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ABSTRACT

Edge Computing emerged as a solution to new applications, like
augmented reality, natural language processing, and data aggrega-
tion that relies on requirements that the Cloud does not entirely
fulfill. Given that necessity, the application deployment in Edge
scenarios usually uses container-based virtualization. When de-
ployed in a resource-constrained infrastructure, the deployment
latency to instantiate a container can increase due to bandwidth
limitation or bottlenecks, which can significantly impact scenarios
where the edge applications have a short life period, high mobility,
or interdependence between different microservices. To attack this
problem, we propose a novel container scheduler based on a multi-
objective genetic algorithm. This scheduler has the main objective
of ensuring the Service Level Agreement set on each application
that defines when the application is expected to be effectively active
in the infrastructure. We also validated our proposal using simula-
tion and evaluate it against two scheduler algorithms, showing a
decrease in the number of applications that do not fulfill the SLA
and the average time over the SLA to not fulfilled applications.
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1 INTRODUCTION

Cloud computing has revolutionized the deployment of applica-
tions. However, new solutions using technologies, like augmented
reality, natural language processing, and data aggregation, rely on
requirements that the Cloud does not entirely fulfill, e.g. low latency
and privacy-preserved data transfer. Multi-Access Edge Computing
and Fog Computing have emerged to attend these requisites that
are not available on current solutions. These paradigms, generalized
as Edge Computing, aim to bring computational resources closer
to its end-users through low latency, positioning awareness, and
geo-distributed processing power infrastructure.

The application deployment in Edge computing scenario relies
on fast, distributed, and heterogeneous solutions. Therefore, sev-
eral works [16, 19] advocate the use of container-based virtualiza-
tion techniques. The main advantages of using containerization
are faster boot time, a smaller footprint, and scalability. However,
during the deployment phase, the application images must be trans-
ferred from a central registry to one or more servers at the edge,
which can result in a long provisioning time depending on the
server and its bandwidth [2]. This total time to deploy a container
is also called Deployment Latency [8].

This latency can significantly impact scenarios where the edge
applications have a short life period, high mobility, or interdepen-
dence between different microservices. We understand that, in
these cases, the deployment is usually followed by a Service Level
Agreement (SLA) that defines the moment a given container needs
to be working on the topology. Nevertheless, Kubernetes, one of
the most popular container orchestration platforms, does not con-
sider the time required to instantiate a new container during the
scaling process. That happens because its default scheduler only
considers CPU, memory, and storage resources, which can lead to a
long provisioning time, the node’s bandwidth overhead, or network
bottlenecks.

In this paper we propose a novel container scheduler based on a
multi-objective genetic algorithm. This scheduler, called DLSLA,
has as primary objective ensuring the Service Level Agreement
set on each application that defines the time when the application
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is expected to be effectively active in the infrastructure. We also
validated our proposal using simulation and evaluate it against two
scheduler algorithms, the Kube-scheduler and the Infrastructure
Aware [13] showing a decrease in the number of applications that
do not fulfill the SLA and the average time over the SLA to not
fulfilled applications.

The remainder of the paper is organized as follows. In Section
2, related work is presented. In Section 3, we describe the problem
formulation following by the algorithm solution in Section 4. The
simulation results are presented in Section 5. Finally, Section 6
concludes the paper.

2 RELATED WORK

Several works present scheduling strategies considering the SLA of
deployments [12, 21]. In [12], the authors propose an SLA-driven
scheduling strategy for VM placement in order to maximize the rev-
enue of edge infrastructure-as-a-service (IaaS) providers and mini-
mizing SLA violations, fairly between the various service providers
using the Lyapunov optimization. The simulation-based results
present benefits compared to the First Fit algorithm.

Yao and Ansari [21] propose a Weighted Best Fit Decreasing
(WBFD) algorithm to tackle a resource provisioning problem at the
edge of the network, considering the possibility of resource failures
happening while minimizing the system cost incurred by resources
rentals without violating the SLA requirement. The resource pro-
vision problem is formulated as an Integer Linear problem (ILP).
Simulation results show that the proposed heuristic algorithm per-
forms close to the optimal solutions of ILP with lower computational
complexity.

