pprint(options.host) 

 

          # Filter if name is received 

           

          if (options.name == "all" or options.name in current.name): 

 

              # Calculate the total level 

              if current.level >= total_level: 

                total_level = current.level 

 

              # Parse current.name string and keep only the part after the :  

              parse_name = current.name 

 

              # Count how many sensors were found 

              COUNT_sensors = COUNT_sensors + 1 

 

              # Create CRITICAL sensors list 

              if current.level == CRITICAL: 

                  if CRITICAL_sensors != None: 

                    CRITICAL_sensors = str(CRITICAL_sensors) + str(parse_name) + str(', ') 

                  else: 

                    CRITICAL_sensors = str(parse_name) + str(', ') 

 

              # Create WARNING sensors list 
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              if current.level == WARNING: 

                  if WARNING_sensors != None: 

                    WARNING_sensors = str(WARNING_sensors) + str(parse_name) + str(', ') 

                  else: 

                    WARNING_sensors = str(parse_name) + str(', ') 

 

              # Create OK sensors list 

              if current.level == OK: 

                  if OK_sensors != None: 

                    OK_sensors = str(OK_sensors) + str(parse_name) + str(', ') 

                  else: 

                    OK_sensors = str(parse_name) + str(', ')        

               

              # Create STALE sensors list 

              if current.level == STALE: 

                  if STALE_sensors != None: 

                    STALE_sensors = str(STALE_sensors) + str(parse_name) + str(', ') 

                  else: 

                    STALE_sensors = str(parse_name) + str(', ')        

         

        ready = True 

 

    time = rospy.get_time() 

    #percentage = int(float(percentage)) 

    rospy.signal_shutdown(0) 

 

def listener(): 

    rospy.init_node('ros_diagnostics', anonymous=True,  disable_signals=True) 

    rospy.Subscriber("diagnostics_agg", DiagnosticArray , callback) 

    rospy.spin() 

 

def myhook(): 

 

    description = None 

 

    if STALE_sensors != None: 

        if (description != None): 

          description = str(description) + str("STAKE sensor(s) list: " + str(STALE_sensors)) 

        else: 

          description = str("STALE sensor(s) list: " + str(STALE_sensors)) 

 

    if CRITICAL_sensors != None: 

        if (description != None): 

          description = str(description) + str("CRITICAL sensor(s) list: " + str(CRITICAL_sensors)) 

        else: 

          description = "CRITICAL sensor(s) list: " + str(CRITICAL_sensors) 

 

    if WARNING_sensors != None: 

        if (description != None): 

          description = str(description) + str("WARNING sensor(s) list: " + str(WARNING_sensors)) 

        else: 

          description = str("WARNING sensor(s) list: " + str(WARNING_sensors)) 

 

    if OK_sensors != None: 

        if (description != None): 

          description = str(description) + str("OK sensor(s) list: " + str(OK_sensors)) 

        else: 

          description = str("OK sensor(s) list: " + str(OK_sensors)) 

 

    # Remove last comma 

    if description != None: 

      description = description[:-2] 

 

    if COUNT_sensors == 0: 

      print "CRITICAL - %s" % (description) 

      exiting(CRITICAL) 

    if total_level >= CRITICAL: 

      print "CRITICAL - %s" % (description) 

      exiting(CRITICAL) 

    elif total_level == WARNING: 

      print "WARNING - %s" % (description) 

      exiting(WARNING) 

    else: 

      print "OK - %s" % (description) 

      exiting(OK) 
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def exiting(value): 

    try: 

 sys.stdout.flush() 

 os._exit(value) 

    except: 

        pass 

 

if __name__ == '__main__': 

    try: 

        master = rospy.get_master() 

        master.getPid() 

    except Exception: 

        print "UNKNOWN - Roscore not available" 

 exiting(UNKNOWN) 

 

    try: 

        if len(sys.argv) < 1: 

            print "usage %s -N <name of sensor>" % (sys.argv[0]) 

     exiting(UNKNOWN) 

        rospy.on_shutdown(myhook) 

        listener() 

    except rospy.ROSInterruptException: 

        exit 

 

Listing 25 - ROS Diagnostics Nagios plugin source code 

7.6 Virtual Robot source code 

This source code is a ROS node developed in Python to generate randon diagnostic 

information based on pre-defined rules and publish the generated information on ROS 

diagnostics topic. 

