
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

HENRY EMANUEL LEAL CAGNINI

EVOLUTIONARY ALGORITHMS FOR LEARNING ENSEMBLES OF
INTERPRETABLE CLASSIFIERS

Porto Alegre

2022

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

EVOLUTIONARY ALGORITHMS FOR
LEARNING ENSEMBLES OF

INTERPRETABLE CLASSIFIERS

HENRY EMANUEL LEAL CAGNINI

Doctoral Thesis submitted to the Pontifical

Catholic University of Rio Grande do Sul in

partial fulfillment of the requirements for the

degree of Ph. D. in Computer Science.

Advisor: Prof. Rodrigo Coelho Barros

Co-Advisor: Prof. Alex Alves Freitas

Porto Alegre
2022

HENRY EMANUEL LEAL CAGNINI

EVOLUTIONARY ALGORITHMS FOR LEARNING ENSEMBLES
OF INTERPRETABLE CLASSIFIERS

This Doctoral Thesis has been submitted in partial

fulfillment of the requirements for the degree of

Ph. D. in Computer Science, of the Computer

Science Graduate Program, School of Technology

of the Pontifical Catholic University of Rio Grande

do Sul

Sanctioned on March 22, 2022.

COMMITTEE MEMBERS:

Dr. Duncan Dubugras Alcoba Ruiz (PPGCC/PUCRS)

Dra. Karin Becker (PPGC/UFRGS)

Dr. Hélio José Corrêa Barbosa (PGCC/UFJF)

Prof. Alex Alves Freitas (University of Kent- Co-Advisor)

Prof. Rodrigo Coelho Barros (PPGCC/PUCRS - Advisor)

“Eventually everything connects – people, ideas,

objects. The quality of the connections is the key

to quality per se.”

(Charles Eames)

ACKNOWLEDGMENTS

Agradeço aos meus pais, Marlene Leal Cagnini e Luiz Sadí Cagnini, por terem investido na

minha educação desde cedo. Foi o seu esforço e sacrifício que permitiu que eu chegasse até aqui.

Agradeço à minha noiva, Juliana de Oliveira Mozzaquatro, por ter estado ao meu lado du-

rante todos os momentos, alegres ou difíceis, e não ter me deixado desistir nunca.

Agradeço aos meus amigos de longa data, e amigos que fiz durante o período de mestrado

e doutorado na PUCRS, por todos os momentos que vivemos juntos.

Agradeço ao meu orientador, Rodrigo Coelho Barros, e co-orientador, Alex Alves Freitas,

pelas oportunidades à que tive acesso, tenham sido no Brasil ou no exterior, e pelas discussões necessárias

para que meu trabalho chegasse ao nível apresentado aqui.

Agradeço ao secretário do Programa de Pós-Graduação em Ciência da Computação, Régis

Escobal da Silva, pelo ótimo trabalho desempenhado nesta instituição, essencial para o correto fun-

cionamento do programa.

Finalmente, mas não menos importante, agradeço às instituições: à Pontifícia Universidade

Católica do Rio Grande do Sul, e à Unviersity of Kent, pelo acolhimento que tive durante o período

do meu doutorado; e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, por

desempenhar seu trabalho com maestria, mesmo em tempos sombrios.

ALGORITMOS EVOLUTIVOS PARA O APRENDIZADO DE ENSEMBLES DE

CLASSIFICADORES INTERPRETÁVEIS

RESUMO

Classificação é a tarefa de Aprendizado de Máquina que visa categorizar instâncias em clas-

ses. Existem diversos algoritmos na literatura que realizam classificação, com diferentes graus de

sucesso. Nos últimos anos, o desempenho preditivo foi o objetivo priorizado entre praticantes de

Aprendizado de Máquina e a comunidade acadêmica. Todavia, mais recentemente, interpretabilidade

tem ganhado cada vez mais atenção. Uma área de aprendizado de máquina que pode se beneficiar de

um ganho em interpretabilidade é a de ensemble learning. Ensemble learning visa reunir modelos que,

quando agrupados em comitês, podem fornecer alto grau de desempenho preditivo, mesmo que os

classificadores que façam parte do grupo não sejam (em média) muito melhores que preditores ale-

atórios. Doravante, os benefícios são duplos: ensembles podem melhorar o desempenho preditivo de

modelos interpretáveis caixa branca (que são, em média, piores que modelos caixa preta); e o uso de

modelos caixa-branca aumenta a interpretabilidade de ensembles. Nesta tese, através do projeto de

algoritmos evolutivos, uma poderosa classe de algoritmos de so� computing, desenvolvemos dois mé-

todos para aprendizado de ensembles interpretáveis: EDNEL e PUMA. Enquanto os dois métodos são

semelhantes, a diferença entre eles ainda assim é significativa: PUMA aprende ensembles de classifica-

dores sem levar a interação entre variáveis em consideração, enquanto EDNEL calcula a correlação das

variáveis. Todavia, nos experimentos que conduzimos para avaliar o desempenho dos métodos, detec-

tamos que a abordagem mais simples de PUMA gerou ensembles com melhor desempenho preditivo

em média do que EDNEL, enquanto aquele é estatisticamente equivalente à dois bem-estabelecidos

métodos de aprendizado de ensembles, Adaboost e Random Forests.

Palavras-Chave: algoritmos evolutivos, ensemble learning, aprendizado de máquina, interpretabilidade,

classificação, aprendizado supervisionado, regressão.

EVOLUTIONARY ALGORITHMS FOR LEARNING ENSEMBLES OF INTERPRETABLE

CLASSIFIERS

ABSTRACT

Classification is the machine learning task of categorizing instances into classes. There are

several algorithms in the literature that perform classification, with varying degrees of success. For

the most part, predictive performance was the pursued objective among practitioners and the aca-

demic community regarding the design of novel classification algorithms. More recently, however,

interpretability has been gaining more and more attention. One area of machine learning that can

benefit from increased interpretability is that of ensemble learning. Ensemble learning aims to reunite

models that, when ensembled, can provide a high degree of predictive performance, even though the

individual classifiers of the ensemble are often not much better at predicting classes than random

guessing. Hence, the benefits are twofold: ensembles can improve predictive performance of inter-

pretable (white-box) models that perform, on average, worse than black-box models; and the use of

white-box models improves the interpretability of ensembles. In this thesis, we design two evolution-

ary algorithms (a powerful soft computing technique) to develop two ensemble learning methods,

EDNEL and PUMA. PUMA learns ensembles of classifiers in a univariate strategy, assuming indepen-

dence among variables, while EDNEL takes into account variable dependence through correlation anal-

ysis. However, in the thorough experimental analysis performed, we found that PUMA performs better

than EDNEL with regards to average rank, whilst it is statistically equivalent to two well-established

ensemble learning algorithms, Adaboost and Random Forests.

Keywords: evolutionary algorithms, ensemble learning, machine learning, interpretability, classifica-

tion, supervised learning, regression.

LIST OF ACRONYMS

EA – Evolutionary Algorithms

GA – Genetic Algorithm

NSGA-II – Non-dominated Sorting Genetic Algorithm II (NSGA-II)

GP – Genetic Programming

PSO – Particle Swarm Optimization

DE – Differential Evolution

EDA – Estimation of Distribution Algorithm

GM – Probabilistic Graphical Model

LIST OF SYMBOLS

ϕ – Fitness of an (unspecified) individual. 32

|S| – Number of individuals in an evolutionary algorithm’s population 33

G – Number of generations in an evolutionary algorithm run. 34

si – i -th solution/individual from a population . 34

Φ – number of objectives in a multi-objective problem . 34

Φj(si) – quality of the i -th solution for the j − th objective . 34

U(a, b) – A random number sampled from a uniform distribution in the interval [a, b] 37

A – Set of algorithms . 50

A(k)
– k -th algorithm in a set of algorithms . 50

Λ(k)
– Hyper-parameter space of the k -th algorithm A(k)

. 50

N – Number of instances . 50

M – Number of attributes . 50

X – Predictive data with size N ×M . 50

Y – Set of labels associated to X . 50

y (i)
– Label of the i -th instance . 50

Xj – j -th attribute . 50

X (i)
– i -th instance . 50

x (i)
j – value of the i -th instance in the j -th attribute . 50

λl – The l -th hyper-parameter of an algorithm . 51

Λl – The domain of the l -th hyper-parameter of an algorithm . 51

Λ – Set of domains for an algorithm . 51

λ∗
– The best set of hyper-parameters for a given algorithm. 51

B – Number of base learners in an ensemble. 83

C – Number of classes in a dataset. 83

CONTENTS

1 INTRODUCTION . 23

1.1 OBJECTIVES . 25

1.2 THESIS’ CONTRIBUTIONS . 26

1.3 THESIS’ OUTLINE . 27

2 BACKGROUND . 29

2.1 TRADITIONAL NON-EVOLUTIONARY ENSEMBLE LEARNING METHODS 29

2.1.1 BOOSTING . 29

2.1.2 BAGGING . 30

2.1.3 STACKING . 30

2.1.4 RANDOM FORESTS . 31

2.2 EVOLUTIONARY ALGORITHMS . 31

2.2.1 THE FOUR COLOR THEOREM . 32

2.2.2 GENETIC ALGORITHMS . 33

2.2.3 GENETIC PROGRAMMING . 36

2.2.4 PARTICLE SWARM OPTIMIZATION . 37

2.2.5 DIFFERENTIAL EVOLUTION . 39

2.2.6 ESTIMATION OF DISTRIBUTION ALGORITHMS . 41

2.3 INTERPRETABILITY . 42

2.3.1 WHITE-BOX MODELS . 45

2.3.2 BLACK-BOX MODELS . 48

2.3.3 EVALUATING INTERPRETABILITY . 49

2.4 AUTO-MACHINE LEARNING . 50

2.4.1 FORMAL DEFINITION . 50

2.4.2 ADDRESSING THE CASH PROBLEM . 51

2.5 SUMMARY . 52

3 ENSEMBLE LEARNING WITH EVOLUTIONARY ALGORITHMS . 55

3.1 METHODOLOGY . 56

3.2 TAXONOMY . 58

3.3 THE GENERATION STAGE OF ENSEMBLE LEARNING . 59

3.3.1 INSTANCE SELECTION . 60

3.3.2 ATTRIBUTE SELECTION . 61

3.3.3 MODEL OPTIMIZATION . 62

3.4 THE SELECTION STAGE OF ENSEMBLE LEARNING . 64

3.4.1 STATIC SELECTION . 66

3.4.2 DYNAMIC SELECTION . 67

3.5 THE INTEGRATION STAGE OF ENSEMBLE LEARNING . 68

3.5.1 LINEAR MODELS . 69

3.5.2 EXPRESSION TREES . 70

3.5.3 GENETIC FUZZY SYSTEMS . 70

3.5.4 INDUCED ORDERED WEIGHTED AVERAGING (IOWA) . 71

3.5.5 ERROR CORRECTING OUTPUT CODES (ECOC) . 71

3.5.6 NEURAL NETWORKS . 73

3.5.7 EVOLUTIONARY ALGORITHMS FOR SELECTING META-COMBINERS 73

3.6 FITNESS FUNCTIONS . 73

3.6.1 EFFECTIVENESS, DIVERSITY, COMPLEXITY AND EFFICIENCY . 73

3.6.2 SINGLE VS. MULTI-OBJECTIVE OPTIMIZATION . 76

3.7 TYPES OF EVOLUTIONARY ALGORITHMS . 77

3.8 TYPES OF BASE LEARNERS . 78

3.9 APPLICATION DOMAINS . 78

3.10 SUMMARY OF FINDINGS . 80

4 EEL: ESTIMATION OF DISTRIBUTION ALGORITHMS FOR ENSEMBLE LEARNING 83

4.1 PROPOSED METHOD . 83

4.1.1 FITNESS COMPUTATION . 84

4.1.2 UPDATING THE PROBABILISTIC GRAPHICAL MODEL . 84

4.1.3 COMPLEXITY ANALYSIS . 86

4.2 EXPERIMENTAL SETUP . 87

4.2.1 BASELINE ALGORITHMS . 87

4.2.2 DATASETS . 88

4.3 EXPERIMENTAL RESULTS . 88

4.3.1 EXECUTION ANALYSIS . 90

4.4 DISCUSSION AND FINAL REMARKS . 92

5 PUMA: PROBABILISTIC UNIVARIATE ESTIMATION OF DISTRIBUTION ALGORITHM FOR

ENSEMBLE LEARNING . 93

5.1 PROPOSED METHOD . 94

5.1.1 INDIVIDUALS . 94

5.1.2 FITNESS EVALUATION . 96

5.1.3 PUMA’S PROBABILISTIC GRAPHICAL MODEL . 97

5.1.4 EARLY-STOPPING AND TERMINATION . 99

5.1.5 COMPLEXITY ANALYSIS . 100

5.2 EXPERIMENTAL SETUP . 100

5.2.1 DATASETS . 101

5.2.2 MODIFICATIONS TO PUMA . 102

5.2.3 BASELINE ALGORITHMS AND HYPER-PARAMETER OPTIMIZATION 102

5.2.4 HARDWARE SPECIFICATIONS AND SOURCE CODE . 105

5.3 EXPERIMENTAL RESULTS . 106

5.3.1 FAIR ANALYSIS ON INTERPRETABILITY . 111

5.4 DISCUSSION AND FINAL REMARKS . 113

6 EDNEL: ESTIMATION OF DEPENDENCY NETWORKS FOR ENSEMBLE LEARNING 115

6.1 PROPOSED METHOD . 116

6.1.1 INDIVIDUALS . 116

6.1.2 PROBABILISTIC GRAPHICAL MODEL . 120

6.1.3 SAMPLING INDIVIDUALS . 123

6.1.4 FITNESS EVALUATION . 125

6.1.5 POPULATION SELECTION AND ELITISM . 125

6.1.6 UPDATING THE GM’S STRUCTURE . 125

6.1.7 UPDATING THE GM’S PROBABILITIES . 127

6.1.8 EARLY STOP, TERMINATION, AND VALIDATION SET . 128

6.2 EXPERIMENTS . 129

6.2.1 NESTED CROSS-VALIDATION EXPERIMENTAL SETUP . 129

6.2.2 NESTED CROSS-VALIDATION EXPERIMENTAL RESULTS . 135

6.2.3 HOLDOUT EXPERIMENTAL SETUP . 145

6.2.4 HOLDOUT EXPERIMENTAL RESULTS . 146

6.3 DISCUSSION AND FINAL REMARKS . 153

7 CONCLUSIONS . 157

7.1 LIMITATIONS . 158

7.2 FUTURE WORK . 158

REFERENCES . 161

23

1. INTRODUCTION

Classification is the task of supervised machine learning that aims at classifying instances

into categories (classes). Based on instances with already-known classes, a machine learning algo-

rithm can predict the classes of unknown instances by building models that capture the rationale

behind the data. Take for example a database comprised of x-rays from lung cancer patients. The task

is to, given a new x-ray image, predict whether this person shows signs of lung cancer.

There are several algorithms in the literature that tackle the classification task, with varying

degrees of success. Often, predictive performance is not the only desirable feature of a model; inter-

pretability also plays a part [20, 35, 98, 227]. White-box models, for example, show the underlying

classifying process to a user. Black-box models, on the other hand, provide only a predicted class la-

bel, and not an explanation. Looking back at the x-rays example, a black-box model would say that a

patient could have lung cancer signals, but without specifying which features it is using to do so.

Black-box models have been favored in the literature, at the deprecation of white-box mod-

els, due to their predictive performance superiority [35]. Deep neural networks [111] are a notorious

example on this front: by chaining several linear models (expressed within the neurons of the network),

this class of algorithm achieves unparalleled accuracy on image classification tasks [35]. Interpretabil-

ity, however, is a desirable feature for certain application domains, such as finance, medicine, churn

prediction, and bioinformatics, just to name a few. In medical applications, for example, it is not suffi-

cient to have a model with good predictive performance if the predictions of such a model cannot be

explained – and hence, trusted [98].

One could argue that there are methods to explain predictions, such as SHAP [176], which

explain how much each attribute contributed to the classification outcome, or, for image classifica-

tion tasks, saliency maps [227], that show which regions in an image contribute the most for the

model to assign a particular class. However, the trick here is that these post-model explanations build

explanation models, which are not necessarily the same as the classification models. For example: if an

explanation model correctly explains predictions only 90% of the time, should we trust the predictive

model 90% of the time too? [227]

Moreover, black-box models are vulnerable to misunderstand the data, and their oblique-

ness makes impossible for a user to detect such misunderstandings. Deep neural networks, when

applied to image classification, for example, are vulnerable to one-pixel attacks: a trick that changes

the intensity of a single pixel, but which is sufficient to change the opinion of the network on the class

of an image [245].

One way to improve performance of white-box models is to ensemble them. Supervised

ensemble learning – sometimes referred to as mixture of experts, classifier ensembles, or multiple

classifier system [184,230] — is the machine learning paradigm that aims at integrating multiple base

supervised learners in order to produce better predictive models than simply learning a single strong

model. An ensemble typically performs its predictions by using a voting mechanism that computes the

24

mean or the mode of the predictions output by the ensemble’s members (base learners). Ensemble

learning methods have won several academic and industrial machine learning competitions [228],

and such methods have been extensively deployed in real-world AI applications [199, 246]. Examples

of successful applications of supervised ensemble learning include intrusion detection [91,184], wind

speed forecasting [269, 279], and power grid transformers fault prediction [206, 207].

Ensembles present several advantages over a single learner: (i) it is usually computationally

cheaper to integrate a set of surrogate models that approximate a given function than to induce a

single complex model [153]; (ii) base learners that are only marginally better than a random classifier,

when properly integrated, can produce predictions that are comparable to those of a strong classi-

fier [99, 127, 171]; (iii) base learners can be trained to become specialized in certain regions of the

high-dimensional input space, making their consensus more flexible and effective when dealing with

complex problems [99]. Indeed, there is both theoretical and empirical evidence demonstrating that a

good ensemble can be obtained by combining individual models that make distinct errors (e.g., errors

on different parts of the input space) [114, 116, 136, 154, 197].

Ensemble learning comprises three distinct stages, whose names vary in the literature: gen-

eration, selection, and integration [26, 36, 167]; pre-gate, ensemble-member, and post-gate [67]; or

generation, pruning, and fusion [201]. Because of this multi-stage framework, it is common to have

multiple variables involved during the design of novel ensemble approaches. There are, for example,

different methodologies regarding the composition of ensembles: base learners can be from (1) dif-

ferent paradigms, e.g., mixing models such as decision trees and neural networks; (2) same paradigm,

e.g., all models are neural networks; and (3) present differences within the same paradigm, e.g., mixing

neural networks with different activation functions and/or architectures.

There are three main motivations to combine multiple learners [71]: representational, sta-

tistical, and computational. The representational motivation is that combining multiple base learners

may provide better predictive performance than a single strong learner. For example, it was empirically

shown that the generalization ability of a neural network can be improved by using it as base learner

within an ensemble [39]. In theory, no base learner will have the best predictive performance for all

problems, as stated by the No Free Lunch theorem [268]; and in practice, selecting the best learner for

any given dataset is a very difficult problem [84, 144], which can be addressed by integrating several

good learners into an ensemble.