Some works propose evolutionary algorithms to improve the
placement process at the edge of the network [1, 15] and cloud
[9]. In [9], the authors propose the utilization of the evolutionary
algorithm Non-dominated Sorting Genetic Algorithm II (NSGA-
II) for multi-objective container allocation optimization in cloud
computing. Some of the objectives of the proposed strategy are:
a) balanced cluster utilization; b) threshold distance; c) system
failure; and d) reduction of the network overheads. Compared to the
Kubernetes scheduler mechanism, the proposed strategy presents
improvements in relation to the objectives addressed.

In [15], the authors propose a multi-objective genetic algorithm
based on Biased Random-Key Genetic Algorithm (BRKGA) and
NSGA-II to enhance the service placement and load distribution
in an Internet of Things (IoT) and Edge Computing environment.
For this, a Mixed-Integer Linear Programming (MILP) problem op-
timization problem is formulated to minimize the potential occur-
rence of SLA violations. The efficiency of the proposed algorithm is
analyzed through simulation, and the proposed algorithm achieves
values close to the optimum of the MILP formulation.

However, this work aims to speed up the provisioning time of
container-based application at the edge of the network avoiding
provisioning time SLAs violations.
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3 PROBLEM FORMULATION

In this section, we describe the edge application provisioning prob-
lem targeted in this work. Firstly, we describe the main elements
of the edge infrastructure considered in our modeling. Then, we
formulate the several steps that comprehend provisioning appli-
cations in the edge nodes alongside our optimization objectives.
Notations used in this paper are summarized in Table 1.

Table 1: Summary of notation used in this paper.

Notation Description

G Network topology, comprised of edge nodes and links
N Set of n edge nodes in the infrastructure

zi Capacity of edge node N;

qi Download queue of edge node N;

¢ Cache memory of edge node N;

b; Bandwidth available for edge node N;

S Set of m links comprising the network infrastructure
A Set of u applications

©j Provisioning time SLA of application A

9j Provisioning time of application A;

Rj Set of r; replicas from application A ;

hf Demand of replica R?

i jk Replicas placement scheme

B Container registry node

.Cj-( Set of container layers from replica R;‘

ti’k Size of container layer Lg’k

Bijko Matrix that informs whether layer Lj.” « is available in cache ¢; or not
wh Waiting time of replica 'Rf

d; Download time of replica ’ij

We consider an edge computing network infrastructure modeled
as an undirected graph G = (N, S), where N = {N1, Na, ..., N}
represents a set of n edge nodes, in which the capacity of an edge
node N; is given by z;, and S = {81,832, ....Sm} is the set of m
links connecting the edge nodes. The set of u applications deployed
in the edge nodes is represented by A = {A;, Ay, ..., Ay}, where
an application A; € A has a provisioning time SLA p; and is
comprised by r;j replicas Rj = {le., R;, R;j}, and a replica R;?
has a demand h¥. The placement of application replicas on edge
nodes is represented by a N X A X R tensor s € {0, 1}, where:

1
Hijk = 0

As instances of containerized applications, replicas are built on
top of container layers that provide specific functionalities. For
instance, a database replica could be made of 2 layers, one contain-
ing the operating system (e.g., “ubuntu:latest”) and the other the

if edge node N; hosts replica Rf

otherwise.

database itself (e.g., “mysql:latest”). As edge nodes can receive pro-
visioning requests from multiple applications, a download queue g;
defines the order in which container layers of each replica hosted
by an edge node N; will be downloaded from the registry edge
node f.

Although container layers may contain application-specific set-
tings, many are generic, used in common by different applications.
Accordingly, when provisioning a containerized application replica
R}“, an edge node N; checks if Rf layers .C;‘ have not been recently
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downloaded and are accessible in its cache c¢;. Consequently, only
not cached layers are downloaded from the registry node f, avoid-
ing unnecessary traffic in the network and potentially shortening
applications’ provisioning time. We can check whether container
layer .C;.’, « is available in cache c; through a N'x £ matrix §, where:

b !
i,jko =
i,jk,o 0

We assume that edge nodes download container layers from the

if layer L;’ ¢ is available in ¢;

otherwise.

registry sequentially given their queues. Therefore, a replica Rf

located at position p in a download queue g; has to wait for w}‘

units of time before getting downloaded, where w}‘ represents the
time needed to download all previous items in g;. When its turn
comes, downloading replica Rf takes dj.‘ units of time, as denoted
in Equation 1.