The ROS Diagnostic aggregator node (distributed with ROS) reads this information 

and based on a XML rules file group and publish the information on the ROS Diagnostic 

agg topic. Once the information is published on diagnostic_agg topic it is avaiable to be 

accessed from Nagios through the ROS Diagnostics Nagios plugin. 

#!/usr/bin/env python 

 

import roslib; # roslib.load_manifest('pr2_motors_analyzer') 

 

import rospy, random, md5 

from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue 

 

######################################################################## 

# Configuration 

######################################################################## 

 

######################################################################## 

# Simulation config 

total_errors = 0 

total_warnings = 0 

 

######################################################################## 

# Refresh interval in seconds 

refresh_interval = 300 

 

 

######################################################################## 

# Robot configuration 

######################################################################## 

 

######################################################################## 

# Motors config 

number_of_motors = 3 

 

######################################################################## 
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# Temperature config 

number_of_sensors = 2 

 

######################################################################## 

# Laser config 

number_of_lasers = 2 

 

 

######################################################################## 

# Cameras config 

number_of_cameras = 1 

 

 

######################################################################## 

# Initial runtime setup 

######################################################################## 

 

######################################################################## 

# Battery config 

# The intial battery level - 100 is considered full charge 

initial_battery_level = 100 

 

# Error battery level for diagnostics 

error_battery_level = 10 

 

# Warn battery level for diagnostics 

warn_battery_level = 20 

 

# Runtime error control 

current_errors = 0 

current_warnings = 0 

 

def motor(msg): 

 global current_errors 

 global current_warnings 

 for cont in range(1,number_of_motors + 1): 

  status = DiagnosticStatus() 

  status.name = "Motor " + str(cont) 

  status.hardware_id = md5.new(str(status.name)).hexdigest() 

  random.seed() 

  level = random.randint(0, 100) 

  #print level 

  if level < 95: 

   status.message = 'Running' 

   status.level = DiagnosticStatus.OK 

  elif level < 99: 

   status.message = 'Warning' 

   status.level = DiagnosticStatus.WARN 

   current_warnings += 1 

  else: 

   status.message = 'Stopped' 

   status.level = DiagnosticStatus.ERROR 

   current_errors += 1 

  msg.status.append(status) 

 return msg 

 

def camera(msg): 

 global current_errors 

 global current_warnings 

 for cont in range(1,number_of_cameras + 1): 

  status = DiagnosticStatus() 

  status.name = "Cam " + str(cont) 

  status.hardware_id = md5.new(str(status.name)).hexdigest() 

  random.seed() 

  level = random.randint(0, 100) 

  #print level 

  if level < 95: 

   status.message = 'OK' 

   status.level = DiagnosticStatus.OK 

  elif level < 99: 

   status.message = 'Warning' 

   status.level = DiagnosticStatus.WARN 

   current_warnings += 1 

  else: 

   status.message = 'Error' 

   status.level = DiagnosticStatus.ERROR 
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   current_errors += 1 

  msg.status.append(status)     

 return msg 

 

 

def temperature(msg): 

 global current_errors 

 global current_warnings 

 for cont in range(1,number_of_sensors + 1): 

  status = DiagnosticStatus() 

  status.name = "Sensor " + str(cont) 

  status.hardware_id = md5.new(str(status.name)).hexdigest() 

  random.seed() 

  level = random.randint(0, 100) 

  #print level 

  if level < 95: 

   temp = random.randint(15, 50) 

   status.message = str(temp) + ' degrees' 

   status.level = DiagnosticStatus.OK 

  elif level < 99: 

   temp = random.randint(51, 80) 

   status.message = str(temp) + ' degrees' 

   status.level = DiagnosticStatus.WARN 

   current_warnings += 1 

  else: 

   temp = random.randint(80, 99) 

   status.message = str(temp) + ' degrees' 

   status.level = DiagnosticStatus.ERROR 

   current_errors += 1 

  msg.status.append(status) 

 return msg 

 

def laser(msg): 

 global current_errors 

 global current_warnings 

 for cont in range(1,number_of_lasers + 1): 

  status = DiagnosticStatus() 

  status.name = "Laser " + str(cont) 

  status.hardware_id = md5.new(str(status.name)).hexdigest() 

  random.seed() 

  level = random.randint(0, 100) 

  #print level 

  if level < 95: 

   status.message = 'Normal' 

   status.level = DiagnosticStatus.OK 

  elif level < 99: 

   status.message = 'Warning' 

   status.level = DiagnosticStatus.WARN 

   current_warnings += 1 

  else: 

   status.message = 'Error' 

   status.level = DiagnosticStatus.ERROR 

   current_errors += 1 

  msg.status.append(status) 

 return msg 

 