The statistical motivation lies in the fact that it is statistically possible to avoid poor perfor-

mance by averaging the outputs of several base learners. Averaging multiple good solutions may not

produce the overall global optimum, but it can at least avoid generating a poor ensemble [120] by

eliminating uncorrelated base-learner errors [58]. This is particularly the case where few data points

are available, and so overfitting is more likely to occur. Finally, the computational motivation is that

some algorithms require several runs with distinct initializations in order to avoid falling into bad local

minima. Gradient descent, for example, often requires several runs and further evaluation on a vali-

dation set in order to avoid being trapped into local minima. Thus, it seems reasonable to integrate

25

these already-trained intermediate models into an ensemble, stabilizing and improving the system’s

overall performance [58, 255].

Currently there is an extensive literature on ensemble learning, as surveyed by Sagi and

Rokach [228] and Dietterich [71] specifically for traditional, greedy, local-based search strategies (e.g.,

boosting [233], bagging [23], and stacking [267]); and as surveyed by Yao and Islam [274] for evolu-

tionary algorithms (e.g., [159,167]). However, there is still no consensus on which approach is better

suited for this task, even though evolutionary algorithms (EAs) have some interesting characteristics:

i) the global-search characteristic means that this class of algorithm is less likely to get trapped in local

minima; ii) EAs are easy to adapt to multi-objective problems; and finally, iii) paralellization is an option

to improve computational performance. Hence, as it will be shown in this thesis, it is not surprising

that a large number of EAs for supervised ensemble learning have been proposed in the literature in

the past few years.

The use of evolutionary algorithms for ensemble learning can be configured as an Auto-

Machine Learning (Auto-ML) application [271]. Auto-ML is concerned in selecting the best algorithms

for a given task (which, in the case of this thesis, will be classifiers), while also optimizing their hyper-

parameters. When considering that one of the tasks of the generation stage of ensemble learning

comprises hyper-parameter optimization, while the whole selection stage of ensemble learning is in-

deed recommending base classifiers, it is evident that an algorithm that learns ensembles can also

perform Auto-ML.

1.1 Objectives

Considering the topics discussed above, the overall objective of this thesis is to develop

new evolutionary algorithms for learning ensembles of interpretable classifiers. By automatically se-

lecting interpretable classifiers, and optimizing their hyper-parameters, we believe that we can provide

models with predictive performance comparable to black-box models, while still being interpretable. If

successful, this thesis could be among present and future work that integrate the so-called Explainable

Artificial Intelligence (XAI) [35] track, which aims to shift the focus from developing black-box models

with ever-increasing performance to more accountable, explainable models.

Among the several types of evolutionary algorithms present in the literature (on which a

brief, non-extensive review is presented in Section 2.2), we choose to employ Estimation of Distribu-

tion Algorithms (EDAs). In the extensive literature review conducted by us on ensemble learning with

evolutionary algorithms, presented in Chapter 3, we detected that there are more genetic algorithms

(GAs) than Estimation of Distribution Algorithms for this task. However, we choose to employ EDAs

because they use probabilistic graphical models, a structure that explicitly manipulates variables in

the problem. Because of that, it is possible to bias the initial probabilities of the variables, a resource

that was used on all of this thesis’ proposed algorithms. Such processing could not be performed

26

using, e.g., genetic algorithms, since in the latter variables are implicitly encoded, with their values

manifesting only within individuals.

The first specific objective of this thesis is to develop an Estimation of Distribution Algorithm

for learning ensembles of interpretable classifiers that does not take probabilistic relationship between

variables into account (in this thesis, variables are the hyper-parameter values of base classifiers), while

still having comparable predictive performance to traditional, non-evolutionary, black-box, ensemble

learning algorithms.

The second objective is similar to the first, but this time we are interested in learning rela-

tionships between variables. How relationships will be learned? Which type of probabilistic graphical

model is more appropriate for this task, while also taking interpretability into account?

Finally, the third and last specific objective aims to perform an extensive experimental com-

parison between both EDAs. Which EDA would perform better, the one that learns relationships be-

tween variables or the one that does not? And more importantly, due to what factors can we attribute

the experimental outcome?

1.2 Thesis’ Contributions

We performed a survey on evolutionary algorithms for ensemble learning, a work that, up

to our knowledge, is the first in its kind. The survey proposes a new taxonomy for classifying the

literature on the subject. The survey reviews what are the ensemble learning steps, how evolutionary

algorithms can be employed in each one of them, and discusses pros and cons on some topics, such

as model selection – a topic that has yet to see consensus on the academic community. The survey is

presented in Chapter 3.

The main contribution of this thesis is to propose new evolutionary algorithms for inducing

ensembles of interpretable classifiers. The first algorithm is called PUMA – Probabilistic Univariate

Estimation of Distribution Algorithm for Ensemble Learning, and is described in Chapter 5. The second

algorithm is called EDNEL – Estimation of Dependency Networks for Ensemble Learning, which in turn

is presented in Chapter 6. As contributions of this thesis, we can enumerate:

• Developing EEL (chapter 4), an Estimation of Distribution Algorithm for adjusting the voting

weights of Adaboost post-classification, thus increasing its predictive performance;

• Developing evolutionary algorithms for ensemble learning that work on the three stages of en-

semble learning: generation, selection, and integration. We are unaware of other EAs that op-

erate simultaneously on these three stages;

• Evolving ensembles of classifiers with the explicit objective of providing interpretable models to

users (specialists or not);

27

• Developing an evolutionary ensemble learning algorithm (PUMA, Chapter 5) that does not take

variable relationships into account, but nonetheless presents competitive predictive performance

when compared to traditional, non-evolutionary, black-box ensemble learning algorithms;

• Developing an evolutionary ensemble learning algorithm (EDNEL, Chapter 6) that explains the

relationship between base classifiers’ hyper-parameter values for a given learning process (e.g.

“how does the pruning policy of base learner A affects the search procedure of base learner

B?”);

• Developing evolutionary ensemble learning algorithms that automatically learn the best-suited

strategy for each application domain at hand, achieving predictive performance comparable to

those of powerful, well-established black-box models.

1.3 Thesis’ Outline

This thesis is structured in 7 chapters, as follows.

Chapter 2 (Background) describes the background topics regarding evolving interpretable

ensembles of classifiers: evolutionary algorithms, remarks on interpretability, and automated machine

learning.

Chapter 3 (Ensemble Learning with Evolutionary Algorithms) performs an extensive liter-

ature review on ensemble learning with evolutionary algorithms. This chapter outlines where evolu-

tionary algorithms have been used by practitioners and researchers for generating ensembles, while

also proposing a new taxonomy for classifying such work. It also briefly reviews traditional, non-

evolutionary methods for ensemble learning.

Chapter 4 (EEL: Adjusting Adaboost Weights with an EDA) describes one of the early work

of this thesis, a post-hoc evolutionary algorithm to Adaboost for adjusting its voting weights in order

to maximize predictive performance.

Chapter 5 (PUMA: Probabilistic Univariate Estimation of Distribution Algorithm for En-

semble Learning) introduces PUMA, an univariate Estimation of Distribution Algorithm for ensemble

learning that considers at most five white-box classifiers.

Chapter 6 (EDNEL: A Multivariate EDA for Inducing Interpretable Ensembles) introduces

EDNEL, the next iteration of PUMA. EDNEL uses a multivariate Dependency Network instead of a

univariate Bayesian Network for the same task.

Chapter 7 (Conclusion) summarizes the contributions and limitations of this thesis, as well

as the opportunities we envision for future work.

28

29

2. BACKGROUND

This chapter covers topics that are required to better understand the methods proposed in

the following chapters. We briefly review non-evolutionary methods for performing ensemble learning

(Section 2.1); evolutionary algorithms, not necessarily for ensemble learning, but rather showing how

they tackle a simple toy problem (Section 2.2), as means to explain how they differentiate among

themselves; comment on interpretability, and ways to objectively measure it (Section 2.3); and finally

in Section 2.4 we briefly review auto-machine learning, the type of problem that this thesis addresses.

2.1 Traditional non-Evolutionary Ensemble Learning Methods

Ensemble learning became popular during the 1990’s [58], with some of the most important

work arising around that time: stacking in 1992 [267]; boosting in 1995 and 1996 [99, 100, 233];

bagging in 1996 [23]; and random forests in the early 2000’s [24]. We call these methods traditional

to differentiate them from EA-based ensembles, though they are also referred to as preprocessing-based

ensemble methods in the EA literature [146]. Table 2.1 presents a brief overview of the methods that

will be covered in this section.

Table 2.1: Comparison of traditional ensemble learning methods. Adapted from [177].

Algorithm Sampling Base learner Integration strategy

Bagging [23] instance Unstable learner trained over re-sampled instance subsets Majority voting

Boosting [99] instance Weak learner re-weighted at every iteration Weighted majority voting

Stacking [267] None Any Meta-model

Random forests [24] instance; attribute Decision trees Majority voting

2.1.1 Boosting

Boosting refers to the technique of continuously improving the performance of a weak

learner [146]. We present here the popular AdaBoost algorithm, proposed by Freund and Schapire

[99]. Given a set of predictive attributes X and a set of class labels Y , y ∈ Y = {−1, +1}, in

its first iteration AdaBoost assigns equal importance (weights) to each instance in the training set,

D1(i) = 1/N , i = 1, ... , N , where N is the number of instances. For a given number of itera-

tions G, AdaBoost trains a weak classifier based on the distribution Dg , and then computes its error

ϵg = Pi∼Dg [hg(xi) ̸= yi]. Instances that are harder to classify will have their weights increased, so it

becomes more rewarding to the model to classify them correctly. This process is done by computing

the voting strength of the gth
iteration classifier by

αg =
1
2

ln
(1− ϵg

ϵg

)
(2.1)

30

and then adjusting the weight of the instances by

Dg+1(i) =
Dg(i) exp(−αgyihg(xi))

Zg
(2.2)

where Zg =
∑N

i=1 Dg+1(i), which is obtained after calculating all the N new instance weights. After

the G iterations are completed, the prediction for a new instance is given by

H(x) = sign

(
G∑

g=1

αghg(x)

)
(2.3)

Classifiers with greater voting weight will have greater impact in the final prediction.

Candidate algorithms for boosting must support assignment of weights for instances. If

this is not possible, then a set of instances can be sampled from Dg and supplied to the gth
learner.

Although boosting has been shown to improve the predictive performance of a weak classifier, its

performance suffers when faced with noisy instances, since failing to correctly classify those instances

will iteratively improve their importance and hence lead the learner to overfitting [159].

2.1.2 Bagging

Bootstrap aggregating, or simply bagging, aims at reducing training instability when a learner

is faced with a given data distribution [23]. It consists of generating B subsets of size N from the orig-

inal training distribution D(i) = 1/N , i = 1, ... , N with replacement, causing some instances to be

present in more than one subset. As a result some base learners have a tendency to favor such in-

stances, having more opportunities to correctly predict their values. The predictions of all trained B
learners are combined by computing their mean (regression task) or mode (classification task).

Bagging implicitly injects diversity within the ensemble, whereas boosting explicitly does

this by weighting the data distribution to focus the base learners’ attention into more difficult in-

stances [112, 159].

2.1.3 Stacking

Compared to bagging and boosting, stacked generalization or simply stacking [267] is a more

flexible strategy for ensemble learning. The practitioner can choose one or more types of base learn-

ers to be used in the ensemble (e.g. using only decision trees, or mixing them with artificial neural

networks [235]). Then, each base learner will output a prediction, and all learners’ predictions will

be combined by a meta-learner (which can also be chosen) to produce a single output. Popular tradi-

tional meta-learners for stacking include linear regression (for regression) and logistic regression (for

31

classification). Stacking often improves the overall predictive performance of ensembles, making it a

popular method [184, 235].

2.1.4 Random Forests

Random forests [24] is a type of ensemble learning method where both the base learner

and data sampling are pre-determined: decision trees and random sampling of both instances and at-

tributes. First, the random forest algorithm randomly samples with replacement B subsets of training

instances, one for building each of B decision trees that will compose the ensemble. For each inner

node within a decision tree, the algorithm first randomly samples without replacement a subset of m
attributes, and then it selects, among those attributes, the one that minimizes the local class impurity

for that node. This procedure is applied to each inner node in the current decision tree within the

ensemble, and it is repeated until the tree achieves maximum class purity for all leaf nodes.

Random forests can sometimes perform better than boosting algorithms, while being re-

silient to outliers and noise, faster to train than bagging and boosting techniques (depending on the

respective base learner), and being easily parallelized. However, it can require very many decision trees

to provide an acceptable predictive performance, depending on the dataset at hand.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are robust optimization techniques that perform global search

in the space of candidate solutions. Apart from being used in a wide range of applications (e.g.,

finance, health, natural language processing), EAs are simple to implement (requiring little domain

knowledge) and can produce several good solutions to the same problem due to their population-

based nature [105].

Regarding ensemble learning, EAs have several desirable characteristics due to their capabil-

ity of producing a set of solutions that can be readily integrated into an ensemble [74,159]; supporting

multi-objective optimization (e.g., based on Pareto dominance), allowing the generation of solutions

that cover distinct aspects of the input space [159]; and removing the need to manually optimize

some hyper-parameters (e.g., the base learner’s hyper-parameters, the number of ensemble members,

etc.). However, EAs will most likely increase the computational cost of ensemble learning due to their

robust global-search behavior that usually considers tens or hundreds of possible solutions at each

iteration (generation). Nonetheless, parallelization is an option to mitigate such problem [167].

Since ensemble learning comprises at least three main optimization steps, which are some-

times referred to as generation, selection, and integration [26,36,167]; pre-gate, ensemble-member,

and post-gate [67]; or generation, pruning, and fusion [201]; there are several tasks that are prone to

optimization by evolutionary algorithms [87]. In the literature on EA-based ensembles for supervised

32

learning, the most common approach is to optimize a single step, though less frequently some studies

optimize two of them (e.g., [43, 190]).

There are several types of evolutionary algorithms, and it is difficult to describe most of them

with a single explanation. For this reason, the rest of this section reviews some of the most popular

evolutionary algorithms, according to our literature review of evolutionary algorithms for ensemble

learning (presented in Chapter 3). As a means to facilitate the reader’s understanding, we present a

toy application (namely the map coloring problem), and then show how each of the presented EAs

would solve the problem.

2.2.1 The Four Color Theorem

The Four Color Theorem [7] is a mathematical theorem that states that any map can be

colored with four colors preventing that two neighboring regions share the same color. For example, if

we consider the map of Brazilian Federative States (26 states + 1 Federal district), we can prevent that

two neighboring states have the same color with a palette with only four colors. The mathematical

proof behind this statement requires the conversion of maps to graphs: each region becomes a vertex

(or node), and neighborhoods are defined by edges.

Nonetheless, it is interesting to investigate how simpler graphs behave with varying number

of colors. Suppose we have a graph that contains a set of edges and vertices. An edge connects two

neighboring vertices. If we use a sufficiently limited number of colors to a relatively complex graph

structure, it will not always be possible to avoid neighbors sharing the same color. For this reason

we define a function to measure how good the chosen color assignments are: this function is called

fitness ϕ, and the measure of quality is the number of edges that connect different color vertices.

Colored graphs with few same-color neighbors will result in better fitness values. Figure 2.1 depicts

an arbitrary coloring of four vertices and three colors, whereas Figure 2.2) depicts the solution space

for such a graph.

V1 V2

V3 V4

Figure 2.1: Input space for the graph coloring problem with four vertices and two (out of three allowed)

colors. This solution has fitness ϕ = 3 (out of 4), since three edges (the ones that connect vertices V1

to V2, V3 to V4, and V1 to V3) connect different-color vertices.

33

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
V1,V2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

V 3
,V

4

0

1

2

3

4

(a) bidimensional

V1,V2

0,00,10,2 1,0 1,1 1,2 2,0 2,1 2,2
V3,V4

0,00,10,21,01,11,22,02,12,2

fit
ne

ss

0

1

2

3

4

(b) tridimensional

Figure 2.2: 2D and 3D solution spaces for the graph coloring problem with 4 vertices and 3 colors. Dark

blue-ish tiles represent bad arrangements, whereas light yellow-ish tiles represent good arrangements.

Each axis represents two variables (e.g., V1 and V2 in the horizontal axis, V3 and V4 in the vertical axis),

and each tick indicates which colors are assigned to those vertices (0 through 2 since we only have

3 available colors). The lower-left position of Figure 2.2a, (0, 0), (0, 0), is the case where all vertices

have the same color, thus yielding a bad arrangement (blue-ish).

2.2.2 Genetic Algorithms

Genetic Algorithms (GAs) were first introduced by John Holland in the book Adaptation in

natural and artificial systems [122]. They take inspiration from Darwinan evolution and chromosomal

interactions, with operators such as crossover and mutation.

Genetic algorithms encode individuals – candidate solutions to the problem – as arrays.

The individual encoding may be more intuitive in some cases than others, depending on the problem

at hand. For the graph coloring problem, each array position may be representative of a node in the

graph, and the value for that array position is the color assigned to that node in that individual. Let

V be the set of all array positions, |V | the number of positions in the array (i.e., string length), Vi the

set of possible values for the i -th position, and vi ,k the k -th value available for the i -th position. For

the graph coloring problem, |V | = 4, Vi ∈ {gray, green, blue}∀i , i = 1, ... , |V |. Figure 2.3 depicts an

arbitrary encoding for the graph coloring problem.

V1 V2 V3 V4

(a) Encoding

0 1 1 0

(b) Individual

Figure 2.3: On the left, encoding adopted by a GA designed to the graph coloring problem with 4
nodes. On the right, one valid individual randomly generated as a member of the initial population.

34

Genetic algorithms adopt the following pipeline. After defining a solution encoding, a given

number of individuals |S| are generated at random. The individuals have their fitness assessed by a

fitness function (in this application domain, a fitness function that makes sense counts the number

of edges that connect two vertices of different colors). The individual from Figure 2.3b, for example,

has fitness = 2. A selection strategy (e.g., tournament selection) will select the parents for crossover,

generating new offspring, following the Darwinian ideas of selective pressure within populations of

species. Some of the individuals from the current population may also undergo mutation, where some

of their array values may be changed at random, helping the genetic algorithm to explore the neighbor-

hood of good solutions in the solution space. Figure 2.4 depicts the crossover and mutation operators.

0 1 1 0 0 1 2 2

0 0 2 2 0 0 1 0

aa

(a) Before crossover

0 1 1 0 0 1 2 2

0 0 2 2 0 0 1 0

aa

(b) After crossover

0 1 1 0 0 1 1 1aaa

(c) Before mutation

0 1 1 0 0 1 1 1aaa

(d) After mutation

Figure 2.4: Crossover and mutation operators used in genetic algorithms.

This process continues until a termination criterion is met, usually when a predefined num-

ber of G generations have elapsed. Albeit popular, genetic algorithms suffer from several problems,

including how to define the best selection strategy for mating, the most suitable strategy for crossover

(one point, two points, etc), and the implicit modelling performed [117], which may prove difficult to

analyze once the evolutionary process is over. In the graph coloring problem, it is easy to see how vari-

ables (i.e., vertices) interact with one another. However, for other applications the effective analysis

of interactions between variables in the problem may be impractical.