; 1Lk ; {)-,k
df = Z; G (= 0k m
More specifically, d}‘ accounts for the time needed to download

all container layers L;‘ of replica R¥ not available in ¢; from the
container registry f. The download time of an uncached layer
L{;’k depends on its size ti’k and b;, which denotes the available
bandwidth for edge node N;. We assume that the provisioning
of an application A; is only complete when all its replicas R are
successfully provisioned in the infrastructure. Therefore, the overall
provisioning time of A; can be described as 9; = ercjzl wj? + dj?.

Our goal consists in defining the placement of application repli-
cas and the arrangement of the edge nodes’ download queues to
minimize the number of SLA violations due to prolonged provision-
ing times. Accordingly, the objective function can be formulated as
in Equation 2, where constraint 1 (Equation 3) guarantees that each
replica is only provisioned once, constraint 2 (Equation 4) sets the
lower bound of provisioning times, and constraint 3 (Equation 5)
certifies that edge nodes are not overloaded.

u
Minimize Z[aj > ;] (2)
=
Subject To:
u rj
D k=1 Vie{L, 2 ., ) (3)
j=1 k=1
9j 20, Vj e{1, 2, .., u} (4)
u Tj
Z W s <ziVie{l 2 .. n} (5)
j=lk=1
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4 DEPLOYMENT LATENCY SLA
ENFORCEMENT SCHEDULER

Defining placement schemes for application replicas and finding
proper arrangements for edge nodes’ download queues, which is a
variant of the Application Scheduling Problem [20], is an NP-hard
optimization problem. For that reason, approximation algorithms
represent viable alternatives to find acceptable solutions within a
bounded time. As finding the optimal solution is infeasible given
the problem complexity, we calculate a Pareto Front to find a set
of non-dominated solutions (i.e., none of the solutions found beat
them in all objectives) [7]. Figure 1 presents a visual representation
of a Pareto Front in a sample bi-objective optimization.

Objective function 2 to be minimized

Objective function 1 to be minimized

Figure 1: Visual representation of a Pareto Front [3].

There are several single and multi-objective algorithms that
can find pareto-optimal solutions [5, 6, 10]. We employ the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [6], as it reaches
superior results compared to other meta-heuristics [22]. In the
remaining of this section, we present a novel scheduling algorithm
called Deployment Latency SLA Enforcement Scheduler (DLSLA),
which leverages NSGA-II functionality to minimize the number
of SLA violations due to overextended provisioning time of multi-
replica applications in edge computing environments.

4.1 Population Initialization

Our scheduling algorithm takes as input each container node that
passes from the Kube-scheduler Filter stage. First, we evaluate
the download queue from the node, and if the download queue
has less than three containers, we run a score function based on
a simplified fitness function implementation to define the scor-
ing values. To queues with 3 or more applications, we send the
node to DLSLA, setting the number of population and generation
to minqueue_size — 1)!,100 and min(queue_size — 2)!, 100) respec-
tively.

Running DLSLA to nodes with a download queue smaller than
three containers is not cost-effective, so we only run it when neces-
sary. After receiving the scoring values to all nodes, we send them
to a custom-made ranking and bind implementation that chooses
the node that will deploy the given application replica.
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4.2 Download Queue Implementation

When a container node receives several container lifecycle opera-
tions simultaneously or close in time, it needs to create a queue to
manage the order in which operations will be processed. This queue
works in a FIFO (First-In-First-Out) model, where each container
layer, when not in the cache, will be downloaded based on the man-
ifest order (usually first the base layer until the top layer). Typically,
the container runtime can manage three simultaneous downloads
that will share the connection. However, this value is configurable
so that it can be decreased to one, for example. After finishing all
layers for one container, the runtime starts to download the next
one.

So, in an overcrowded cluster, with many applications and lifecy-
cle operations, this can generate situations where large applications
(like Java-based or databases) will take several seconds or even min-
utes to be deployed, halting the application instantiation in a set
of nodes. In cloud computing, with large bandwidth links, usu-
ally, it is not a problem. Still, edge computing with small links and
highly-shared infrastructure can generate bottlenecks (for example,
1GB image in a 20Mbps network will take more than 5 minutes to
be downloaded using all available bandwidth). Hence, driving the
need for availability and mobility between nodes at the edge, we
understand that some applications need to be deployed faster than
others, and one way to do this is to take a better position on a busy
node’s queue.