 

def battery(msg): 

 global current_errors 

 global current_warnings 

 # Initialize the diagnostics status 

 status = DiagnosticStatus() 

 status.name = "Robot Battery" 

 

 current_battery_level = random.randint(1, 100) 

 

 if current_battery_level < error_battery_level: 

  status.message = "Low " + str(current_battery_level) + "%" 

  status.level = DiagnosticStatus.ERROR 

  current_errors += 1 

 elif current_battery_level < warn_battery_level: 

  status.message = "Warning " + str(current_battery_level) + "%" 

  status.level = DiagnosticStatus.WARN 

  current_warnings += 1 

 else: 

  status.message = "OK " + str(current_battery_level) + "%" 
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  status.level = DiagnosticStatus.OK 

   

 # Add the raw battery level to the diagnostics message 

 status.values.append(KeyValue("Level", str(current_battery_level)))  

 msg.status.append(status) 

 return msg 

 

def laptop_battery(msg): 

 global current_errors 

 global current_warnings 

 # Initialize the diagnostics status 

 status = DiagnosticStatus() 

 status.name = "Laptop Battery" 

 

 current_battery_level = random.randint(1, 100) 

 

 if current_battery_level < error_battery_level: 

  status.message = "Low " + str(current_battery_level) + "%" 

  status.level = DiagnosticStatus.ERROR 

  current_errors += 1 

 elif current_battery_level < warn_battery_level: 

  status.message = "Warning " + str(current_battery_level) + "%" 

  status.level = DiagnosticStatus.WARN 

  current_warnings += 1      

 else: 

  status.message = "OK " + str(current_battery_level) + "%" 

  status.level = DiagnosticStatus.OK 

   

 # Add the raw battery level to the diagnostics message 

 status.values.append(KeyValue("Level", str(current_battery_level))) 

 msg.status.append(status) 

 return msg 

 

def generate_values_internal(msg): 

 global current_errors 

 global current_warnings 

  

 msg.header.stamp = rospy.Time.now() 

 msg = motor(msg) 

 msg = battery(msg) 

 msg = temperature(msg) 

 msg = laser(msg) 

 msg = camera(msg) 

 msg = laptop_battery(msg) 

 return msg 

 

def generate_values(): 

 global total_errors 

 global total_warnings 

 global current_errors 

 global current_warnings 

  

 msg = DiagnosticArray() 

 loop2 = 0 

 

 while True: 

  loop2 = loop2 + 1 

  current_errors = 0 

  current_warnings = 0 

  generate_values_internal(msg) 

  print '#################################################' 

  print 'Generate_values runtime count ' + str(loop2) 

  #print 'total_errors = ' + str(total_errors) 

  #print 'current_errors = ' + str(current_errors) 

  #print 'total_warnings = ' + str(total_warnings) 

  #print 'current_warnings = ' + str(current_warnings) 

  print '#################################################' 

   

  # Avoid stuck the simulator 

  if (loop2 > 100000): 

   break 

   

  if (total_warnings == current_warnings): 

   if (total_errors == current_errors): 

    #print "match" 

    break 



79 

 

 return msg 

 

def update_config(): 

 global total_errors 

 global total_warnings  

 global refresh_interval 

 global number_of_motors 

 global number_of_sensors 

 global number_of_lasers 

 global number_of_cameras 

 total_errors = 0 

 total_warnings = 0 

 return False 

 

 

if __name__ == '__main__': 

 # Create initial values 

 rospy.init_node('simulator3') 

 pub = rospy.Publisher('/diagnostics', DiagnosticArray)  

 loop = 0 

 my_rate = rospy.Rate(1) 

 update_config() 

 

 while not rospy.is_shutdown(): 

  #print "loop = " + str(loop) 

  #print "refresh_interval = " + str(refresh_interval) 

  if ((loop % refresh_interval) == 0): 

   print '#################################################' 

   print 'Refresh interval ' + str(refresh_interval) + ' seconds...' 

   msg = generate_values() 

   #print msg 

   print '#################################################' 

 

  # Check if the config was changed, if yes force reload sensor values 

  if (update_config() == True): 

   print '#################################################' 

   print 'Simulator configuration updated sucessfully' 

   print '#################################################' 

   msg = generate_values() 

 

  pub.publish(msg) 

  loop = loop + 1 

  my_rate.sleep() 

 

Listing 26 – Virtual Robot source code 

 

 

 