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Although single-objective evolutionary algorithms may be sufficient to solve several prob-

lems, for other application domains it is sometimes required to optimize a second objective. Such an

objective may be surrogate with regard to another: when designing predictive models, predictive ac-

curacy is the first and most important objective, while interpretability may be the second. Assigning a

weight for each objective, or performing a lexicographic search, may be sufficient to find a satisfactory

solution [97]. However, for other problems (e.g., designing a car engine), the first objective may be

energy efficiency, with the second one being engine power. In this example, no objective is surrogate

to the other.

For that kind of problem, an algorithm that considers that multiple objectives have the same

importance should be employed. This concept is based on the Pareto dominance of solutions [190].

Let Φj(si) be the quality of the solution si in the j -th objective, and |Φ| the number of objectives. In a

problem in which the higher the fitness values the better, we have that:

35

Definition 1. Pareto-dominance – A solution si is said to dominate another solution sk if ∀j = 1, ... ,

|Φ|, Φj(sk) ≤ Φj(si), and ∃j ∈ {1, ... , |Φ|} such that Φj(sk) < Φj(si) holds.

Definition 2. Pareto-optimal – A solution si is called Pareto-optimal if there does not exist any other

solution that dominates it. A set of Pareto-optimal solutions is called Pareto-front.

For GAs, the most popular implementation of multi-objective optimization is the Non-dominated

Sorting Genetic Algorithm II, or NSGA-II [65]. NSGA-II uses the same encoding than the GA presented in

Section 2.2.2. It starts by sampling a random initial population and then assessing its performance via

a set of fitness functionsΦj , j ∈ {1, ... , |Φ|}. It will then sort individuals based on their non-dominated

rank [16].

This sorting yields a set of Pareto Fronts. Within each Pareto Front, none of the individu-

als dominates another, but any individual in this particular front may dominate or be dominated by

individuals in other fronts. Figure 2.5 depicts a typical output for an NSGA-II iteration.

0.0 0.2 0.4 0.6 0.8 1.0
Objective #1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
#2

Front 1
Front 2
Front 3
Front 4
Front 5
Front 6
Front 7
Front 8
Front 9
Front 10
Front 11

0.0 0.2 0.4 0.6 0.8 1.0
Objective #1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
#2

Front 1
Front 2
Front 3
Front 4
Front 5
Front 6
Front 7
Front 8
Front 9
Front 10
Front 11

Figure 2.5: Projection of individuals regarding their performance in two objectives with NSGA-II. Indi-

viduals within the same Pareto Front are not better than their neighbors, only equivalent.

The selection algorithm for mating follows special rules in multi-objective optimization. Indi-

viduals from least-dominated fronts are preferred over most-dominated fronts, and mating individuals

from the same front are also encouraged. If two individuals are in the same front, they are further

sorted by the region that they inhabit within that front, with a preference for individuals that are more

spread-out from the others (i.e., that are located in the least dense region). The authors use a crowd-

ing distance to determine whether regions are more or less populated, with bigger crowding distances

being preferred.

Finally, once the mating process is done, individuals are selected based on their front posi-

tion (e.g., first front, second front, etc.) to be a part of the next generation. This is done since elitism

is present in NSGA-II, thus some individuals may go unaltered to the following generation, yielding a

pool of candidates greater than the size of the population.

36

2.2.3 Genetic Programming

Differently from the other algorithms presented in this section, the main objective of genetic

programming (GP) [83] is to generate a function or a small computer program. Even though GPs can

be adapted to classification problems, the explanation of GPs given in this section does not use the

coloring problem as example, using a problem that is more appropriate to GPs capabilities.

Genetic programming algorithms typically model individuals after n-ary trees, even though

the implementation may be done using a traditional data structure (e.g., an array for a binary heap

tree). A set of operators and operands must be defined beforehand. Assume one desires to approxi-

mate the function 2x + 1. The defined set of operators could be {+,−, /, ∗}, and the set of operands

could be a combination of scalar values and the input, e.g., {1, 2, 5, x}. With a set of pairs x , y given

to the problem as {(0, 1), (1, 3), (2, 5), (3, 7), (4, 9)}, the GP algorithm must then randomly generate

an initial population, with the maximum tree depth being an hyper-parameter. Figure 2.6 depicts two

valid individuals for this initial population.

Once generated, individuals will undergo the same procedures adopted by a genetic algo-

rithm: crossover and mutation. The mutation operator swaps one or more nodes in the tree with other

operators or operands, while crossover swaps portions of the trees from two individuals. After either

of the operations is performed, the GP algorithm must maintain the general rules of evolution (e.g.,

replacing operators that may have been placed in terminal nodes after crossover). Figure 2.7 depicts

a crossover operation between the two individuals from Figure 2.6.

+

* /

2 x 1 2

* *

x x 1 1

Figure 2.6: Individuals randomly generated for the first iteration of a GP with the purpose of approx-

imating a mathematical function. Only operators are allowed in inner nodes, and only operands are

allowed in terminal nodes.

37

+

* *

2 x 1 1

* /

x x 1 2

Figure 2.7: Individuals from the first population after crossover. Notice that, while not syntactically

identical, the left individual is semantically equal to the objective function.

2.2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based meta-heuristic algorithm devel-

oped by Kennedy and Eberhart in 1995 [77, 133]. PSO’s individuals interact with one another, simu-

lating how flocks of birds behave.

Expressions such as individual, solution, and particle are interchangeable while explaining how

PSOs works. For the graph coloring problem, a typical PSO can use the same encoding adopted by

the genetic algorithm described in subsection 2.2.2. Along the fitness of individuals, PSO also stores

other metadata, such as individuals’ velocity (updated at each generation); the former best position

for each individual; and the position of the best overall individual so far.

The velocity of individuals is updated following the equation

velocity (i) =W × velocity (si)+

U(0, 1)× (past_best(si)− si)+

U(0, 1)× (global_best − si)

(2.4)

where W is a decrease factor, si is the position of the current individual, velocity (si) is the velocity of

the i -th individual, past_best(si) the former best position of the i -th individual, global_best is the

best individual found so far, and U(0, 1) samples a value from the interval [0, 1]. The position of the

i -th individual is updated by simply accelerating it towards the velocity vector. Figure 2.8 presents the

updating process of a PSO solving the graph coloring problem.

This characteristic of moving individuals toward the global allows PSO to employ an effec-

tive exploration and exploitation strategy within the solution space [207]. However, it is sensitive

to the hyper-parameters choice, which may increase the computational cost due to the necessity of

performing a search for the best set of hyper-parameters.

38

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
V1,V2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2
V 3

,V
4

(a) Initial population

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
V1,V2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

V 3
,V

4

(b) Calculating velocity vector

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
V1,V2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

V 3
,V

4

(c) Moving population

Figure 2.8: PSO updating its population. Since in the initial generation there is no information about

the last best position for each individual, all particles move towards the global best. Notice that some

individuals may be stacked upon each other.

Multi-Objective Particle Swarm Optimization

Multi-Objective Particle Swarm Optimization (MOPSO) [49] extends PSO to deal with multi-

ple objectives that present the same importance. It does so by adopting a Pareto Dominance concept,

explained in subsection 2.2.2.

Along all the variables stored by the single-objective PSO (described in subsection 2.2.4),

MOPSO also stores a repository of non-dominated solutions. Particles are allowed to pursue its past

best position and an arbitrary non-dominated solution, selected at each generation. The velocity of

the particle is updated by

velocity(si) =W × velocity (si)×

U(0, 1)× (past_best(si)− si)+

U(0, 1)× (non_dominated(sj)− si)

(2.5)

where W is a decrease factor, velocity (si) is the velocity of the i -th particle, si is the current position of

this particle, U(0, 1) samples a value from the interval [0, 1], past_best(si) is the best position found

so far by the i -th particle, and non_dominated(sj) is the j -th non-dominated particle, stochastically

selected, with preference for particles in sparser regions [49]. past_best(si) is updated according to

the Pareto Dominance of the current position and the last best position, with preference for storing

the least dominated position. The set of non_dominated particles is updated at each generation.

39

2.2.5 Differential Evolution

Differential evolution was first introduced by Storn and Price in 1995 [244]. It primarily deals

with continuous search spaces, but can be adapted for discrete domains. The encoding of individuals

follows the same principle as the one presented by genetic algorithms (Section 2.2.2), using an array

of size |V |.

Differential Evolution uses three hyperparameters: CR ∈ [0, 1], the probability that an indi-

vidual will undergo crossover; F ∈ [0, 2], called differential weight; and the population size, |S| ≥ 4.

As well as other evolutionary algorithms, differential evolution samples individuals from an uniform

distribution over all possible solutions. After assessing their fitness, two structures are generated for

each individual, a mutation vector m and a trial vector t . The mutation vector is generated by

mi = sr1 + F · (sr2 − sr3) (2.6)

where mi is the i -th mutation vector, r1, r2 and r3 are randomly sampled numbers from {1, ... , |S|} −
{i} without replacement, and F is the differential weight. The trial vector is generated by

tij =

 mij if U(0, 1) ≤ CR or j = U([1, |V |])

sij if U(0, 1) > CR and j ̸= U([1, |V |])
j = 1, ... , |V | (2.7)

where mij is the j -th position of the i -th mutation vector, sij is the j -th position of the i -th solution,

U(0, 1) yields a real-valued number within interval [0, 1], CR is the crossover probability (an hyper-

parameter defined by the user), and U([1, |V |]) samples an integer from the interval [1, |V |]. If the

trial vector yields a better fitness than the target vector si , then the trial vector will replace si in the

following generation. If this is not the case, then the target vector si is kept. Figure 2.9 depicts the

structure generation procedure.

0 1 0 1

(a) sπ1

0 1 1 0

(b) si

2 0 1 1

(c) sπ2

1 1 0 1

(d) mi

0 0 1 1

(e) sπ3

1 1 1 1

(f) ti

Figure 2.9: Generation of mutation and trial vectors for an individual. Mutation vector is generated

by randomly selecting three other individuals sπ1 , sπ2 , sπ3 and applying Equation 2.6. Trial vector is

generated by following Equation 2.7. For this particular case, the sampled indices were {2, 3, 0, 3},
the random values were {0.07, 0.29, 0.57, 0.90}, and with hyper-parameters CR = 0.1 and F = 0.5.

40

Multi-Objective Differential Evolution

There are several ways to modify the single-objective differential evolution to deal with multi-

ple objectives, as pointed out by Mezura-Montes, Reyes-Sierra, and Coello in their paper [183]. How-

ever, in this subsection we will briefly describe the first proposed approach. In the work of Chang,

Xu and Quek [37], a MODE starts by uniformly sampling individuals among all possible solutions.

The MODE keeps track of two subpopulations: the general subpopulation S, and a subpopulation of

nondominated solutions Ψ. The later subpopulation is fulfilled as follows: in the first generation, a

random individual is added to Ψ. The algorithm then proceeds to compare all other individuals from

S to this single individual. If an individual si from S dominates any solution in Ψ, then the dominated

solutions in Ψ are removed and si is added to Ψ. This procedure is repeated at each generation. For

comparing individuals, MODE uses the Pareto Dominance concept, explained in subsection 2.2.2. In

practice, what the algorithm does is to advance the first Pareto Front towards better solutions, until

a termination criterion is met.

Although this procedure keeps track of the best nondominated solutions, it does not guar-

antee diversity among this subpopulation. This is further achieved by using the fitness sharing mech-

anism: individuals that lie in densely-populated areas in the solution space will have its fitness de-

creased, while individuals in sparsely-populated areas will have their fitness increased. How close

neighbors must be to this modification to take effect is regulated through a hyper-parameter σshare.

Figure 2.10 depicts this concept.

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
V1,V2

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

V 3
,V

4

Figure 2.10: Definition of a vicinity of an individual, with radius = σshare, shown here for a single ob-

jective. Although both the black square and black triangle have the same fitness, the square individual

lies in a less crowded region, and thus will perform better during the selection procedure.

41

2.2.6 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms, or EDAs for short, were first proposed by Larrañaga

and Lozano [163]. The main difference between EDAs and genetic algorithms [122] is that while

GAs perform an implicit propagation of characteristics throughout evolution (i.e., by carrying-on high-

quality individuals from one generation to another), EDAs will do this explicitly, by encoding those

characteristics in a probabilistic graphical model [117]. A graphical model is a directed acyclic graph

modeled after a Bayesian network. While graphical models are usually initiated with uniform distribu-

tions of probabilities, it is also possible to set custom probabilities that come from a previous search

procedure, or based on knowledge provided by a domain expert. The structure of a graphical model is

depicted in Figure 2.11.

p(V1 = 2) p(V2 = 2) p(V3 = 2) p(V4 = 2)

p(V1 = 1) p(V2 = 1) p(V3 = 1) p(V4 = 1)

p(V1 = 0) p(V2 = 0) p(V3 = 0) p(V4 = 0)

Figure 2.11: Graphical model for the graph coloring problem. A probability is assigned for each node

assuming a given color. Probabilities for each node sum up to 100%, and for a new search procedure,

are initiated uniformly, i.e. p(Vi = j) = 1
3 ,∀i = 1, ... , |V |,∀j = 1, 2, 3.

A typical Estimation of Distribution Algorithm starts by initializing its graphical model and

sampling individuals from it. Since the probability for any given node assuming a color is initially uni-

form, all possible solutions are equally likely to be sampled in the first generation. The EDA then as-

sesses the quality of each solution using a fitness function, selecting the individuals that have quality

above the median fitness (or other selection scheme) to update the graphical model. The probability

of a given color being sampled for a given node in the fittest population will be broadcasted to the

graphical model, so in the next generation higher-quality solutions will be sampled, in theory. EDAs

may have additional mechanisms for inferring the relationship between variables (i.e., drawing edges

between graphical model variables). Thus, for the graph coloring problem, an EDA with this mecha-

nism can infer the direct relationship of variables in the problem (e.g., automatically detecting that

changing the color of node V1 affects the selected color for node V2).

This process of graphical model updating and population sampling continues until a ter-

mination criterion is met: a sufficient number of generations have elapsed; no improvement in the

quality of individuals is verified; or a sufficiently high-quality individual is found. Figure 2.12 depicts

the process of probability updating for the univariate graphical model (where no relationship among

variables is assumed).

42

0 2 0 2

0 1 2 1

0 1 2 0

(a) Elite population

0% 33% 67% 34%

0% 67% 0% 33%

100% 0% 33% 33%

(b) Updated graphical model

Figure 2.12: From all individuals available in a given generation, the ones in Figure 2.12a were selected

for updating the graphical model. The likelihood of a color occurring in a given node in the elite pop-

ulation will be broadcasted to the graphical model of the next generation (Figure 2.12b).

Multi-Objective Estimation of Distribution Algorithms

There is a set of strategies for dealing with multiple objectives with Estimation of Distri-

bution Algorithms, as shown in the survey paper of Hauschild and Pelikan [117]. The shown strate-

gies, however, do not substantially differ from NSGA-II (presented in Section 2.2.2) and MODE (Sec-

tion 2.2.5): whether using a custom-made selection strategy for preserving diversity among popula-

tion, or keeping track of a subpopulation of Pareto-optimal solutions. One novel strategy, however,

is presented in the Multi-Objective Hierarchical Bayesian Optimization Algorithm (mohBOA) [208].

After sampling, solutions are ranked based on their crowding distance (i.e., good solutions that share

little similarities with other solutions are preferred). After using the same selection criterion as NSGA-

II, selected solutions are clustered with k -means. Each cluster will generated a probabilistic graphical

model, and new solutions will be sampled from these graphical models, replacing solutions marked for

replacement.

2.3 Interpretability

Interpretability, in the context of machine learning, is the capability of a model to allow

its predictive process to be explained. Other terms used in the literature include comprehensibility,

understandability, and explainability; although interpretability is more frequently used, and all terms

are often used interchangeably [35].

Interpretability of machine learning models is an important feature for a wide range of ap-

plications, such as medicine, credit scoring, bioinformatics, and churn prediction [98]. For those end-

users, being able to trust predictions of generated models often comes in hand with the ability to

understand them. This feature is critical in scenarios where models can lead to life-or-death decisions

(such as in medicine), or influence decisions that can put several lives at risk, such as the use of recom-

mendation algorithms in a nuclear power plant [98]. More recently, being able to interpret machine

43

learning models also gained attention from different segments of society, from the academic commu-

nity (in the form of workshops on model comprehensibility) to governments (e.g., the Data Protection

Regulation from the European Union, which includes a “right to explanation" in its text) [103].

There is no mathematical definition of interpretability [35]. Non-mathematically, literature

surveyed by Carvalho et al. [35] seems to agree that interpretability is defined in human terms: the

easier for a human to grasp a model’s predictive process, the more interpretable the model. According

to Belle and Papantonis [20], transparency (which here we will treat as a synonymous to interpretabil-

ity) can be viewed according to three approaches: simulatability, decomposability, and algorithmic

transparency. Simulatability refers to the capability that a human can simulate the predictive process

of a model, given its inner workings. This concept is elastic, since not all decision trees, for exam-

ple, would be computable by a human by thought [20]. On the other hand, a neural network with

no hidden layers could fall into this category. Decomposability “denotes the ability to break down a

model into parts (input, parameters and computations) and then explain these parts” [20]. Finally,

Algorithmic transparency refers to “the ability to understand the procedure the model goes through

in order to generate its output” [20]. Neural networks, for example, do not satisfy this requirement:

even experts may struggle to run a single backward procedure, a process that is repeated several times

within a neural network training, and that is used to adjusted the neural network’s weights.

Interpretability, while already-experimented in machine learning for some time (CART [25]

and C4.5 [213] decision tree algorithms are, respectively, from the 80s and 90s), remains as one of

the least researched characteristics of machine learning algorithms [35], partly because it is associ-

ated with white-box models, which are not always the interest of research for several groups [103]. A

greater focus is devoted to producing black-box models with ever-increasing predictive performance,

disregarding interpretability [35]. However, interpretability is finally gaining more traction in the ma-

chine learning community, with more congresses and journals focused on XAI (eXplainable Artificial

Intelligence) being proposed in recent years [35]. Additionally, the fact that machine learning sys-

tems are deployed to high-stakes applications, with severe consequences in case of misjudgments,

calls for greater accountability. Examples of high-stakes applications include “people incorrectly de-

nied parole, incorrect bail decisions leading to the release of potentially dangerous criminals, pollution

models stating that dangerous situations are safe”, just to name a few [35].

When researched, interpretability is often measured in terms of model complexity – e.g.,

the number of rules in a rule-based classifier, or the depth of a decision tree [103]. However, this is not

what an end-user might seek in a model to deem it comprehensible. Let us take the example of decision

trees, a popular white-box model for the problem of predicting whether a person is eligible for being a

goalkeeper in a soccer club. For a decision tree with height 3, using parallel decision boundaries (that

is, using a single attribute, e.g., age ≤ 22, height ≥ 185cm) may increase human comprehensibility

though at the expense of predictive performance. Conversely, oblique trees can use the combination

of two or more attributes (e.g., (age ≤ 22) ∧ (height ≥ 185cm)) to have trees with the same height

and better predictive performance, but at the expense of comprehensibility. In this scenario, tree

height is certainly not a good proxy to model comprehensibility.