By default, in the current runtime implementations, this queue
can not be altered. So the only way to manage the order of waiting
operations is to remove them from the scheduler and re-add them
in a new order. However, these operations will redo the scheduler
process and can return a new set of distinct nodes. Furthermore,
sometimes we only want to change the queue order in one busy
node and not in the managed cluster. Therefore, we propose a new
implementation of the operations queue, where the queue can be
altered respecting the currently active operation. We implemented
a simple modification where, when we schedule a new operation
to a node, we send the new order for the waiting operations, which
can be entirely different from the currently active order.

This provides fine-grained control over the lifecycle operations
and enable new policies and scheduler algorithms to ensure the
amount of time needed to instantiate or update an application, im-
proving the overall cluster utilization. So, together with the scoring
values, the DLSLA returns to the ranking and bind modules, the best
waiting queue to the node. If the scheduler selects the node with
the container bind, it also reconfigures the waiting queue based on
that return by the GA.

4.3 Chromosome Representation

We represent each possible solution (so-called chromosome) as an
array, called containers, which can be correlated with the node’s
deployment queue. Each value on the queue, called gene, is set by
the unique identifier representing the containers that need to be
downloaded and deployed. No container can appear more than
once on the queue, and all containers need to be present on each
chromosome. If several applications use the same container, the

Luis Augusto Dias Knob, Carlos Henrique Kayser, Paulo Silas Severo de Souza and Tiago Ferreto

algorithm will put only the one with the smallest SLA value since
all applications that use the same container will start together after
the image download. Figure 2 presents a graphic representation
from the chromosomes and the relation between the containers
images, layers, download queue, and the chromosome.

Layers

Containers
Ly | sha256:abod.. (125MB| |Co|  Hash | Layers
Ly | sha256:cdes... |21.3MB | | Cy | sha266:45df... {Lq,La.Lo}
L3 | sha256:12a7... | 1.9 MB | | Ca i sha256:c1e8...; {Ly,L4}
Ly | sha256:cd87... (50.3 MB| | C3 | sha256:a37c.... {Ls,Le}
Ls sha256:0feb5... 33.8MB| | Cq4 sha256:07f2... {Ls,Lg}
Le | sha256:38ca... | ' '

Chromossomes Download Queue

Chp | Containers | Time | | Chy, |
Chy | {C1.C2CaCa} 255 | |Chy |
Chy | {C1,C2,C4Ca} | 25s | |Chy |
Chy  {C3,C4.C1.C2) | 155 | |Chg |

Chy | {C3,C2,C1,Cq} | 455 | |Chy !

{L1.LaL2,L4ls e}
{L1.La.LoLgLsLe}
{Ls.Le.L1.L3L2La}
{Ls.Le.L1,La L3 Lo}

Figure 2: Chromosome Representation.

4.4 Fitness Function

Since DLSLA is based on NSGA-II, which is designed for multi-
objective optimization problems, the expected result from the fit-
ness function is a dictionary containing the values for each optimiza-
tion objective. In our case, the fitness value is represented by the
three functions to be minimized, namely sla_violations, total_time,
changes_on_queue. Since we already receive the node after the Fil-
ter stage, it is impossible that a given constraint has an infinite or
negative result, so we do not define default values for any criteria.

Algorithm 1 presents the fitness function implementation, where
we first calculate, to a given queue, the amount of time needed to
deploy all the containers. We also validate how many SLA viola-
tions that a given chromosome will generate. Finally, we verify
the number of changes between the original queue and the queue
presented on the chromosome.

4.5 Genetic Operators

Selection. As DLSLA is based on NSGA-II, it uses three concepts
to select the best chromosomes in the population [9]. The first is
dominance, where a chromosome dominates another if the fitness
values for all objectives is better than the dominated. Second, the
optimal fronts that group the chromosomes non-dominated by other
ones using the Pareto distribution. Finally, the crowding distance is
calculated by the average distance along each objective between
the chromosome in the same front. This average distance is used
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Algorithm 1: Fitness function.

Algorithm 2: Crossover function.