44

On the other hand, enforcing monotonicity constraints (provided by either the user or a

domain expert) may lead to better models [98, 103]. Monotonic relationships describe the relation

between increasing the value of a given attribute (for example, the age of a patient) to the probability

of the instance with that attribute value belonging to a given class (for example, the probability that

the same patient will present some kind of cancer). For a decision tree, enforcing that the tree is

monotone (i.e., it respects all the monotonicity constraints) can be in the form that no branching

test leads to counter-intuitive results (in the above example, stating that an increase in age leads to

a decrease in the probability of having cancer). These constraints may be used in a soft-constraint

fashion if breaking the constraints leads to better accuracy.

As defined by Carvalho et al. [35], interpretability can be pursued in three ways: pre-model,

in-model, and post-model. Pre-model is achieved through an interpretation of the dataset; in-model

refers to using models that are inherently interpretable (the so-called white-box models); finally, post-

model interpretability refers to (i) interpreting the inner workings of a white-box model, such as ana-

lyzing the weights of a logistic regression; or (ii) applying a model-agnostic method to interpret model

predictions.

We will briefly review white-box models, and strategies to make black-box models inter-

pretable, as these are the main methods employed in this thesis. The interested reader is referred to

the surveys of Belle and Papantonis [20], and Carvalho et al. [35] for an in-depth review of these ap-

proaches. Figure 2.13 shows the taxonomy proposed by Belle and Papantonis [20] on approaches to

develop interpretable systems.

Explainability
Approaches

Transparent
Models

Opaque Models

Post-hoc
Explainability

Model-agnostic

Model-specific

Explanation by
Simplification

Feature
Relevance

Explanation

Local
explanations

Visual
Explanations

Explanation by
Simplification

Feature
Relevance

Explanation

Figure 2.13: Taxonomy proposed by Belle and Papantonis on approaches to develop interpretable

machine learning systems. Green darker boxes denote interpretable models. Adapted from [20].

45

2.3.1 White-box models

White-box models are generated by classifiers that fulfill at least one of the three trans-

parency dimensions proposed by Belle and Papantonis [20]: simulatability, decomposability, and al-

gorithmic transparency. One of the challenges of pursuing interpretability with white-box models

(e.g., rule lists, decision trees) is that they present, on average, inferior predictive performance than

black-box models (e.g., neural networks, Support Vector Machines) [34]. This presents a challenge:

while increased predictive accuracy is required in mission-critical applications, such as healthcare [98],

the ability to review the predictive process is also important.

Even though Belle and Papantonis [20] make a distinction between decision trees and rule-

based classifiers – and we agree with that distinction –, we also consider that several classifiers steer

from the same generic framework: decision trees can be, after all, translated as a sequence of rules, as

it is done with the PART algorithm [96]. Also, decision tables can also be converted into rules [123].

The play tennis dataset, shown in Table 2.2, will be used as model for all reviewed white-box

models, allowing the reader to draw a comparison between data representation between them.

Table 2.2: Play Tennis dataset.

Outlook Temperature Humidity Wind Play

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rain Mild High Strong No

Decision trees

Decision trees can be used for both classification and regression. Decision trees, while differ-

ing in the branching factor (binary, n-ary), decision functions in inner nodes (parallel, oblique), purity

function (Gini Index, Entropy, Information Gain), and a few other hyper-parameters, have all the same

basic properties: a root node, which splits the training data using a rule over features (according to

a purity metric); inner nodes, which further split the training data according to other rules over fea-

tures; and leaf nodes, the nodes that will assign a value (for regression) or label (for classification) to

incoming data.

Decision trees are widely used in applications where interpretability is paramount, in fields

such as medicine and finance [123]. Unsurprisingly, decision trees fulfill most, if not all, of the trans-

46

parency criteria of Belle and Papantonis [20]: if a decision tree is sufficiently small (i.e., few leaf nodes,

where few is subject to the human capability of memorizing decision paths), then it is simulatable; if

the tree is large but its features are understandable by a human user, then it is decomposable; finally,

if the features are not understandable, then it is still algorithmically transparent.

In this thesis, we use two decision tree algorithms: C4.5 [213] and CART [25]. The main

differences between the two, apart from specific implementation details, are the splitting criteria (C4.5

uses the gain ratio while CART uses the Gini Index) and the splitting arity (C4.5 makes binary splits

for numeric attributes, and n-ary splits for categorical features, whereas CART makes binary splits for

all types of attributes) [211]. Both algorithms support pruning. C4.5 is also referred to as J48 in the

Weka Toolkit implementations [113], while CART is known as SimpleCart. In Figure 2.14, we depict a

comparison of decision trees induced by J48 and SimpleCart for the play tennis dataset.

yes

wind

no

humidity

yesno

outlook

yes

= rain= sunny

= overcast

= normal= high = strong= weak

(a) J48

no

humidity

outlook

yes

≠ overcast= overcast

= normal ≠ normal

yes

wind

no

≠ weak= weak

(b) SimpleCart

Figure 2.14: Decision trees induced by J48 and SimpleCart algorithms of the Weka Toolkit [113].

47

Rule-based classifiers

There are two types of rule-based classifiers: rule lists and rule sets. While both types of

algorithms iteratively build models by adding rules to the system, the triggering mechanism is different.

In a rule-list procedure, the learning algorithm starts with the entire training set and finds a rule that is

both (i) the simplest, (ii) covers most examples, and (iii) has the best metric value (e.g., accuracy). This

rule is then added to the list, and all covered examples are removed from the training set (note that

covered examples will be removed regardless of being correctly labeled). This procedure is repeated

until all examples are covered, even if a default rule needs to be added at the end of the list. The list

can be pruned afterwards by a different procedure.

A rule-set building algorithm, on the other hand, does not simply finds the rule that cov-

ers most examples, but instead the rule that covers most positive examples, the positive class being

iterated over all class labels. It also does not remove all covered examples, but only those correctly

classified. This procedure is repeated until all examples are covered. As it can be seen, more than one

rule can cover different examples, hence a triggering policy is defined: it can be either the first rule to

be triggered (which prioritizes simpler rules), or assigning a voting weight to each rule and averaging

out the class.

In this thesis, we use two rule-list algorithms as base classifiers: RIPPER [50] (also known as

JRip in the Weka Toolkit [113] implementation) and PART [96]. The main difference between them is

that, while RIPPER builds a rule list as described above, PART does so by converting a C4.5 decision

tree to a rule list. Using RIPPER [50] on the play tennis dataset generates the rule list of Figure 2.15.

• if outlook = overcast then play = yes

• if humidity = high then play = no

• default: play = yes

Figure 2.15: Rule list generated by RIPPER over the play tennis dataset.

EDNEL, one of the contributions of this thesis (described in Chapter 6) also uses a modified

version of the CN2 algorithm [47] for generating unordered rule sets from decision trees and decision

tables. The procedure is similar to the one explained above, except for the fact that rules are directly

extracted from these algorithms instead of being evolved.

Decision tables

Decision Tables [143] are quite different from rule-based classifiers, even though they steer

from the same learning paradigm, rule-based learning. Decision tables have four quadrants, which will

be explained using Figure 2.16 as an example. In the leftmost top quadrant, the variables used for

classification are depicted – in this example, outlook and humidity. The rightmost top quadrant has

values paired for each variable within the rows. A dash (–) denotes that any value for that variable

48

is acceptable. In the leftmost bottom quadrant, the class attribute values are depicted: yes (do play

tennis today) and no. Finally, in the rightmost bottom quadrant, the check marks denote which class

would be assigned for an instance that meets all the criteria in the header rows. Since we are using

single-hit decision tables, there are at most one check mark for each column. If no check mark is

present for a given column, then the default rule should be assumed. A valid conversion from the

decision table of Figure 2.16 would be the rule list of Figure 2.15.

Outlook Sunny Overcast Rain – –

Humidity – – – Normal High

play = yes ✓
play = no ✓

Default: play = yes

Figure 2.16: A decision table built for the play tennis dataset. Note that it provides a default rule.

2.3.2 Black-box models

Black box models are, by definition, non-interpretable. A machine learning practitioner can,

for example, inspect the neurons, weights, and connections of a neural network, but that alone will

help in interpreting the decisions performed by the model.

However, this limitation does not forbid one from trying to understand the inner workings of

a model that falls in this category. As defined by Belle and Papantonis [20], several techniques can be

applied to explain black-box models. We will briefly detail two of them: explanation by simplification

and feature relevance explanation.

Explanation by simplification consists in converting a black-box model to a white-box model.

We will shortly explain how the LIME algorithm works [219], which is a model-agnostic technique. Af-

ter inducing a black box model, a white-box model (e.g., decision tree, linear model) is approximated

for a given region of the input space that needs explanation (i.e., the white-box model does not ap-

proximate all predictions from the black box model, only a part of the entire space). Once trained, this

white-box model, which has features that are not necessarily the ones used for training the black-box

model, can explain a portion of the input space that is close to the instance that is being explained.

For Random Forests, neural networks, and support vector machines, one can extract a rule

set, thus turning an opaque model into a transparent one [123]. EDNEL, one of our evolutionary

algorithms, performs this kind of adaptation (as explained in Section 6.1.1) to decision trees and

decision tables. We also perform this procedure on Random Forest, explained in Section 6.2.1. One

should note that the predictive performance of Random Forests decreases with the adoption of this

technique, as it is shown in Section 6.2.2. Also note that there is no boundary in the number of rules

to be extracted, which can decrease the interpretability of the provided white-box model [123].

49

Extracting explanations (or converting black-box models to white box) might not be appro-

priate for all approaches. Consider an white-box model that explains a Random Forests model 90%

of the time. When the explanation model agrees with the predictive model, there are no problems;

however, what should we do when they disagree? Should we scrap the predictions, since we do not un-

derstand them, or should we trust the explanation, even though it is not explaining anything present

in the predictive model? [227]

Feature relevance seeks to verify how much a feature is contributing to the prediction of

a given instance. Currently, one of the most popular methods is SHAP (SHapley Additive exPlana-

tions) [176], which in turn is similar to LIME [219], in that it also builds a linear model around the

instance that is required to be explained. SHAP is grounded in Game Theory, and presents Shapley

values – roughly speaking, how much a feature contributes to the model’s prediction given all combi-

nations of features [20].

An alternative strategy, dependent on the model, is using Random Forests for verifying how

much each attribute contributes to the general predictions. This is a built-in functionality of the algo-

rithm. For each feature in the dataset, we check on how many internal nodes (over all decision trees

in the forest) it is present, and average how much using that feature decreases the impurity of the

split. We then rank attributes based on this average, which explains which attributes make the most

contributions to classifying instances.

Regarding ensemble learning, there are some studies that focus on explaining the predictive

process of such models. In [89], an ensemble is reduced to its most representative model, i.e., the base

model that shares most characteristics with the entire ensemble. Evidently, the base learner must be

comprehensible in essence, and for this reason the authors use decision trees. Similarly, in [257], after

an ensemble is built, a decision tree is trained with the objective of encoding the knowledge of the

ensemble, while also being comprehensible.

2.3.3 Evaluating Interpretability

As discussed earlier, there is no mathematical definition of interpretability. This is not to say

that some authors have not tried to design proxy measures to evaluate it. Regarding decision trees

for classification, Piltaver et al. [209] perform an empirical evaluation by applying a survey to human

users with different trees in order to understand which metrics best describe interpretability. The

aspects that are analyzed include branching factor (how many children nodes an inner node spawns),

maximum depth, and number of leaf nodes. The authors find that, for moderately large trees (e.g.,

trees with 4 to 20 nodes, among other characteristics) the features that contribute the most to time-

to-answer (a proxy metric to interpretability) are the number of leaves (the fewer the better), branching

factor (also smaller is better), and the depth of the deepest leaf node. Regarding answer-correctness,

the depth of the deepest node and using negated statements in inner nodes has the most negative

impact (i.e., decrease in accuracy).

50

Similarly, Vanthienen et al. [123] evaluated decision tables, rule-based classifiers, and deci-

sion trees, also finding out that simpler models (number of rules, number of inner nodes, and number

of rows/columns for rule-based classifiers, decision trees, and decision tables, respectively) imply in

faster time-to-answer when used by humans, while also implying in greater confidence in the models,

and accuracy. Additionally, the authors found that, among the visual models (i.e., decision tables and

decision trees), decision tables were preferred among human users. The authors speculate that this

may be because tables make a better use of computer screens than decision trees.

Piltaver et al. [209] and Vanthienen et al. [123] empirically demonstrate that simpler models

are good proxies to interpretable models. In the algorithms proposed in this thesis, however, we do not

enforce this simplicity due to the following reasons: (i) while a larger model may be less interpretable

than a smaller model, the comparison is more complicated when two models with the same number

of leaves, for instance, are compared. Additionally, enforcing simpler models will have an impact on

the predictive performance of the models, which might not be desired in all application domains; and

(ii) there is no way to bring human participants to subjectively evaluate interpretability during an evo-

lutionary algorithm run. Instead, it appears to be simpler to let practitioners decide which models are

more useful to them once the evolutionary algorithm finishes its process. Since the evolutionary algo-

rithms proposed in this thesis (PUMA and EDNEL, presented in Chapters 5 and 6, respectively) allow

the user to select between two models at the end of the process, the user can then decide which one

suits best their needs.

2.4 Auto-Machine Learning

Automated (or Automatic) Machine Learning, known simply as Auto-ML, is the machine

learning area concerned with performing automatic selection/recommendation of algorithms, as well

as optimization of their hyper-parameters [271] in order to provide a model that has the best possible

generalization performance for a given scenario. Auto-ML has recently gained attention due to the ca-

pability of sparing the end user from a manual optimization of hyper-parameters in a scenario of several

machine learning algorithms, which can be a repetitive and tiresome task, while often requiring ad-

vanced domain-specific knowledge [90,194,271]. Auto-ML has been addressed under the perspective

of Bayesian optimization [90,249] and more recently with evolutionary algorithms [15,193,194,271].

2.4.1 Formal Definition

Auto-ML can be formally defined as a CASH problem: combined algorithm selection and

hyper-parameter optimization [90, 249]. As the name denotes, it consists of two sub-problems. The

first one, model selection, is based on having a set of algorithmsA = {A(1), A(2), ... , A(k)}, annotated

input data (X, Y) = {(X (1), y (1)), (X (2), y (2)), ... , (X (N), y (N))}, and the need of selecting algorithm

51

A∗ ∈ A that provides the best generalization performance. The generalization performance is approx-

imated by training the algorithm in a training set Xtrain and evaluating its predictive performance in a

validation set Xval, with training and validation sets being two disjoint sets of the full set. The model

selection problem is then defined as

A∗ = arg min
A∈A

1
k

k∑
i=1

L(A, Xtrain, Xval) (2.8)

where L(A, Xtrain, Xval) is the loss function (e.g., error rate) of A when trained on the training set and

evaluated on the validation set, and k is the number of folds of a cross-validation procedure.

Selecting the hyper-parameter set λ ∈ Λ of a given algorithm A that optimizes its pre-

dictive performance is similar to performing model selection, with some small differences: hyper-

parameters may be continuous, may fall onto a high dimensional space, and also may be correlated

among themselves [249]. Considering that an algorithm may have l hyper-parameters λ1, ... ,λl with

associated domains Λ1, ... ,Λl , the hyper-parameter space Λ is a subset of combinations of these do-

mains, Λ ⊂ Λ1 × · · · × Λl . Then, the problem of selecting the best set of hyper-parameters λ∗
can be

defined as

λ∗ = arg min
λ∈Λ

1
k

k∑
i=1

L(Aλ, X(i)
train

, X(i)
val

) (2.9)

Once both model selection and hyper-parameter optimization have been defined, the CASH

problem is reduced to simply finding the best algorithm for a given task, given that it is already using

its best set of hyper-parameters:

A∗λ∗ = arg min
A(j)∈A,λ∈Λ(j)

1
k
L(A(j)

λ), X(i)
train

, X(i)
val

) (2.10)

2.4.2 Addressing the CASH problem

Historically, automatic optimization has been performed in a localized fashion: only some as-

pects of an algorithm are optimized, as opposed to performing a combined, global-orientated search.

Hyper-parameter optimization, for example, has gone from brute-force grid-search to random explo-

ration of the solution space [193]. Conversely, in ensemble learning most reviewed work (presented

in Chapter 3) optimize strategies of ensemble induction individually. Some exceptions include the

work of [229], in which model selection, hyper-parameter optimization, and feature selection are per-

formed in an integrated way for identifying cancerous micro-RNA markers. Individuals are generated in

a Pareto-front fashion and are combined via majority voting. A depiction of the individuals’ encoding

of this algorithm is presented in Figure 2.17.

52

Type of Classifier Parameters Attributes

(a) Encoding

Decision Tree 1 7 01000110100110100011001

(b) Individual

Figure 2.17: (a) Encoding and (b) individual used in [229]: model selection, hyper-parameter optimiza-

tion, and attribute selection are performed simultaneously.

While [229] proposes an algorithm that addresses two ensemble learning stages (namely

selection and generation), it does not address model integration, resorting to a simple majority voting

scheme. To the best of our knowledge, even though there are several EA-based systems that address

this problem by considering a search space with many types of supervised learning algorithms (e.g.,

[62,193]), there are only two studies using EAs to address this problem by considering a search space

focused on ensembles [144, 271], as detailed below.

In [271], different base learners can be chosen from a determined set of learners, and then

have their hyper-parameters tuned using an Estimation of Distribution Algorithm. However, the work

automates only part of the ensemble learning procedure, more specifically the generation stage; it

does not address whether strategies from other stages (namely selection and integration) can im-

prove the predictive performance of the entire ensemble. In [144], a genetic programming strategy

is used to generate what the authors call templates: configurations of base learners (logistic regres-

sors; neural networks; support vector machines; naïve bayes classifiers; decision trees; and k -nearest

neighbors base learners) and ensembling strategies (bagging; boosting; stacking; cascade generaliza-

tion; delegating; cascading; arbitraring). With this strategy, a boosting ensemble can be interpreted

as the base model of a higher-degree bagging ensemble, for example. Though this work employs a

wide variety of base learners and ensemble algorithms, those algorithms are already pre-defined from

a fixed list; for example, boosting performs only instance sampling, and it is not capable of performing

attribute selection, even if that would be beneficial for the entire system.

2.5 Summary

This chapter briefly reviewed the main topics that permeate this thesis. Considering that we

propose new evolutionary algorithms for inducing ensembles of interpretable classifiers, which is an

auto-machine learning problem, the topics covered by this chapter were:

• Ensemble learning and some well-established non-evolutionary ensemble learning algorithms,

reviewed in Section 2.1;

53

• A brief review on some of the most popular evolutionary algorithms in the literature according to

our survey on evolutionary algorithms for ensemble learning (Chapter 3), including Estimation of

Distribution Algorithms, which is the type of evolutionary algorithm used in all of our proposed

methods (Section 2.2);

• Interpretability and correlated topics: how to measure it, examples of interpretable models,

discussion on new research trends, etc. (Section 2.3);

• Auto-machine learning, which is the problem that is being addressed by this thesis; formal def-

initions and an non-exhaustive review of related work of evolutionary algorithms for ensemble

learning that address this problem (Section 2.4).

The next chapter (Chapter 3) will present an extensive review on related work that make

use of evolutionary algorithms for ensemble learning, which is more akin to the algorithms proposed

in this thesis as opposed to the more generic topics covered in this chapter.

54

55

3. ENSEMBLE LEARNING WITH EVOLUTIONARY ALGORITHMS

This chapter presents a literature review that was conducted to evaluate how evolutionary

algorithms could be employed for supervised ensemble learning. Several comprehensive surveys have

been published aiming at analyzing ensemble learning from different perspectives. Regarding the spe-

cific analysis of EAs for supervised ensemble learning, Yao and Islam [274] are the only authors to

present a review of EAs for designing ensembles, though they focus only on artificial neural networks

as the base learners to be combined. Sagi and Rokach [228], as well as Dietterich [71] present a

general review of ensemble learning studies, discussing the challenges and trends of traditional non-

evolutionary methods. Rokach [223], Kotsiantis [145], Tabassum and Ahmed [246], in turn, focused

on reviewing ensembles designed only for classification tasks. Similarly, Mendes-Moreira et al. [182]

and Vega-Pons et al. [260] review ensemble methods focusing only on regression and clustering tasks,

respectively. There are also papers on specific domain applications of ensembles, such as the work of

Athar et al. [9], which reviews the leading ensemble approaches for sentiment analysis; and the stud-

ies by Gomes et al. [110] and Krawczyk et al. [147], which review ensemble learning for data stream

classification and regression.

Despite the relevant contributions of the previously cited literature, we deemed necessary

to perform a new survey since it is, up to our knowledge, the first review to focus on general-application

EAs for supervised ensemble learning in a comprehensive fashion. In particular, we highlight the fol-

lowing contributions: i) we provide a general overview of EAs for supervised ensemble learning, not

exclusively focusing on any specific EA or any given type of supervised model, but presenting an in-

depth analysis of the different algorithms proposed for each stage of ensemble learning, with their

respective advantages and pitfalls; and ii) we provide a detailed taxonomy to properly categorize su-

pervised evolutionary ensembles, helping the reader to filter the literature and understand the possibil-

ities when designing EAs for this task. Note that reviewing EAs for ensemble learning in unsupervised

settings (e.g., the clustering task) is out of the scope of this survey.

The rest of this chapter is organized as follows. Section 3.1 presents the methodology

adopted for searching related work in well-known online repositories. Section 3.2 presents the novel

taxonomy to categorize EAs designed for supervised ensemble learning. Sections 3.3, 3.4, and 3.5

review the EAs employed for the three stages of ensemble learning: generation, selection, and inte-

gration. Section 3.6 details common fitness functions employed by the EAs for optimizing the ensem-

bles. Section 3.7 summarizes the types of EAs used in the aforementioned stages, and Section 3.8

points to the most common base learners within the proposed approaches. Section 3.9 presents the

application domains in which EAs for supervised ensemble learning are often employed.

56

3.1 Methodology

The main objective of the survey is to identify published work that apply evolutionary al-

gorithms to learn ensembles of predictive models, for supervised machine learning. The objective is

expressed from the research questions presented in Table 3.1. These questions aim to analyze the rele-

vant work both in the context of evolutionary algorithms used and the characteristics of the ensemble

that are optimized.

Table 3.1: Research questions of the survey.

ID Research Question Description

RQ1

What are the existing approaches that apply evolutionary

algorithms in learning ensembles for supervised machine

learning?

General question that aims to identify existing work that apply

evolutionary algorithms in the context of ensemble learning.

RQ2
What are the evolutionary algorithms used to learn the

ensembles?

Aims to identify which evolutionary algorithms are applied for

ensemble learning.

RQ3
What stages of ensemble learning are addressed by the

evolutionary algorithm?

Aims to categorize the approaches according to the ensemble

optimization step (generation, selection or integration).

RQ4
Which objective functions are optimized by the evolutionary

algorithm?

Since fitness function is an essential component of EAs, and

given the complexity of the ensembles where several

objectives can be optimized, this question aims to analyze

how these functions are employed in ensemble learning task.

RQ5 What are the base learners used?

Finally, this survey aims to analyze the relevant work from the

point of view of the base learners that are used to compose

the ensembles.

We have searched the following repositories: Scopus
1
, Science Direct

2
, IEEE Xplore

3
and

ACM Digital Library
4
. Based on the main objective, we select keywords that are likely to be present

in most of the work that proposes evolutionary algorithms for ensemble learning; and from these

keywords we compose a search string. Synonyms of each term were incorporated using the Boolean

operator OR, whereas the Boolean operator AND was used to link the terms. The generic search string

derived is

’ensemble’ AND

((’classification’ OR ’classifier’ OR ’classifiers’) OR

(’regression’ OR ’regressor’ OR ’regressors’)) AND

(’evolutionary’ OR ’evolution’)

A list of search strings used for each search engine is presented in Table 3.2.

The search is divided into two rounds. The first round was executed in the year of 2017, and

the second round in the year of 2018, the latter to cover papers published during the first reviewing

round. In the first round, 680 papers matched the keywords. All those papers had their abstract

1
Available at https://www.scopus.com/home.uri. Accessed June 12 2017.

2
Available at http://www.sciencedirect.com. Accessed June 12 2017.

3
Available at http://ieeexplore.ieee.org/Xplore/home.jsp. Accessed June 12 2017.

4
Available at http://dl.acm.org. Accessed June 12 2017.

57

reviewed, and from this reading 343 were deemed relevant to the survey elaboration, as shown in the

third column of Table 3.3.

Table 3.2: Search string used in the repositories.

Scopus ACM Digital Library

TITLE-ABS-KEY("ensemble") AND (
 (
 TITLE-ABS-KEY("classification") OR
 TITLE-ABS-KEY("classifier") OR
 TITLE-ABS-KEY("classifiers")
) OR (
 TITLE-ABS-KEY("regression") OR
 TITLE-ABS-KEY("regressor") OR
 TITLE-ABS-KEY("regressors")
)
) AND (
 TITLE-ABS-KEY("evolutionary") OR
 TITLE-ABS-KEY("evolution")
)

"ensemble" AND (
 (
 "classification" OR
 "classifier" OR
 "classifiers"
) OR (
 "regression" OR
 "regressor" OR
 "regressors"
)
) AND (
 "evolutionary" OR
 "evolution"
)

IEEE Xplore ScienceDirect

"Abstract":ensemble AND (
 (
 "Abstract":classification OR
 "Abstract":classifier OR
 "Abstract":classifiers
) OR (
 "Abstract":regression OR
 "Abstract":regressor OR
 "Abstract":regressors
)
) AND (
 "Abstract":evolutionary OR
 "Abstract":evolution
)

title-abstr-key("ensemble") AND (
 (
 title-abstr-key("classification") OR
 title-abstr-key("classifier") OR
 title-abstr-key("classifiers")
) OR (
 title-abstr-key("regression") OR
 title-abstr-key("regressor") OR
 title-abstr-key("regressors")
)
) AND (
 title-abstr-key("evolutionary") OR
 title-abstr-key("evolution")
)

Since Scopus is the largest database, some of the papers indexed in the remaining three

repositories were already present in Scopus. The amount of already indexed papers is counted in col-

umn Indexed from Table 3.3. The number of reviewed papers in the second round is shown in Table 3.4.

Table 3.3: Number of papers which had its abstract reviewed in the first round.

Repository Search Date Relevant Irrelevant Indexed Total

Scopus April 26 2017 343 337 —– 680

ACM Digital Library June 7 2017 14 4 34 52

IEEE Xplore June 7 2017 4 4 121 129

Science Direct June 8 2017 4 39 78 121

Total 365 384 233 982

Table 3.4: Number of papers which had its abstract reviewed in the second round.

Repository Search Date Relevant Irrelevant Indexed Total

Scopus March 29 2018 23 99 —– 122

ACM Digital Library April 27 2018 2 7 0 9

IEEE Xplore April 4 2018 8 4 6 18

Science Direct June 16 2018 5 12 12 29

Total 38 122 18 178

58

Among both rounds, 403 papers were deemed relevant for the survey. From those, 163 were

reviewed and included in the survey. Additionally, one work authored by us and published in 2018 was

also included, and is reviewed in greater detail in Chapter 4.

From the 164 reviewed papers, 20 were duplicated and fell into one of the following cat-

egories: (i) the algorithms were published in conferences and had expanded versions in journals;

(ii) different application domains but the same algorithm; or (iii) slightly different implementations

(for example, changing the number of layers and/or activations in a neural network).

Reasons for papers not being added in the survey include unavailability (paper not available

in any online repository, or papers available only under payment) (50 papers); and wrong topic (on

further review, papers that did not cover the surveyed topic) (43 papers). Finally, 147 papers were

found but not reviewed due to a truncation in the reviewing process (that is, we deemed that only

papers before a given date in 2017 would be reviewed). An overall summary of the papers is presented

in Figure 3.1a, while the distribution of papers among the years they were published is presented in

Figure 3.1b.

unavailable

12%wrong

11%

not reviewed

36%

original36%

duplicated

5%

reviewed
(a)

99 00 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
Year

0

10

20

30

40

Nu
m

be
r o

f p
ap

er
s

unavailable
wrong
not reviewed
original
duplicated

(b)

Figure 3.1: (a) From the 404 papers selected for review, 164 were added to the survey. Among these,

20 were duplicated (e.g. expanded work), and 144 original work. (b) Distribution of papers over the

years they were published.

3.2 Taxonomy

We provide a taxonomy to categorize the EA-based approaches for supervised ensemble

learning (Figure 3.2). All surveyed studies are focused on supervised problems, i.e., no unsupervised

approach is reviewed.

We divide the surveyed studies according to the well-established main stages of supervised

ensemble learning [26, 36, 167]: generation, selection, and integration. The approaches most often

used in each stage are presented at the second level of the taxonomy. For example, attribute selection,

59

model tuning, and instance selection are the three most common approaches for the generation stage.

Further divisions in the taxonomy are presented at the next levels, whenever it is the case.

Note that taxonomies vary depending on the aspect being analyzed – e.g. Gu [112] is con-

cerned with the generation stage, and hence proposes a taxonomy exclusively for that step. To the

best of our knowledge, our taxonomy is one of the broadest with regard to EAs for ensemble learning,

with the closest reference being the one proposed by Cruz et al. [55]. While the description of gen-

eration and selection stages in [55] is identical to ours, we are more specific regarding the strategies

for the integration stage. In addition, while the authors propose a two-level taxonomy, we present a

more detailed and thorough four-level taxonomy.

generation selection integration

supervised evolutionary
ensemble learning

attribute
selection

instance
selection

static
selection

dynamic
selectionmodel tuning linearnon-linear

expression tree artificial
neural networkfuzzy system

first degree
polynomialpre-model post-model ECOC matrix meta-model IOWA

Figure 3.2: The proposed taxonomy for evolutionary algorithms employed in ensemble learning.

3.3 The Generation Stage of Ensemble Learning

In this stage the algorithm generates a pool of trained models. Those models may come be

from: (i) different paradigms (e.g., Naïve Bayes, Support Vector Machines, and Neural Networks [207]);

(ii) the same paradigm; or (iii) differences within the same paradigm (e.g., neural networks of different

topologies and/or activation functions [279]).

The main objective in this stage is to generate a pool of both accurate and diverse base learn-

ers. Base learners must be diverse in order to provide source material for the selection and integration

steps to work with. A diverse pool of base learners has more chances to commit errors in different

data instances, thus correctly predicting more instances [200].

An example of an ensemble algorithm that focuses on the generation phase is Random For-

est [24,252], considering that it selects distinct subsets of both attributes and instances for building

different decision trees, resulting in an ensemble of trees that is more robust than a single tree.

We have identified in the literature three distinct ways of generating pools of learners that

are both diverse and accurate: (i) providing distinct training sets for each base learner (instance selec-

60

tion); (ii) providing the same training set for all learners but with distinct sets of attributes (attribute

selection); and (iii) optimizing the model by modifying the hyper-parameters and/or the structure of

the base learners. Table 3.5 summarizes the work on EAs for the generation step of supervised ensem-

ble learning, based on our proposed taxonomy. The remaining of this section will explain in greater

detail the different methods of generating ensemble members.

Table 3.5: Studies that employ EAs in the generation stage of supervised ensemble learning organized

by generation technique.

Method Related work

Instance selection [1, 6, 58, 104, 112, 132, 146, 150, 151, 261]

Attribute selection
[5, 11, 41, 43, 46, 56, 59–61, 66, 68, 112, 139, 155, 167, 170, 181, 189, 206, 207, 217, 229, 236–241,

247, 250, 256, 266, 276]

Pre-model optimization [6, 51–53, 59–61, 69, 130, 131, 134, 166, 167, 174, 190, 200, 217, 224, 225, 229, 242, 256, 266, 269]

Post-model optimization
[10, 21, 22, 32, 33, 36, 42, 57–60, 64, 66, 68, 74, 75, 79–82, 86, 87, 92–95, 109, 124, 129, 137, 140,

153, 158, 159, 164, 175, 178–180, 190, 218, 222, 231, 234, 242, 243, 250, 253, 259, 262, 264]

3.3.1 Instance Selection

Instance selection, also known as prototype selection or data randomization [2, 261] con-

sists of providing different (not necessarily disjoint) subsets of training instances for different base

learners [6, 224]. This approach is well-suited for homogeneous sets of base learners which are sensi-

tive to changes in the instance distribution (e.g., decision trees [120]).

Instance selection can also be used to reduce training time by finding a subset of represen-

tative instances for each class [6, 224]. This is also beneficial for problems with high class imbalance,

given that resampling instances with replacement makes it possible to simulate a uniform distribution

among classes. Indeed that is one of the capabilities of the traditional bagging algorithm [23]. Thus,

“bagged" EAs are likely to present the same benefits as non-EAs which were also bagged: improved

noise tolerance and reduced overfitting risk [261]. A method for selecting instances is needed since

random sampling can lead to information loss and poor model generalization [132]. By using an EA,

both tasks of undersampling the majority class and oversampling the minority class are possible in

parallel.

This section mainly focuses on instance selection techniques, since instance generation is

more scarce. The former simply selects a subset of instances from the original training data, while the

latter creates new artificial instances to better adjust the decision boundaries of the classes, though

being more prone to overfitting. The best performing models are EA-based techniques such as differ-

ential evolution [261]. Only one work uses a hybrid selection-and-generation strategy [261].

Instance selection is also susceptible to overfitting, if it leads to one class having many more

instances than other classes. An approach to avoid overfitting is to assign different misclassification

costs to different classes. Typical cost-sensitive learning techniques take misclassification costs into

account during model construction, and do not modify the imbalanced data distribution directly [32].

61

Instance selection methods can be divided into wrapper and filter methods. Wrapper meth-

ods are by far more common in the literature, since they tend to provide more accurate ensembles and

they measure the quality of instance subsets using trained models [181]. There is a direct link between

high-quality instance subsets and a high-quality pool of base learners [181]. Filter approaches break

this link, evaluating the quality of an instance set in a way independent from the overall base learner

pool [132, 181]. A study showed that genetic algorithms (GAs) with error rate as fitness function are

capable of outperforming greedy wrapper methods in terms of ensemble accuracy [181].

In EAs for instance selection, usually the training set is encoded as either a binary or real-

valued chromosome of N positions (the number of instances). In the binary case, each bit encodes the

presence or absence of an instance in the solution encoded by the current individual. In a real-valued

case, each gene encodes the probability that the respective instance will be present in that solution.

To address class imbalance, in [104] only majority class instances are encoded in a binary string –

minority class instances are always sampled. In [6], a GA is used to optimize k -means groups, finding

evenly-distributed groups (based on the class distribution) and then using each group as the training

set of a neural network base classifier.

It is also possible to perform instance selection together with other techniques. In [224], the

multi-objective problem consists in optimizing both the learner’s hyper-parameters and the instance

set which will be used for training each model. This also fits well with weight optimization: in [146],

evolutionary under-sampling and boosting are used in a C4.5 decision-tree classifier to iteratively op-

timize its performance in grading breast cancer malignancy.

For an extensive review on instance selection techniques, Olvera-López provides a survey of

both evolutionary and non-evolutionary methods proposed until 2010 [195].

3.3.2 Attribute selection

Attribute selection, also known as feature selection or variable subset selection [236], offers

distinct subsets of attributes to different base learners in order to artificially induce diversity among

base models. By removing irrelevant and redundant attributes from the data, attribute selection can

improve the performance of base learners [239]. Reducing the number of attributes also reduces the

complexity of learned base models, and may improve the efficiency of the ensemble system.

Attribute selection also performs dimensionality reduction, and is an efficient approach to

build ensembles of base learners [171]. Like in instance selection, there is no need to provide disjoint

sets of attributes to different learners. The base learners that are used must be sensitive to modi-

fications in the data distribution. Support Vector Machines, for example, were reported to be little

affected by attribute selection [256].

There are three approaches to perform attribute selection: the filter, wrapper, or hybrid ap-

proach, as follows.

62

Filter methods analyze the relevancy of attributes regardless of the predictive performance

of base learners. Filter methods are normally faster than wrapper ones, but they may lead to poor

predictive performance, particularly if the filter ignores interactions among attributes. Examples of

traditional filter methods are the Correlation-based Approach, Information Gain, t-test, Markov Blanket

Filter, among others [181].

Wrapper methods are by far the most common type of EAs for attribute selection. However,

there are also traditional search methods for wrapping, be it deterministic or stochastic. A wrapper

method provides a reduced subset of attributes to a learning algorithm, and then the predictive perfor-

mance of the model trained with those attributes is used as a measure of the quality of the selected

attributes. The random subspace method, for example, is a traditional approach for wrapping algo-

rithms that randomly selects different attribute subsets to construct different base learners. Although

this method is usually much faster than EAs, its performance is sensitive to the number of attributes

and ensemble size [171]. By contrast, EAs can improve stability and provide more accurate ensem-

bles [171], though at the expense of computational time. Other examples of traditional methods

include sequential forward selection, sequential backward selection, beam search, etc. [181].

Finally, hybrid approaches attempt to combine the filter and wrapper approaches in order

to overcome their shortcomings. Various combinations have been successfully implemented in the

literature [181].

Two concepts relevant for attribute selection are sparsity and algorithmic stability. An at-

tribute selection algorithm is called sparse if it finds the sparsest or nearly-sparsest set of attributes

subject to performance constraints (e.g. small generalization error) [256]. An algorithm is called sta-

ble if it produces similar outputs when fed with similar inputs – i.e., it selects similar attribute sets for

two similar datasets [273]. As noted in [256, 273], stability and sparsity constitute a trade-off. An

algorithm that is sparse may be incapable of selecting similar sets of attributes across runs [256].