Input :node_queue: Node download queue; bandwidth:
Network bandwidth available on node; inital_time:
Simulation time where the new application need to
be instantiate; chromosome: Chromosome that
needs to compute; original_app_queue: Current
application queue on node

Output:Fitness score to the chromosome

1 sla_violations « 0;

2 total_time « {};

3 changes_on_queue « 0;

4 for gene € chromosomegenes do

5 for digest, size € genejg e, do

6 if digest ¢ node_queue then

7 total_time+ = size +~ bandwidth;
8 L node_queue.append(digest);

9 if total_time > genegj, then
10 L sla_violations+ =1;

11 for app € original_app_queue do

12 temp_index < node_queue.index(app);
13 node_queue.pop(temp_index);

14 changes_on_queue+ = temp_index;

fitness « {sla_violations, total_time,
changes_on_queue};
6 return fitness

-
«

—

to sort the chromosomes. After these three operations, we have a
population with len(population) * 2 — 1 chromosomes. Then, the
algorithm selects the len(population) best chromosomes.
Crossover. After selecting the fittest chromosomes, DLSLA em-
ploys a mating process (called crossover) to evolve the population.
The crossover process used by DLSLA can be seen on Algorithm 2.
First, we run the algorithm len(population) — 1 times, selecting
the chromosomes populationy and populationy,q as parents for
each new child. Then, for each child gene, we randomly select a
gene in the same position from one of the parents. We also store
the gene not chosen, so in case of conflict or if the gene is already
on the child, we pop one storage gene and complete the queue
with a unique gene since no gene appears more than one time on
the chromosome. This crossover function guarantees that if a gene
is equal in both parents, it stays the same on the child. So, only
distinct genes between parents are randomly selected for the child.

Mutation. We mutate chromosomes generated in the crossover
process to avoid local optimum. Our mutation function is applied in

arandom number of new individuals, executing number_of _elements/2

swaps on the queue order.

4.6 Scheduler Score and Ranking

After the GA runs for a given number of generations, we return
the high classified chromosome as the best solution to that given
node. After executing the scoring algorithm to all nodes, be it the

Input :population: population of chromosomes;
Output:New population with original chromosomes plus
children
1 for x < len(population) — 1 do

2 child « 0;

3 fatherl < populationy;

4 father2 < populationy;

5 cache «— 0;

6 for y < len(fatherlgenes) do

7 genel, gene2 «
random(fatherlgenes|y), father2genes|y));

8 if genel ¢ childgepes then

9 childgepey) < genel;

10 if genel € cache then

1 L cache.delete(genel);

12 if gene2 ¢ cache A gene2 ¢

childgenes A genel # gene2 then

13 L cache.append(gene2);

14 else if gene2 ¢ childgepes then

15 childgepe(y) < genez;

16 if gene2 € cache then

17 L cache.delete(gene2);

18 else

19 L childgepe(y) < cache.pop();

20 if random() < mutation_rate then

21 | child «— mutation(child);

22 childfippess < fitness(child);

23 | population.append(child);

24 return population

simplified version or the GA, we rank all nodes by the following
weights:

weight < 0

weight+ = 10 — sla_violations * 0.5

weight+ = min_time/time_on_chost % 10

weight+ = 10 — number_of_apps_on_node

weight+ = 10 — changes_on_queue * 0.5

We select the node with the highest score to host the container.
If more than one has the same final weight, we randomly select a
node between them.

5 EVALUATION

This section presents an evaluation of the DLSLA scheduling al-
gorithm. The algorithm is compared to the Kube-scheduler and
the Infrastructure-Aware Scheduler [13] in a simulated scenario
based on the Brazilian research network topology using Docker
Hub images. We choose these two algorithms as a baseline because
the first is the default scheduler enabled on Kubernetes. The sec-
ond implements network availability as a priority, decreasing the
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Figure 3: Examples of Max-min Fairness Flow Model

deployment latency without considering the SLA. The metrics used
for comparison include the number of applications that do not ful-
fill the SLA deployment latency, scheduling distribution, among
others.

5.1 Simulator

In order to evaluate the strategies in an edge computing environ-
ment, we propose a discrete event edge computing simulator writ-
ten in Python and NetworkX library. The simulator models the
deployment process, application image distribution, and transfer
across a configurable network topology. With the simulator, it is
possible to implement different scheduling strategies (e.g., kube-
scheduler, random scheduler, best-fit scheduler) and evaluate its
performance in terms of metrics. Some are application image cache
hit and cache miss, workload distribution across the network, node
utilization, application provisioning time, and SLA violations.

About the Kubernetes scheduler, we simplify the implementation
presented on the official source code [14]. Our implementation also
enables fine-grained control of the simulation scenario, allowing
to configure the weights of the scheduler predicates and priorities
and then enabling an understanding of how these policies and their
weights affect scheduling decisions.

5.1.1 Max-min Fairness. The network capacity and variability are
based on a fair sharing schedule policy based on the max-min
fairness (MMF) algorithm, more precisely using the algorithm pro-
posed by [4], which focuses on sharing an infrastructure based
on an equal distribution between flows and maximum bandwidth
usage to each link. This algorithm is similar to the TCP congestion
control algorithm fairness, that is, the MMF presents a reasonable
approximation with the normal network behavior.
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Initially, the algorithm initializes the bandwidth available to each
flow as zero. Then, the MMF is calculated for all active interfaces
and updates the bandwidth equally to each transmission until one
network link becomes saturated or the total amount of data to a
given communication is satisfied. The over-utilized links cause a
bottleneck for all transmissions using them and the transmissions
that do not need all the bandwidth available transfer the free space
to the biggest ones. The algorithm executes until all links are satu-
rated, or all flows are satisfied. With a set of network links and its
bandwidth and a set of paths, it is possible to calculate the available
bandwidth for each transmission in a given time using a progressive
filling algorithm that respects the MMF model.

The major features of the MMF are a) flows (i.e., network packets,
network messages) have the same priority over the available band-
width; b) the network link bandwidth is equally shared between
the flows, and c) flows are always using the maximum bandwidth
possible based on the active links. Figures 3a and 3b present two
examples of the MMF model behavior. The first one presents two
flows in execution, one from node N3 to N1 (message A) and the
other one from node N3 to N5 (message B). In this example, no
bottlenecks occur on the network; thus, each flow can use the total
bandwidth for the small link in its path.

The latter scenario presents four flows in execution, one from the
node N3 to N5 (message A), one from the node N3 to N1 (message
B), one from the node N5 to N1 (message C), and one from the node
N3 to N4 (message D). However, two edge links (N2-N1 and N2-N4)
provoke a bottleneck on the network, limiting the bandwidth usage
by edges N4-N5 and N3-N2.

5.2 Simulation Scenario

To simulate an edge computing topology, we used the Brazilian Re-
search Network, called Ipé. This topology interconnects all Brazilian
universities and research institutes through 28 Points of Presence
(PoPs) distributed over the country (Figure 4). The topology also
connects to several international research networks, such as Clara
(Latin America), Internet2 (United States), and Géant (Europe). In
the experiments, the actual bandwidth and latency for each link
were used, as described in [18].

To compare our solution with the other two schedulers, we de-
ployed a set of container nodes on the Ipé topology. Each PoP
included a large node named Worker Node and five small nodes
named Edge Nodes. The main difference between the nodes is the
bandwidth available to each one. For instance, the worker node has
100 Mbps, and the smaller nodes have between 10 and 60 Mbps of
bandwidth (distributed uniformly). For simplicity, the simulation
only considers the network utilization for container provisioning,
from the registry to the worker or edge nodes. Other communica-
tions that may occur in a real network are ignored.

The registry, where all nodes request the images, is placed on PoP-
Séo Paulo. This PoP is one of the most connected in the topology
and is the primary connection to cloud providers [17]. We also
set the bandwidth of the Registry Node to 10Gbps to avoid it to
represent a bottleneck on the simulation.
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Figure 4: Ipé Topology.

5.3 Workload

The workload used in the simulation is based on the Docker Hub [11]
twenty four most downloaded images, excluding base images. The
images have a total size of 3436.45 MB (an average of 143.19 MB per
image). However, since several images share layers, the maximum
amount a given node needs to download to have all applications is
2152.78 MB (37% of similarity between images). We create a random
number of applications between 5 and 25 (distributed uniformly)
for each image. And for each application, we deploy a random
number of replicas between 2 and 5 (distributed uniformly). Finally,
each application has a random scheduling time between 0 and 1000
seconds (distributed uniformly), which defines the exact moment
the application needs to be scheduled in the topology.