EAs for attribute selection vary on the number of objectives, integration with other stages,

and distribution of base learners. In [206, 207] a multi-objective Particle Swarm Optimization algo-

rithm provided different attribute subsets to heterogeneous base learners. In [239–241], both model

and attribute selection were also performed in a multi-objective fashion.

The encoding adopted in [139] considers each individual as an ensemble of classifiers. Clas-

sifiers are trained differently based on the features provided to them. Each classifier competes with

its neighbors within the same ensemble; and at a higher level, ensembles compete among themselves

based on their predictive accuracy.

3.3.3 Model optimization

Models may have their hyper-parameters and/or structure modified while creating a pool or

ensemble of base learners. We divide this category of our taxonomy into two groups: pre-model and

post-model optimization.

63

Pre-model optimization involves fine-tuning the hyper-parameters of base learners that will

generate base models. We call these approaches pre-model because the optimization happens prior

to model generation. Examples include tuning the neural network’s learning rate; the Support Vector

Machine’s type of kernel function [224], regularization parameter C [224], L2 regularization [269],

Radial Basis Function kernel free parameter [224, 269], or degree of polynomial [224]); and random

forests’ number of trees [229].

Pre-model approaches may support heterogeneous sets of base learners. In [229] the au-

thors select both the type of base learner and their respective hyper-parameters, coupled with a set of

attributes that will be assigned to a given learner. They use NSGA-II [65], and the one-point crossover

keeps base models and hyper-parameters together, only allowing to swap the selected attributes for

each model. The encoding is depicted in Figure 3.3.

Type of Classifier Parameters Attributes

(a) Encoding

Decision Tree 1 7 01000110100110100011001

(b) Individual

Figure 3.3: Type of encoding and individual in [229] for pre-model optimization. The first part of the

chromosome represents the type of classifier, followed by its respective hyper-parameters and a string

denoting which features are available for that classifier.

Post-model approaches try to improve an existing model. Examples are layout and inner

node selection for decision trees [10, 180, 264], and topology, weight, and activation function opti-

mization in neural networks [87, 190, 190]. Weights are also optimized in [153], where an ensemble

of heterogeneous parametric models are optimized by differential evolution.

Post-model encoding depends on the type of base learner being used, and hence are more

common on homogeneous sets of base learners. In [137], the weights of artificial neural networks are

modified by a niching-based GA. The authors adopt a matrix of size W ×W (Figure 3.4), where W is

the number of neurons in the entire network. The upper diagonal encodes whether two given neurons

are connected, and the lower diagonal encodes the weights associated with those connections.

There are studies that perform both pre- and post-model optimization. In [190], first the

topology of a neural network is evolved by using NSGA-II. The best found topology then has its pa-

rameters (e.g., weights and activation functions) adjusted by a multi-objective Differential Evolution

method. In the end, the final population is submitted to a voting scheme optimized by another EA.

Attribute selection is often coupled with model optimization. In [250], both post-model op-

timization of Radial Basis Function Neural Networks and attribute selection were used, by performing

both approaches in two subpopulations of the Cooperative Coevolutionary EA. In [217], solutions for

both tasks were placed within the same chromosome. With a 132-wide chromosome array, 88 bits are

designated for attribute selection, 10 bits represent parameter nu and threshold (integer and decimal

64

part), 14 bits correspond to the gamma value and 20 bits are used for the parameter C of a nu-SVR

learner.

I1 H1 H2 H3 O1

I1 0.0 1.0 1.0 0.0 1.0

H1 0.4 0.0 0.0 0.0 1.0

H2 0.5 0.0 0.0 1.0 1.0

H3 0.0 0.0 0.1 0.0 1.0

O1 0.1 0.7 0.2 0.7 0.0

input
node

hidden
node

output
node

weightconnectivity

(a) Encoding

I1 H2

H1

H3

O1

0.4 0.7

0.7

0.20.5

0.1

0.1

(b) Individual

Figure 3.4: Encoding and resulting individual adopted in [137] for post-model optimization.

3.4 The Selection Stage of Ensemble Learning

From the pool of generated base learners, model selection (or model pruning [201]) is per-

formed in order to define the final set of base models for the ensemble. This stage is optional and

frequently not performed by traditional methods (e.g., boosting [99], bagging [23]) or EA-based ones

(e.g., [33, 276]). Selection may consist of simply selecting the Φ most accurate learners, or using a

(greedy or EA-based) algorithm for choosing models.

Whether or not to perform selection is an issue for debate, with some authors proposing to

bypass this stage (i.e., using the entire pool of models as ensemble) [251]. Lacy et al. [159] argue that

model selection is irrelevant for ensemble learning, and that simply selecting the Φ best models from

the pool is more effective than building an ensemble based on diversity measures. They also claim

that their argument is consistent with other studies that simply select the most accurate learners

instead of employing diversity measures [100], and that there is little correlation between measures of

ensemble diversity and accuracy [24,198,201]. On the other hand, some authors argue the opposite:

e.g., for regression, Wang and Alhamdoosh [263] argue that the Φ best neural networks may not

produce an ensemble with better Mean Squared Error (MSE). This is also stated by Liu et al. [172],

65

adding that simply selecting the most accurate models may result in loss of predictive performance

given that most of those models may be strongly correlated, leaving the opinion of the minority of

the committee underrepresented.

Although Lacy et al. [159] and Liu et al. [172] have different opinions on the utility of

model selection, both agree that diversity measures are not a good proxy for ensemble quality, with

Liu et al. [172] suggesting that accuracy on a validation
5

set is sufficient. The rationale for using di-

versity measures is that by sacrificing individual accuracy for group diversity, one can achieve better

group accuracy [36, 201]. Diversity in this case should not be measured at the genotype level (e.g.,

individuals encoding different attributes for the same base model), but rather measured based on the

predictive performance of the algorithms decoded from the individuals. Diversity metrics can be of

two types: pairwise or group-wise [120]. A pairwise diversity metric often outputs a matrix of values

denoting how diverse one base model is from another. Then, algorithms may select models that are,

e.g., more diverse to the other already-selected models. By contrast, group-wise metrics validate how

diverse a group of base models is, thus requiring a previous strategy for composing groups. A review

of diversity measures is presented by Hernández et al. [120].

The motivations for using EAs for model selection are as follows. First, finding the optimal

model subset within a large set is unfeasible with exhaustive search (the search space size is ≈ 2M
,

where M is the number of base models). By contrast, EAs perform a robust, global-search for the near-

optimal set of base models [201]. There is evidence that smaller ensembles can indeed outperform

larger ones [252]. However, in practice, the optimal ensemble size varies across types of ensembles,

types of base learners, and datasets.

Model selection can be further divided into two categories: static and dynamic selection [55,

58, 126, 127]. In static selection, regions of competence are defined at training time and are never

changed [55,126,127]. In dynamic selection the regions are defined during classification time, through

the use of a competence estimator [126, 127, 255]. Figure 3.5 puts both strategies in perspective.

Some studies say they perform dynamic selection (e.g. [6] via k -means to define regions

of competence), but in fact they perform static selection, since the assignment of classifiers is done

during training time and does not change after that.

Table 3.6 shows the distribution of the surveyed EAs into the static and dynamic selection

categories. The remaining of this section will explain in greater detail the two selection methods.

Table 3.6: Categorization of EAs for the selection stage of supervised ensemble learning.

Method Related work

Static selection
[6, 8, 16, 17, 36, 39, 43, 45, 48, 54, 61, 63, 72, 73, 75, 76, 120, 126, 127, 135, 136, 138, 142, 155, 166,

177, 184, 188, 189, 201–204, 210, 214, 215, 225, 229, 235, 241, 242, 248, 263]

Dynamic selection [54, 167, 252]

5
In supervised learning it is common to divide a dataset into three disjoint sets: training, validation and test. The

validation set is used to evaluate the quality of models while training, and helps to prevent overfitting to the training data.

The test set is used for the final model evaluation a�er training.

66

B1

B3

B5

B2

B4

se
le

ct
or

hB3(X)

hB4(X)

hB1(X)B1

B3

B4

dynamic selection
training phase

dynamic selection
prediction phase

static selection
training phase

static selection
prediction phase

pool ensemble

hB(X)

co
m

bi
ne

r

Figure 3.5: Difference between static and dynamic selection strategies. While in static selection the

competence estimator assigns regions to base learners during the training phase, in dynamic selection

this is done during the prediction phase. Dynamic selection can also have a selector (e.g. oracle) that

assigns a single base learner to regions of competence.

3.4.1 Static selection

In the overproduce-and-select strategy [54, 130], an algorithm first generates a large pool

of base models using a generation method (see Section 3.3). Then, the base models are selected

from this pool and their votes are combined according to an integration scheme (see Section 3.5).

The rationale is that some of the models may perform poorly or have strongly-correlated predictions,

making some of these safe for exclusion from the final ensemble [251].

A second strategy for static selection, known as clustering-and-selection, uses a clustering

algorithm to assign models to distinct regions of competence in the training phase. In the testing

phase, a new instance is submitted to the base model that covers the region closer to that instance.

Studies using this strategy include [76, 214, 215]. In [127], a GA was used for selecting the number

of partitions in which the input space is divided. It then assigns an ensemble of classifiers to each

partition, optimizing the voting weight of each base learner.

In [263] a hill-climbing strategy was used for increasing the size of the ensemble. By starting

with only two classifiers (Extreme Learning Machines), the number of ensemble members is increased

by adding classifiers that reduce the overall ensemble’s error rate. In [73], the authors investigate the

impact of combining error rate (effectiveness), ensemble size (efficiency), and 12 diversity measures

on the quality of static selection by using pairs of objectives. The authors also study conflicts between

objectives, such as error rate/diversity measures and ensemble size/diversity measures. They argue

that, among diversity measures, difficulty, inter-rate agreement, correlation coefficient, and double-

fault are the best for combining with error rate, ultimately producing the best ensembles.

67

Studies that use the overproduce-and-select strategy often employ a chromosome encoding

as a binary string, where 0 denotes the absence of that model in the final ensemble and 1 the pres-

ence [43]. However, in [210] the chromosome size was doubled by using two values for each model:

one for the aforementioned task, and another to determine the strength of that model’s output in the

final ensemble’s prediction.

In [136], attribute and model selection were performed at the same time. The authors use a

binary matrix chromosome where each row represents a different base learner and each column a filter-

based attribute selection approach. In this sense, if a bit is active somewhere within the individual’s

genotype, it means that the base learner of the corresponding row will be trained with the attributes

selected by the filter approach of the corresponding column, as shown in Figure 3.6.

0 0 1 0 0 0 0

0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 0

Euclidean
Distance

Multilayer Perceptron

Structure-Adaptative
Self-Organizing Maps

Support Vector Machine
(Linear kernel)

Support Vector Machine
(RBF kernel)

K-nearest neighbors
(Cosine)

K-nearest neighbors
(Pearson)

Spearman
Correlation

Pearson
Correlation

Cosine
Coefficient

Information
Gain

Mutual
Information

Signal-to-
noise Ratio

Figure 3.6: Encoding used for static selection in [136].

3.4.2 Dynamic selection

In dynamic selection, a single model or a subset of most competent learners is assigned

to predict an unknown-class instance [55] (hereafter, unknown instance for short). This strategy

was reported to perform better than boosting and static selection strategies [55]. However, work

on dynamic selection is much less frequent than work on static selection. Dynamic selection is also

more computationally expensive, since estimators are required to define regions of competence for

all predictions, which can be unfeasible in some scenarios [60].

One approach for dynamic selection is to use random oracles [54,252]. A random oracle is a

mini-ensemble with only two base learners that are randomly assigned to competence regions [252].

At prediction time, the oracle decides which base learner to use for providing predictions for unknown

instances.

68

Another strategy is to train a meta-learner. In [167], generation strategies of feature se-

lection and pre-model optimization were coupled with an initial overproduce-and-select strategy for

generating a diverse pool of base learners. Next, a meta-learner was trained for selecting the best

subset of models for predicting the class of unseen instances.

Dynamic selection is also known as classifier pruning or ensemble pruning and can be con-

sidered as an optimization problem with two objectives, classification accuracy and diversity, where

both need to be maximized. When the size of a classifier ensemble is relatively large, classifier pruning

is computationally expensive or even prohibitive [201].

3.5 The Integration Stage of Ensemble Learning

The last step of ensemble learning concerns the integration of votes (for classification) or

value approximation (for regression) in order to maximize predictive performance. Ensemble integra-

tion, also called learner fusion [251] or post-gate stage [67], is the final opportunity to fine-tune the

ensemble members in order to correct minor faults, such as giving more importance to a minority of

learners that are however making correct predictions. Integration is an active and diverse research

area in ensemble learning [251]. Similarly to the selection stage, this is another stage where using a

validation set has shown to be useful, since reusing the training set that was employed to generate

base models can lead to overfitting.

Traditional strategies for fusing ensemble predictions include majority voting and weighted

majority voting (for classification), and also average, weighted average, maximum, minimum, sum, and

product rules (for regression) [141,158,181]. More sophisticated strategies include Dempster-Shafer,

Naïve Bayes, artificial neural networks, entropy weighting, and distribution summation [158, 177].

For classification, the most popular method is weighted majority voting, which allows to

weight the contribution of each individual classifier to the prediction according to its competence via

voting weights [251]:

hB(X (i)) = argmax
j

(
B∑

b=1

wb,j × [hb(X) = cj]

)
(3.1)

where B is the number of classifiers, wb,j the weight associated with the bth
classifier for the j th

class,

and [hb(X) = cj] outputs 1 or 0 depending on the result of the Boolean test. This strategy has

been shown to perform better than majority voting and averaging [159]. A simplification of that

function sets all weights to 1, which turns this method into a simple majority voting, another popular

approach [282]. For instance, bagging uses a simple majority voting scheme, whereas boosting uses

weighted majority voting [281].

For regression, the most popular is the simple mean rule, which averages the predictions of

base regressors, hB(X (i)) = 1
B

∑B
b=1 hb(X (i)), where B is the number of regressors and hb(X (i)) is the

prediction for the bth
regressor. Simple aggregation strategies are better suited for problems where

69

all predictions have comparable performance, however those methods are extremely vulnerable to

outliers and unevenly-performing models [177].

A common integration strategy is to use meta-models to learn the proper weights for aver-

aging the performance of the base models, as in stacking [181, 255]. Ensembles that use stacking

are referred to as two-tier (or two-level) ensembles [255]. Those ensembles are well-suited, e.g., for

incremental learning [255]. E.g., when updating an existing ensemble model to consider new data,

we may need to train only a few novel base models covering the new data and then re-train the meta-

model with the both the novel and the previous base models. This is more efficient than re-training all

existing base models in a single-level ensemble [255]. Two-tier ensembles were reported to perform

better than simple weighting strategies in larger datasets [186]. As disadvantages, two-tier ensem-

bles are more susceptible to overfitting when compared to traditional integration methods, and also

increase the training time of the entire ensemble [177]. In practice, whether stacking or traditional

aggregation methods are better is heavily influenced by the input data [186].

To summarize, Table 3.7 shows the categorization of studies using EAs in the integration

stage of ensemble learning, according to the type of integration method. The rest of this section

briefly explains each one of these methods.

Table 3.7: Categorization of studies that employ EAs in the integration stage of ensemble learning.

Method Related work

First Degree Polynomial
[16, 28, 38, 57, 79–82, 84, 102, 104, 115, 125–128, 136, 138, 146, 148–152, 158, 170, 173, 188, 190–

192, 196, 210, 230, 232, 236–240, 270, 278–282]

Expression trees [4, 78, 91, 158, 159, 169, 172, 254]

Genetic Fuzzy System [54, 251, 255]

Error Correcting Output Codes [31]

Artificial Neural Network [158]

IOWA [19]

Meta-learner selection [235]

3.5.1 Linear models

We focus now on using EAs to learn the voting weights. A wide variety of methods were pro-

posed for this task, such as using genetic algorithms [146, 190], particle swarm optimization [230],

flower pollination [279], differential evolution [236, 280, 281], etc. Those methods can be applied to

both homogeneous [38, 280, 281] and heterogeneous [138, 192, 282] base learner sets. For classifi-

cation, methods may also differ in the number of voting weights, either by using one voting weight

per classifier (e.g. [188, 282]) or one voting weight per classifier per class (e.g. [57, 84, 240]).

For a thorough experimental analysis of linear and non-linear voting schemes, the reader is

referred to the work of Lacy et al. [158], which presents the most comprehensive experimental com-

parison of EA-based combining methods to date. Notwithstanding, in the next sections we present a

broader review of EAs proposed for this task, as well as methods that were not presented in [158].

70

3.5.2 Expression trees

Instead of optimizing weights, one can use non-linear models for integrating predictions.

This may better exploit classifiers’ diversity and accuracy properties [78]. One of the most popular

EA-based methods are expression trees [4,78,91,158,159,169,172,254]. Expression trees resemble

decision trees in their structure, but with models in their leaves and combination operators in their

inner nodes. As an example, Figure 3.7 depicts the expression tree used in [91].

B2

average

B3 B8B4average

max B3

B1 B9 B5

average

B7

Figure 3.7: Expression tree induced by a Cellular Genetic Programming Algorithm used in [91]. Leaf

nodes contain base classifiers, whereas inner nodes contain combination rules.

For the problem of microarray data classification, in [169,172] some decision trees (initially

trained with bagging) are fed to a Genetic Programming algorithm, which then induces a population

of expression trees (each allowed to have at most 3 levels) for combining the base classifiers’ votes.

The GP uses three operators: minimum (for a binary class problem, the negative class is selected, if

any model predicts the instance as negative), maximum (the positive class is selected, if any model

predicts the instance as positive) and average (which works as a majority voting operator). After the

evolutionary process is completed, expression trees with accuracy higher than the average are selected

by a forward-search algorithm to compose the final meta-committee, which will predict the class of

unknown instances. Figure 3.8 depicts the voting scheme adopted by the authors in in [169, 172].

3.5.3 Genetic Fuzzy Systems

Genetic fuzzy systems are popular in ensemble learning, where fuzzy systems optimized

by EAs are used to predict the class of unknown instances. A study reports that fuzzy combiners

71

max average

average

min

max max

min

min

majority

decision tree

expression tree

expression tree

...

Figure 3.8: Voting scheme adopted by Liu et al. [169, 172]. A pool of decision trees is shared among

several meta-models (in this case, expression trees) which will have their votes combined by a simple

majority voting rule.

can outperform crisp combiners in several scenarios [251]. There are several steps in the induction

of fuzzy systems where EAs may be used: from tuning fuzzy membership functions to inducing rule

bases [54, 255]. For instance, in [54, 251], a GA was used with a sparse matrix for codifying features

and linguistic terms; and in [255] a GP algorithm was used to evolve combination structures of a

grammar-free fuzzy system.

3.5.4 Induced Ordered Weighted Averaging (IOWA)

The application of EAs for other non-linear structures include approximating the weights

via Induced Ordered Weighted Averaging (IOWA). This is done in [19] through the use of a Multi-

Objective EA based on Decomposition (MOEA-D). The IOWA operator is a mean-type aggregation

operator, generalizing several aggregation functions such as weighted arithmetic mean and OWA

operators. IOWA introduces a reordering step for its weights, adding non-linearity to the aggregation

system.

3.5.5 Error Correcting Output Codes (ECOC)

Error Correcting Output Codes (ECOC) [18] is a meta-method which combines many binary

classifiers in order to solve multi-class problems [11]. It is an alternative to other multi-class strategies

72

for binary classifiers [31] – such as one-vs-one, which learns a classifier for each pair of classes; and

one-vs-all, which learns one classifier per class, discriminating instances from that class (positives) from

all other instances (negatives). The ECOC strategy provides meta-classes to its classifiers (i.e. positive

and negative classes are in fact combinations of instances from one or more classes). An example of

ECOC is shown in Figure 3.9.

B1

B2

B3

B4

B5

(a)

B1 B2 B3 B4 B5

(b)

B1 B2 B3 B4 B5

s

2

4

1

4

2

ઠ

Xs

(c)

Figure 3.9: (a) Feature space and trained boundaries of base classifiers. (b) Coding matrix, where

black and white cells correspond to positive and negative classes, respectively, denoting the two par-

titions to be learned by each base classifier. (c) Decoding step, where the predictions of classifiers

{b1, b2, ... , b5} for sample s are compared to the codewords {y1, ... , yN} and s is labeled as the class

codeword at minimum distance. Adapted from [18].

ECOC comprises two steps: encoding and decoding. The aim of encoding is to design a

discrete decomposition matrix (codematrix) for the given problem [11]. A study reports that larger

matrices (with regard to number of classifiers) improve predictive performance [11]. In the decoding

phase, each classifier casts a vote to a meta-class for an unknown instance. The predicted class is

computed by comparing the distance of the outputed codeword for that instance with the codeword

from each real class via a similarity metric.

Though in classification we wish to reach top predictive accuracy, other measures should

also be considered for evaluating the ECOC matrix, such as row separation and column diversity [31].

By using an indicator-based selection EA (IBEA), in [31] the ensemble accuracy, individual classifier

accuracy, and hamming distance were used as objectives for optimizing the layout of ECOC matrices,

by manipulating the distribution of classes among base classifiers. In [11], on the other hand, an

attribute selection strategy was used to generate classifiers to be integrated by an ECOC scheme;

hence, this work is labeled as a generation technique instead of an integration one.

73

3.5.6 Neural Networks

In an experimental work comparing several integration methods [158], a multilayer percep-

tron neural network was used as a combination strategy. The output from base classifiers was used

as input for the neural network, with an EA used for optimizing the weights of connections between

neurons.

3.5.7 Evolutionary Algorithms for selecting meta-combiners

In [235], besides using the Artificial Bee Colony (ABC) algorithm for selecting base classi-

fiers, the authors also use another ABC for selecting the meta-learner that will combine the votes of

ensemble members.

3.6 Fitness functions

First, we review four types of objective (or fitness) functions, broadly categorized with re-

gard to their nature: effectiveness, efficiency, diversity, and complexity. Next, we review multi-objective

optimization approaches.

3.6.1 Effectiveness, Diversity, Complexity and Efficiency

An objective function measures effectiveness when it evaluates the ensemble’s predictive

performance. This aspect is essential to ensemble learning and is addressed by all surveyed studies.

The most popular objectives within this category are accuracy (or its dual, error rate) for classification

tasks and mean squared error for regression tasks. The well-known accuracy measure is given by:

accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives, and false neg-

atives, respectively. The error rate is simply: 1− accuracy . Note that accuracy and error rate are not

strong metrics, since they present poor performance on highly imbalanced class distributions [164].

The mean squared error is given by:

MSE(X (i)) =
1
N

N∑
i=1

(hB(X (i))− Y (i))2
(3.3)

74

which computes the difference between the value predicted by the ensemble (hB(X (i))) and the real

value Y (i)
, for all N instances. Other effectiveness measures include exponential squared loss [128],

geometric mean [32,33,217,261], imbalance ratio [261] (for imbalanced classes), and confidence [136,

138, 242], to name just a few.

A diversity metric evaluates how diverse an ensemble’s members (base learners) are. A diver-

sity measure is often used as an objective in the selection stage of ensemble learning (Section 3.4);

and it can also used in the generation stage (Section 3.3). We refer the reader to [36] for a review

on diversity measures for generating models; and next we discuss the controversial issue of using

diversity as an objective in general, regardless of the ensemble learning stage.

Several researchers defend diversity as a valid objective (e.g. [43, 44, 92, 243]), stating that

it contributes to ensemble accuracy [44]. De Stefano et al. [243] state that, as the number of base

learners increase, so does the probability that a minority of correct base learners will be overrun by a

majority of wrong base learners, and thus the need for using diversity measures to reverse that effect.

Also, in EAs, genetic material from well-performing solutions tend to be propagated to their offspring,

often compromising diversity [74].

However, other researchers do not see the utility of diversity measures (e.g. [142, 159,

172]), stating that the correlation between ensemble accuracy and diversity is not as strong as ex-

pected [252]. Some authors also note that classic ensemble learning methods (e.g. bagging, boost-

ing, and random subspace) introduce diversity in an ensemble without directly measuring it [73]. We

can conclude, from this debate, that the relationship between ensemble effectiveness and diversity is

not fully understood yet [73, 252].

Diversity can be measured based on the ensemble’s characteristics encoded in an individual’s

genotype, or based on the predictions made by each base learner. In the latter case, a set of base

learners is said to be diverse when their errors are not correlated [230]. Examples of diversity measures

in this category include Yule’s Q statistic [250], average residual correlation coefficient [254], and

negative correlation [21,22]. The most popular measure seems to be the Kohavi-Wolpert variance [45,

214, 215], given by:

KW =
1

NB2

N∑
j=1

L(X (j))(B − L(X (j))) (3.4)

where B is the number of classifiers, N is the number of instances in the (training or validation) evalu-

ation set, and L(X (j)) is the number of classifiers within the ensemble that correctly predict the class

of instance X (j)
.

Diversity measures can be divided into pairwise and group measures. The latter evaluate

diversity among all classifiers in the ensemble, whereas pairwise metrics evaluate diversity between

two classifiers, and require an averaging technique for obtaining a group measure from all classifier-

pairwise measures [120]. This is performed by the disagreement measure. The pairwise disagreement

measure [36] is defined as:

75

Diff(Bi , Bj) =
L01 + L10

L00 + L01L10 + L11 (3.5)

where Bi and Bj are respectively the i -th and j -th classifiers within the ensemble, L10
is the number of

instances correctly classified by Bi and wrongly classified by Bj , and so on for the remaining indices

L01, L00, L11
. Pairwise disagreement varies from 0 to 1, with 0 indicating no disagreement (i.e. equal

predictions) and 1 maximum disagreement. The plain disagreement measure [170] simply averages

the overall disagreement among the members of the ensemble:

PSM =
B∑

i=1

B∑
j=i+1

N∑
k=1

Diff(Bi , Bj)
((B − 1)× B × N)

(3.6)

where B is the number of classifiers, N the number of instances in the training or validation set.

For an extensive list of diversity measures for ensemble learning, the reader is referred to

[120, 142, 157].

Complexity metrics evaluate how complex the classifiers in the ensemble, or the ensemble as

a whole, are. The most popular complexity metrics are the number of activated classifiers (for classifier

selection approaches) [54,73,124,135,136,203,251,252] and the number of attributes used by the

models induced by the base learners [5,39,41,167,217,240,247,266,276]. Other complexity metrics

include the number of nodes in flexible neural trees [190] and the number of hidden neurons in a neural

network [53, 167]; the structured minimization principle [109]; the number of support vectors in a

Support Vector Machine model [217]; and the length of fuzzy rules [124].

Efficiency is a desired objective when an ensemble must be fast, during training and/or test-

ing (prediction) phase. Training efficiency is obviously important in very large datasets. In addition,

both training and testing efficiency are especially important in data stream scenarios, where a contin-

uous flow of incoming data is presented to the system and predictions must be made in a real-time

basis.

Complexity and efficiency metrics are related since, broadly speaking, reducing the complex-

ity of the base learners or the ensemble as a whole leads to more efficient ensemble learning systems

– e.g., reducing the number of base learners (a complexity metric) leads to faster ensembles, for a

fixed type of base learner. Note, however, that the number of base learners is not directly a measure

of efficiency, since efficiency depends on both the number and the type of base learners. For example,

an ensemble with a given number N of decision tree algorithms would probably be trained faster than

an ensemble with N/2 neural networks, since the later type of base learner is much slower than the

former. In addition, it is possible to improve efficiency without directly reducing the complexity of

the models in the ensemble – e.g., by reducing the number of instances fed to the ensemble learning

system.

Among surveyed work, only two studies optimize efficiency, one measuring prediction time

reduction [189], and the other measuring training set size reduction (for instance selection) [224],

as a proxy for training time. None of the surveyed EAs employed training time per se as a metric.

76

3.6.2 Single vs. Multi-Objective Optimization

Ensemble learning methods performing single-objective optimization are, evidently, con-

strained to optimize effectiveness. However, ensemble learning may be naturally viewed as a multi-

objective task, involving also other types of objectives, as discussed earlier. Figure 3.10 shows the

distribution of other objectives that were optimized along effectiveness in studies that employed mul-

tiple objectives.

In this survey we follow the taxonomy of multi-objective optimization approaches proposed

in [97], where approaches are categorized into three types: (i) weighted fitness functions, where each

objective is assigned a user-defined (typically, very ad-hoc) weight indicating that objective’s impor-

tance; (ii) the lexicographic approach, where the user only ranks the objectives in terms of their prior-

ities (no ad-hoc numerical weights), and then the EA selects individuals for reproduction by trying to

optimize the objectives in their decreasing order of priority; and (iii) the Pareto dominance approach,

where the EA evolves a set of non-dominated solutions in the Pareto sense – i.e., a solution is non-

dominated if it is not worse than any other according to each objective and it is better than others

according to at least one objective.

In the surveyed papers, the least popular approach was the lexicographic one ([167]), fol-

lowed by weighted fitness functions ([48,61,120,135,136,138,166,201–203,266,278]), then the

single-objective approach (see the single-objective entry in Table 3.8) and finally the Pareto dominance

approach as the most popular one (all the papers that were not cited in this paragraph and are within

the multi-objective entry in Table 3.8).

effectiveness (56)

225 254

efficiency

diversity complexity

Figure 3.10: Distribution of objectives across EAs using multiple objectives. Effectiveness (predictive

performance) is optimized in all 56 studies. In addition, only four studies [54, 73, 190, 252] optimize

three objectives (effectiveness, diversity and complexity), and no study optimizes all four objectives.

77

Table 3.8: Studies categorized by number and type of objectives employed.

Number of objectives Nature Related work

Single-objective Effectiveness

[4, 6, 11, 28, 32, 33, 38, 42, 43, 46, 51, 52, 54, 57, 61, 63, 64, 69, 72, 74–76, 79–

82, 84, 86, 91–95, 102, 115, 126–132, 134, 137–140, 148, 149, 152, 153, 158,

169, 170, 172–175, 177–179, 191, 192, 200, 204, 218, 222, 232, 234–237, 242,

243, 248, 253, 255, 256, 259, 262, 269, 270, 279, 282]

Effectiveness

[1, 5, 8, 10, 16, 17, 19, 21, 22, 31, 36, 39, 41, 45, 48, 53, 54, 56, 58–61, 66, 68, 73,

78, 87, 104, 109, 112, 120, 124, 125, 135, 136, 138, 142, 146, 150, 151, 155, 159,

164, 166, 167, 170, 180, 181, 184, 188–190, 196, 201–203, 206, 207, 210, 214,

215, 217, 224, 225, 229–231, 238–241, 247, 250–252, 254, 261, 263, 264, 266,

276, 278, 280, 281]

Multi-objective Efficiency [189, 224]

Diversity
[21, 22, 36, 45, 48, 54, 61, 73, 104, 112, 120, 135, 142, 146, 150, 151, 159, 170,

190, 201, 202, 206, 207, 214, 215, 250, 252, 254, 263]

Complexity
[5, 8, 17, 39, 41, 53, 54, 73, 109, 124, 136, 138, 166, 167, 188, 190, 203, 210,

217, 225, 229, 231, 240, 247, 251, 252, 266, 276, 278]

3.7 Types of Evolutionary Algorithms

A wide variety of EAs from different paradigms have been employed for ensemble learning.

While some of those paradigms are quite rare (e.g. Flower Pollination Algorithm [279], Levy-Flight Fire-

fly Algorithm [278]), others are widely used in ensemble learning. Among them, Genetic Algorithms

(GAs) seem to be the most popular, followed by Genetic Programming and Differential Evolution.

Within GAs, apart from its single-objective version, Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II) is the most popular incarnation. This choice seems due to NSGA-II’s ability to deal

with multiple objectives, suiting well the multi-objective nature of ensemble learning. Table 3.9 shows

the distribution of the surveyed studies according to the type of EA used.

Table 3.9: Studies organized by the type of evolutionary algorithm that is employed.

Evolutionary family Related work

Flower Pollination [279]

Clonal Selection [61]

Evolutionary Algorithm [218]

Inclined Planes Optimization [210]

Multi-Objective EA [16, 17]

Moth-Flame Optimization [278]

Levy-flight firefly Algorithm [278]

Virus-Evolutionary Genetic Algorithm [102]

Many-Objectives Evolutionary Algorithm [8]

Evolutionary Strategy [262, 269]

Artificial Bee Colony [32, 33, 128, 201, 202, 235]

Estimation of Distribution Algorithm [28, 36, 43, 79–82, 177]

Particle Swarm Optimization [4, 42, 43, 51–53, 61, 72, 130, 131, 140, 200, 206, 207, 210, 230]

Differential Evolution [38, 58–60, 63, 68, 69, 115, 153, 167, 196, 236–241, 256, 256, 280–282]

Genetic Programming
[4, 21, 22, 42, 64, 75, 78, 91–95, 109, 158, 159, 159, 169, 172, 175, 178, 179, 222, 243,

253–255, 259, 264]

Genetic Algorithms

[1, 5, 6, 10, 11, 16, 17, 19, 31, 39, 41, 45, 46, 48, 54, 54, 56, 57, 61, 63, 68, 72–75, 75, 76,

84, 86, 87, 104, 112, 120, 124–127, 129, 132, 134–139, 142, 146, 148–152, 155, 158,

164, 166, 170, 173, 174, 180, 181, 184, 188–192, 203, 204, 214, 215, 217, 224, 225, 229,

231, 232, 234, 247, 248, 250–253, 261, 263, 266, 270, 276]

78

3.8 Types of Base Learners

In the surveyed studies, the most commonly used type of base learner is artificial neural

networks, used in 75 studies; followed by tree-based algorithms (e.g. decision trees, arithmetic trees),

used in 48 studies; and support vector machines, used in 48 studies. The number of studies using each

type of base learner algorithm is shown in Table 3.10.

Some ensemble techniques are more appropriate for different types of base learners. Sup-

port Vector Machines, for instance, are stable classifiers, making the techniques of selecting either

instances, or attributes for each base learner inefficient as a diversity inductor [61].

The majority of the studies use homogeneous ensembles (117 work) instead of heteroge-

neous ones (51). Homogeneous ensembles are composed by models from the same base learner

paradigm. However, this is not to say that all models are similar. When using neural networks, ensem-

ble members can have distinct activation functions, or topologies. Figure 3.11 shows the base learners

that were used in at least 5 studies, as well as the study’s ensemble type: either homogeneous, using

only one type of base learner, or heterogeneous, using several types of base learners. The specific

studies using each of these types of ensemble are mentioned in Table 3.11. Note that some work use

both types of ensemble.

According to Rahman and Verma [216], there are five strategies for inducing diverse models

in homogeneous ensembles: (i) post-model optimization (see Section 3.3.3); (ii) manipulation of the

error function; (iii) distinct attribute subsets across base learners (see Section 3.3.2); (iv) manipulation

of output targets, in which some instances in the training set have their class labels switched, for

inducing diversity; and (v) distinct instance subsets across base learners (see Section 3.3.1). Strategies

(ii) and (iv) are not covered, though, due to the lack of relevant papers.

Heterogeneous ensembles comprise base learners from distinct paradigms. Because of this,

there is no (direct) pressure for inducing diversity in the ensemble, since models induced by differ-

ent learners will likely perform different predictions, and thus commit different classification errors.

Among the studies using diversity measures, 19 have homogeneous set of base learners, while 9 use

a heterogeneous set. These numbers include a single paper that proposes both homogeneous and

heterogeneous ensembles. The larger number of papers with homogeneous sets is probably because

it is simpler to work with homogeneous ensembles than with heterogeneous ones.

3.9 Application Domains

Several application domains have benefited from evolution-based ensemble learning algo-

rithms. From wind speed prediction to cancer detection, evolutionary ensembles are employed with

distinct goals, from base learner selection to optimization of stackers. While some of those fields

were marginally explored as a proof-of-concept (e.g. noise by-pass detection in vehicles, stock market

79

Table 3.10: Studies organized according to the base learners they employ, for base learners

that appear in at least 5 studies. For a complete list, please refer to the metadata at the

https://github.com/henryzord/eael source code repository.

Base Learner Related work

Bayesian Network [115, 120, 210, 282]

Gaussian Process Regression [19, 174, 191, 192, 266]

Linear Regression [126, 127, 164, 191, 192]

Fuzzy rule-based Classifier [54, 86, 124, 181, 251, 252]

Conditional Random Fields [84, 236–241]

Logistic Regression [78, 91, 115, 120, 196, 229, 235]

Random Forest [4, 78, 120, 184, 225, 229, 256, 266]

Rule-based [16, 17, 57, 66, 68, 178, 179, 181, 222, 231, 241]

Naïve Bayes [4, 56, 78, 91, 115, 120, 125, 132, 155, 184, 196, 206, 207, 235, 276, 282]

K-Nearest Neighbor
[4, 8, 56, 72, 73, 78, 91, 115, 120, 125, 127, 135, 136, 138, 142, 153, 170, 184, 189, 203, 204, 206,

207, 210, 230, 235, 261, 266, 282]

Support Vector Machines

[4, 8, 31, 38, 48, 56, 56, 61, 78, 84, 112, 115, 120, 120, 126, 127, 130, 131, 135, 136, 138, 148, 170,

174, 191, 192, 196, 202–204, 206, 207, 214, 215, 217, 224, 225, 229, 230, 236, 237, 241, 254–

256, 266, 269, 278]

Trees
[5, 8, 10, 11, 21, 22, 28, 41, 56, 64, 75, 91–95, 104, 109, 115, 120, 132, 146, 149–152, 158, 159,

164, 169, 170, 172, 175, 180, 184, 189, 225, 229, 232, 235, 243, 247, 253, 259, 262, 264, 266, 282]

Artificial Neural Network

[6, 8, 11, 32, 33, 36, 39, 41–43, 45, 46, 51–53, 56, 58–60, 63, 69, 74, 76, 78–82, 84, 87, 115, 120,

126, 127, 129, 134–140, 159, 166, 167, 173–175, 188, 190–192, 200, 203, 204, 206, 207, 210,

218, 225, 230, 234, 242, 247, 248, 250, 254, 255, 263, 266, 270, 278–281]

 1

 3

 5

 3

 1

 8

 4

 7

16

34

44

 4

 3

 1

 4

 7

 7

 3

12

22

31

17

35

Gaussian Process Regression

Linear Regression

Fuzzy rule-based Classifier

Conditional Random Fields

Logistic Regression

Random Forests

Rule-based

Naïve Bayes

K-Nearest Neighbors

Support Vector Machines

Decision/Arithmetic Trees

Artificial Neural Networks

homogeneous heterogeneous

Figure 3.11: Distribution of base learners that are used in at least 5 studies, as well as the type of

ensemble in which they appear: either homogeneous, using only one type of base learner, or hetero-

geneous, using multiple types of base learner.