After setting the topology and the applications that need to be de-
ployed, we create three scenarios with distinct types of Service Level
Agreements related to the amount of time needed to full instantiate
the applications on the topology:

e Random Distribution: We set random SLAs with values
between 30 and 150 seconds for each application.

e Normal Distribution: We set five possible SLAs (30, 60,
90, 120, 150 seconds) with different weights (5%, 20%, 50%,
20%, 5%) for each application.

® 60 Sec SLA: We set a 60 seconds SLA for each application
without distinction.

It is important to note that this SLA is not hard defined, so
the application is always deployed, even if it is not fulfilled. After
preparing the scenarios, we run the simulation 30 times for each
algorithm (DLSLA, Infrastructure-Aware, and Kube-scheduler). All
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results present next use the arithmetic average between the runs.
Table 2 presents the parameters used in the experiments.

Parameter Value
Server Nodes 28
Server Links 100 Mbps

Edge Nodes 140

Edge Links 10 - 60 Mbps

Registry Node Link 10 Gbps

Number of Images 24
Number of Applications 350

Number of Replicas 1258

Table 2: Simulation parameters.

5.4 Results

With the simulation, we want to evaluate three main variables:
the number of applications that do not fulfill the SLA; on this
applications’ set, we want to know how much was the average
time over the SLA; and finally, we want to understand how the
applications’ scheduling distribution was an impact between the
worker and edge nodes. Since a complete centralization on the
worker nodes, probably will decrease the time needed to deploy the
application, but will decrease the total utilization from the topology.
We also summarize the simulation results in Table 3, and present
additional information like average time to all applications and
number of replicas that do not fulfill the SLA.

We understand that one application does not achieve the SLA if
any replica that composes this application does not start until the
expected time defined by the SLA. We also want to clarify that, as
the SLA is not hard ensured, the download queue created on each
node with more than one container deployed simultaneously will
cumulatively impact all the new applications’ schedule. With that
in mind, in Figure 5 we present the average number of applications
that do not fulfill the SLA on each scenario.

Figure 5: Number of applications that do not fulfill the SLA.
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Scenario Container Scheduling
Worker Nodes ~ Edge Nodes Proportion on Worker Node Worker Node  Edge Node Edge Node
(total) (total) Topology (%) (avg) (% per node) (avg) (% per node)
Kube-Scheduler 1043.51 214.48 82.95-17.05 7.66 0.59 7.45 0.59
Random Distribution  Infrastructure-Aware 867.44 390.55 68.95-31.05 13.95 1.11 6.19 0.49
DLSLA 829.96 428.03 65.98-34.03 15.29 1.22 5.93 0.47
Kube-Scheduler 1019.6 238.4 81.05-18.95 8.51 0.68 7.28 0.58
Normal Distribution  Infrastructure-Aware 815.1 442.9 64.79-35.21 15.82 1.26 5.82 0.46
DLSLA 801.06 459.93 63.68-36.32 16.32 1.30 5.72 0.45
Kube-Scheduler 1003.7 254.3 79.79-20.21 9.08 0.72 7.17 0.57
60 Sec SLA Infrastructure-Aware 814.13 443.86 64.72-35.28 15.85 1.26 5.81 0.46
DLSLA 786.4 4716 62.51-37.49 16.84 1.34 5.62 0.45
Scenario SLA Fulfillment Application Deployment Latency
) td (n) Not Fulfill Over  Not Fulfill SLA All Apps All Apps
avg(n, sta(n SLA avg (sec) std (n) avg (sec) std(n)
Kube-Scheduler 211.90 5.00 97,25 5,65 82.91 291
Random Distribution  Infrastructure-Aware 313.21 1.15 29,99 1,60 26.47 0.40
DLSLA 325.79 2.30 25,48 3,50 25.42 0.59
Kube-Scheduler 221.24 6.10 91,52 7,37 84.48 3.80
Normal Distribution Infrastructure-Aware 331.69 1.20 34,55 1,86 25.04 0.30
DLSLA 338.93 1.83 33,97 7,76 26.89 0.65
Kube-Scheduler 195.76 4.86 109,94 6,14 88.68 3.38
60 Sec SLA Infrastructure-Aware 309.76 2.29 40,71 3,46 26.84 0.85
DLSLA 326.17 2.35 36,22 7,58 24.87 0.88

Table 3: Additional statistics from the simulations.

The results show that both the DLSLA and the Infrastructure-
Aware managed to decrease the amount of not fulfilled applications
in all scenarios, having as results 73.80%, 62.89%, 67.06% and 69.16%,
62.25%, 62.97% smaller, respectively to the Random, Normal Distri-
bution and the 60 Sec SLA scenarios in comparison with the Kube-
scheduler. While DLSLA has more than 90.88% of the application
that achieves the SLA, the Infrastructure-Aware has a slightly infe-
rior with 88.97% ensure SLA applications. Kube-scheduler presents
that the percentage of fulfilling applications in the best scenario
(Normal Distribution) was only 71.55%. This was an expected result
since the Kube-scheduler does not consider the network availability
or the SLA deadline time as a priority to the scheduling.

Figure 6: Average time over the SLA to not fulfilled applica-
tions.

This also reflects in our second experiment presented in Figure 6,
where we plot the average time over the SLA to each application that
was not deployed within the time defined by the SLA. With fewer
applications ensuring the SLA, Kube-scheduler expected to have
the biggest average time on each scenario, with a value close to 100
seconds in all three experiments (97.25, 91.52, 109.94). Meanwhile,
the DLSLA has a better average time than the Infrastructure-Aware
in all scenarios but with a bigger standard deviation over the runs.
This happened for two reasons, first, the number of applications
that do not fulfill the SLA is about 40% smaller using DLSLA than In-
frastructure Aware. Smaller samplings will have a more significant
standard deviation if the values are close to the average. Second,
the infrastructure tends to be deterministic by always selecting
the same nodes with more bandwidth available presenting a more
consistent behavior between runs.

Finally, we want to understand the distribution impact between
the worker and edge nodes based on the number of container sched-
ules. Figure 7 presents a violin distribution to the container sched-
uler per node. In a worst-fit distribution, all nodes have 7.5 contain-
ers scheduled on average. Kube-scheduler shows the closest gap
to this value, both on the edge and worker nodes, with a slightly
bigger average on the worker node in all scenarios. While DLSLA
and Infrastructure Aware present quite distinct values to the worker
and edge nodes. On average, the worker nodes were selected by
the Infrastructure-Aware scheduler 13.94, 14.75, and 14.21 times
on average for the Random, Normal, and 60 Sec SLA, respectively.
Meanwhile, the worker nodes were chosen by the DLSLA 15.29,
15.24, and 15.20 times on average.

Although the worker nodes have been chosen 2.25, 2.71, 2.72
times with the Infrastructure Aware and 2.57, 2.85, 2.99 times
with the DLSLA more than the edge nodes, these nodes still al-
located 68.95%, 64.79% and 64.72% of the applications with the
Infrastructure-Aware scheduler and 65.98%, 63.68% and 62.51% with
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Figure 7: Average distribution between Edge and Worker
Nodes.

the DLSLA. That happened because there were five times more
edge nodes in the infrastructure than worker nodes. In comparison,
the edge nodes with the Kube-scheduler were chosen at 82.95%,
81.05%, and 79.79% of the time. Lastly, it is possible to visualize
in the distribution that in all scenarios, the Infrastructure-Aware
concentrate more on a set of nodes than the DLSLA, having, for
example, more edge nodes with zero container schedule (5.2, 15.8,
17.7 versus 4.2, 3.0, 1.2 on average). We summarize the experiments
in Table 3, presenting more elaborated statistics for each one of the
nine running sets.

6 CONCLUSION

In this paper, we have addressed the problem of container deploy-
ment time ensuring through SLA (that means ensuring the expected
time that a given application needs to be running on the topology).
We want to achieve that based on a three-objective optimization: (i)
decrease the total time to deploy all containers, (ii) fulfill the biggest
possible number of SLAs, and (iii) implement that with the smaller
changes in the download queue as possible. To that, we developed
a novel approach using a multi-objective genetic algorithm called
DLSLA.

The results demonstrate that our approach provides a suitable
solution for ensuring the SLAs, and it found optimized solutions
within a reasonable population size and number of generations
(100 and 200, respectively). We compared the results against Kube-
scheduler and Infrastructure Aware through a set of simulations. As
the Kube-scheduler does not consider the network infrastructure on
the scheduler, our solution presents results of almost 200% better in
ensuring the application SLA. We also show that the DLSLA sched-
uler presents better results than the Infrastructure-Aware while
having a more consistent distribution between the edge nodes.
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