Table 3.11: Studies organized according to the base learners’ homogeneity/heterogeneity.

Homogeneity Related work

Homogeneous

[1, 5, 6, 10, 17, 19, 21, 22, 28, 31–33, 38, 39, 42, 43, 45, 46, 51–54, 57–61, 63, 64, 66, 68, 69, 72–75, 79–82, 86,

87, 92–95, 102, 104, 109, 112, 124, 125, 127–132, 134, 137, 139, 140, 142, 146, 148–152, 155, 158, 164, 166,

169, 172, 173, 177–180, 188–190, 200, 202, 214, 215, 217, 222, 224, 231, 232, 234, 238–240, 242, 243, 250–

253, 256, 259, 261–264, 269, 270, 276, 280, 281]

Heterogeneous
[4, 8, 11, 16, 36, 48, 56, 76, 78, 84, 91, 115, 120, 135, 136, 138, 153, 167, 170, 174, 175, 181, 184, 191, 192, 196,

201, 203, 204, 206, 207, 210, 218, 225, 229, 230, 235–237, 241, 248, 254, 255, 266, 278, 279, 282]

Both [41, 126, 159, 247]

80

prediction), others have been far more researched (e.g. microarray data classification). This may be

due to inherent qualities of ensembles for those fields. For instance, let us analyze the case of data-

stream classification: a pool of base classifiers that is periodically updated is precisely what is needed

for dealing with the non-stationary, non-repetitive, time-varying, volatile, agile, and dynamic nature of

continuously-incoming data [181].

Also, there is the phenomenon of concept drift often present in data-streams, which hap-

pens when the data distribution changes due to external causes. By using a single classifier, one must

deal with the task of selecting all relevant data for re-training it. This can be avoided by training new

classifiers over subsets of new information, and then combining those classifiers via an integration

technique [80, 181].

The majority of papers surveyed perform classification tasks. A list of papers that perform

classification, regression, or both tasks is presented in Table 3.12. Table 3.13 summarizes the applica-

tion domains found within research papers on evolutionary algorithms for ensemble learning.

Table 3.12: Studies organized according to the addressed task.

Task Related work

Classification

[1, 4–6, 8, 10, 11, 16, 17, 21, 22, 28, 31–33, 36, 38, 39, 41, 43, 45, 46, 48, 51–54, 56–61, 63, 64, 66, 68, 69, 72–

76, 78–82, 84, 86, 87, 91–95, 102, 104, 112, 115, 120, 124, 125, 127, 128, 130–132, 134–140, 142, 146, 148–

152, 155, 158, 159, 164, 166, 167, 169, 170, 172, 173, 177–181, 184, 188, 189, 196, 200–204, 206, 207, 210,

214, 215, 224, 225, 229–232, 234–243, 247, 248, 250–253, 256, 261, 262, 264, 266, 270, 276, 278, 280–282]

Regression [19, 42, 109, 126, 129, 153, 174, 175, 191, 192, 217, 218, 222, 254, 255, 259, 263, 269, 279]

Both [190]

3.10 Summary of Findings

First, we discuss the main findings of the survey regarding which type of technique was

found to be the most commonly used in each stage of the ensemble learning process.

The generation stage, i.e. where the ensemble members are generated, was found to be the

most popular step to employ EAs, having more studies dedicated to it than the selection and integra-

tion stages combined. Wrapper methods were found to be much more common than filter ones for

the instance selection and attribute selection approaches. This seems natural, considering that, unlike

filters, wrappers select attributes or instances customized for the supervised learning algorithm to be

used later (to induce a model), which tends to improve predictive performance. However, wrappers

are normally much slower than filters. Hence, in applications with large datasets or where efficiency is

a critical factor, the filter approach deserves more attention. In addition, in the model tuning approach

for generation, post-model optimization (used to improve an existing model) was found to be more

popular than pre-model optimization (used before learning the model).

The next stage, selection – where ensemble members are selected to be used in the testing

phase – is an optional stage, which is missing in many ensemble learning systems. In this stage, static

selection, where the regions of competence of ensemble members are identified at training time, was

81

Table 3.13: Application domains where evolutionary algorithms for ensemble learning were employed.

Domain Papers

P300 Speller channel subset optimization [1, 38]

Software Defect Prediction [10, 180]

Particle dissolution prediction [191, 192]

Noise by-pass detection in vehicles [218]

General classification at hardware-level [262]

Industrial Machine Fault Prediction [61]

Internet Traffic Classification [5]

Recommendation Systems [250]

Stock market prediction [42, 178, 179]

Weather forecast [222]

Estimation of Water Chlorophyll Concentration [19]

Typhoon Intensity Prediction [129]

One-class web traffic anomaly detection [202]

Intrusion Detection [91, 95, 155, 184]

Microgrid islanding detection [134]

Power consumption estimation [109]

Wind Speed Forecasting [269, 279]

Electric Transformer Fault Prediction [206, 207]

Anaphora resolution [237, 241]

Sentiment Analysis [196, 266]

Spam detection [16, 17, 253]

Text Entity Recognition [236, 238–240]

Human Activity Recognition [84]

Mild Laryngeal Pathology Detection [256]

Breast Cancer Prediction [242]

Disease Diagnosis [57]

Motion Recognition [41, 247]

Seizure Identification for Epilepsy Diagnosis [69, 140]

Microarray Data [4, 43, 135, 136, 138, 169, 170, 172, 203, 204, 217, 229]

Radar image classification [230]

Resting-State fMRI imaging analysis for Schizophrenia Prediction [46]

Movement Recognition for Parkinson Disease [175]

Handwritten Digit Recognition [234]

Posture Recognition [188]

Diabetic Retinopathy Detection [248]

Handwritten Digits Recognition [63]

Facial emotion recognition [278]

Steganalysis [102]

Individual Recognition via Palma Dorsa Vein Pattern [128]

Object Recognition [11, 78]

Face recognition [51–53, 200]

Breast Cancer Prediction [146, 148–151]

One-class classification [201]

Imbalanced classification [21, 22, 32, 33, 104, 231, 261]

General data stream-based classification and regression [79–82, 93, 94, 125, 130, 131, 181]

General batch-based classification and regression

[6, 8, 11, 28, 31, 36, 39, 41, 45, 48, 54, 56, 58–60, 64, 66, 68, 72–

76, 86, 87, 92, 112, 115, 120, 124, 126, 127, 132, 137, 139, 142,

152, 153, 158, 159, 164, 166, 167, 173, 174, 177, 189, 190, 210,

214, 215, 224, 225, 232, 235, 243, 247, 251, 252, 254, 255, 259,

263, 264, 270, 276, 280–282]

found to be much more popular than dynamic selection, where those regions are identified at testing

(prediction) time. This seems partly due to the greater simplicity and computational efficiency of

the former, since dynamic selection in general requires a more time-consuming process of identifying

regions of competence of ensemble members for each testing instance.

In the integration stage, where the predictions of the base learners are integrated into a final

prediction for each instance, by far the most popular approach among the surveyed studies was the use

of a first degree polynomial – a simple linear approach. Among the non-linear integration techniques,

the most common was the use of expression trees, using a genetic programming algorithm. It seems

that more research is needed on non-linear techniques for integration, in order to determine whether

82

or not their higher computational complexity could be justified by a significant increase in predictive

performance.

Regarding the number of objectives in the fitness function, multi-objective EAs were found

to be much more common than single-objective ones. This seems natural, given the multi-objective

nature of the ensemble learning problem. In terms of specific types of objectives, effectiveness (pre-

dictive performance) is used by all surveyed EAs, since it is essential. Diversity and complexity share a

second place, despite diversity being a controversial objective, as discussed earlier. Finally, efficiency,

the capacity to generate ensembles that are computationally fast, is optimized in only two studies.

Regarding the main types of EAs used in the surveyed studies, the most popular one was by

far Genetic Algorithms (often NSGA-II, a multi-objective GA), followed by Genetic Programming and

Differential Evolution.

Regarding the main type of base learner, the most popular one was Artificial Neural Networks

(ANNs), followed by decision trees and Support Vector Machines (SVMs). The popularity of ANNs as

base learners seems partly due to a long history of interaction in the EA and ANN research areas, and

partly due to the nature of ANNs, whose performance can often be improved when using ensembles.

However, learning ensembles of ANNs or SVMs tends to be very computationally expensive. This

problem is mitigated when learning an ensemble of decision trees (much faster base learners).

83

4. EEL: ESTIMATION OF DISTRIBUTION ALGORITHMS FOR ENSEMBLE

LEARNING

While reviewing related work for the survey (described in Chapter 3), we developed our

own solution for inducing ensembles with evolutionary algorithms. It was published in 2018 at the

IEEE Congress on Evolutionary Computation and is called EEL – Estimation of Distribution Algorithms

for Ensemble Learning.

Seeking to use the best practices from classic ensemble-learning algorithms, while also per-

forming a robust global optimization, we propose to integrate several decision trees for classification

from a prior AdaBoost execution into one ensemble. Decision trees are one of the most popular mod-

els due to their robustness to noise, speed regarding both training and prediction, and ability to deal

with redundant attributes [14, 15, 29]. There are exponentially many decision trees that can be built

from the same dataset, with different levels of predictive quality and compactness. Indeed, inducing

decision trees is a combinatorial problem, with complexity NP-hard for generating an optimal decision-

tree, and NP-complete for generating a minimal binary decision-tree [29].

EEL comprises two steps: generation of base classifiers, and subsequent integration. Ad-

aBoost originally uses two sets of weights: instance weights (denoting the importance of correctly

classifying that instance in that given iteration of the AdaBoost process), and classifier weights (the

overall vote weight of that classifier in the final ensemble prediction). AdaBoost does not take into

account that some classifiers might perform differently among classes (i.e., that a classifier performs

better at detecting the positive class than the negative class, or vice-versa). It is possible to induce

a set of voting weights, with one weight per classifier per class, to overcome that limitation. EEL is

capable of starting a search procedure from a previous high-quality region in the fitness landscape –

a characteristic inherited from Estimation of Distribution Algorithms. We test the proposed strategy

in 15 UCI datasets, improving AdaBoost predictive performance to up to≈ 11%.

The rest of this chapter is organized as follows. Section 4.1 goes into further detail on the

implementation of the algorithm. Section 4.2 presents the experimental setup, while Section 4.3

presents the experimental results. We draw our conclusions in Section 4.4.

4.1 Proposed Method

EEL, being an Estimation of Distribution Algorithm, has a probabilistic graphical model (GM),

a structure used to encode variables in the problem. The GM is a matrix of size C × B, where B is

the number of decision trees and C the number of classes. Each cell in this matrix is a Gaussian with

mean x̄ and standard deviation σ, as depicted in Figure 4.1.

EEL makes use of a univariate EDA, which means its GM assumes that there is no correlation

between the voting weights of two base classifiers. Due to the nature of the problem, in which we

84

0.97 1.18 1.07 1.060.96

b2 b3 b4 b5b1

c1

c2

c3

0.97 1.18 1.07 1.060.96

0.97 1.18 1.07 1.060.96

Figure 4.1: Initial probabilistic graphical model used in the EDA optimization step, with 5 base clas-

sifiers and 3 classes. Each cell comprises the mean of a Gaussian distribution for that voting weight.

Initial values come from former AdaBoost classifier weights. Note that there is no restriction for a sin-

gle classifier to sum its votes to 1 (i.e., the rows do not sum up to 1). Also note that since we use one

weight per classifier per class, in the first generation of EEL the weights are repeated among classes,

since they were not learned yet.

have several classifiers casting votes that are further integrated, we are aware that this is a naïve

assumption, but in practice univariate EDAs can provide sufficiently high-quality solutions while also

being computationally efficient [117].

From this initial GM we sample S solutions. A solution is a matrix B×C representing the an

ensemble’s voting weights. Note that each classifier within the ensemble never changes its predictions

with regard to the training set; the aim of our method is to change the whole ensemble prediction by

adjusting the voting weights of each classifier, wb,c∀b ∈ [1, B], c ∈ [1, C].

4.1.1 Fitness Computation

We compute the fitness of individuals (ensembles) as follows. Each individual outputs a

C × N matrix, where N is the number of instances in the training set and C the number of classes.

The highest score in each column denotes the prediction for that instance. We sum the scores of the

incorrectly predicted instances and use that as the individual’s fitness. Hence, the objective of the

EDA is to decrease the median fitness throughout evolution, thus decreasing the level of certainty in

incorrect predictions. Figure 4.2 depicts the fitness computation for a single individual.

4.1.2 Updating the Probabilistic Graphical Model

After computing the fitness of a population, we separate the individuals into two subsets.

The first subset comprises all individuals that surpass the median fitness of the current population

(elite), whereas the second comprises individuals with fitness below or equal to the median. The former

will update the probabilistic graphical model (GM), and will be preserved for the following generation,

as depicted in Figure 4.3. The rest of the population will be sampled from the updated GM.

85

14.71

15.12

22.98

17.95

24.61

22.18

25.65

2.34

5.48 13.67 28.530.55

X(2) X(3) X(4)X(1)

c1

c2

c3

c1 c1 c1c2Y

Figure 4.2: Ensemble scores for instances in a given training set, along with truth labels (Y). Each row

denotes a class, and each column an instance. Grey cells indicate the prediction of the ensemble for

that instance, with bold values denoting incorrect predictions. Fitness for the depicted individual is

25.65 + 15.12 + 28.53 = 69.3, and the aim of EEL is to decrease the fitness of individuals.

1.10 0.78 1.17 0.950.97

b2 b3 b4 b5b1

c1

c2

c3

1.09 1.04 1.02 1.190.96

1.15 1.13 0.94 0.921.14

Probabilistic Graphical Model

1.13 0.99 1.21 0.731.25

b2 b3 b4 b5b1

c1

c2

c3

1.69 1.30 1.04 1.100.73

1.16 0.99 1.12 1.111.26

1.34 0.98 1.21 1.240.97

b2 b3 b4 b5b1

c1

c2

c3

0.44 0.66 1.04 1.241.28

1.23 1.58 0.94 0.640.93

0.84 0.36 1.09 0.880.69

b2 b3 b4 b5b1

c1

c2

c3

1.15 1.17 0.98 1.240.87

1.06 0.81 0.76 1.011.23

Elite population

Figure 4.3: Example of an update on GM probabilities, using three elite individuals. The new GM values

are simply the mean value found in the elite population.

86

The GM comprises Gaussian distributions that are updated by computing the mean value

among elite individuals – each cell is a Gaussian mean. The standard deviation is stored in another vari-

able, which is initially set to σ (hyper-parameter), and is iteratively decreased by a factor of τ (another

hyper-parameter) at every generation, as recommended by [117].

EEL repeats the process of sampling, calculating fitness, and updating the GM until a suffi-

cient number of generations have been achieved, or the median fitness has not improved over δ for

∆ generations. Once the evolutionary procedure halts, we use the fittest individual from the last gen-

eration as the selected solution. The pseudocodes for training and prediction phases are shown in

Figures 4.4 and 4.5, respectively.

1: function train(B, G, δ, ∆, x̄ , σ, X, Y)

2: run AdaBoost with X and Y
3: use AdaBoost base classifiers for initializing the EDA

4: initialize the GM using x̄ and σ
5: g ← 0

6: while g < G and GM has not yet converged do
7: sample population S from GM

8: assess the population fitness, as shown in Figure 4.2

9: if the median fitness improves < δ for ∆ generations then
10: Early stop

11: use the individuals with fitness > median to update GM

12: resample individuals replacing those with fitness≤median

13: σ ← σ − τ
14: g ← g + 1
15: return best individual from last generation

Figure 4.4: EEL pseudocode for training phase.

1: function predict(X)

2: H ← 0N
3: for i ∈ [1, N] do
4: η ← 0C
5: for b ∈ [1, B] do
6: ηhb(X(i)) ← ηhb(X(i)) + wb,c

7: Hi ← argmax(η)
8: return H

Figure 4.5: EEL pseudocode for prediction phase.

4.1.3 Complexity Analysis

The complexity of inducing a decision tree is O(ηMN log N), with η being the number of

nodes, M the number of attributes and N the number of instances in the training set. AdaBoost runs

this process for B iterations, thus O(BηMN log N).

Generating the matrix of predictions (of size BN) has complexity O(BHN), with B being

the number of base classifiers, H the height of the current decision tree and N the number of training

instances. This matrix does not change overtime, and will later be used to perform the predictions.

87

For each solution in the EDA, sampling new weights from the probabilistic graphical model

has complexity of O(BC), with B being the number of base classifiers and C the number of weights

per classifier. This is done for S − Φ individuals (i.e., those that have to be replaced for the follow-

ing generation). The whole ensemble prediction procedure, including the sum of votes of incorrect

instances, has complexity of O(BN), since it requires only looking up the prediction table for each

classifier and for each training instance (as shown in line 6 of Figure 4.5). Updating the probabilistic

graphical model based on the Φ fittest individuals has complexity of O(ΦBC).

Since the EDA evolves S solutions and repeats its process for G generations, the complexity

of the EDA optimization procedure is O((BHN) + G × ((S − Φ)(BC + BN) + ΦBC)) (with Φ being

zero in the first generation). With the former AdaBoost complexity and after some simplification we

have:

O((BN(H + ηM log N)) + (G((S − Φ)(B(N + C(1 + Φ)))) (4.1)

4.2 Experimental Setup

In this section we describe the experimental setup conducted on EEL to asses its predictive

performance, particularly regarding datasets used, baselines to compare, and metric used to assess

quality.

4.2.1 Baseline Algorithms

We compare our proposed method with the original implementation of AdaBoost, as well

as two other variations. Comparing to AdaBoost is intuitive, since our algorithm further optimizes its

ensemble learning procedure by expanding the set of voting weights available for prediction – that is,

using multiple weights per classifier, as opposed to AdaBoost single-weight strategy. The other two

baselines are modifications to AdaBoost. The first modification, AdaBoost-ones, sets all voting weights

to one (i.e., every classifier has the same importance). This strategy may reduce AdaBoost’s tendency

to overfit, since it originally gives more importance to classifiers that can correctly predict outliers.

The second modification, AdaBoost-normal, samples the voting weights from a normal distribution

with x̄ = 1 and σ = 0.25. This version serves as a "null hypothesis" (or random classifier) regarding

the weight optimization strategy: if this variation performs reasonably well in most datasets, then it

would indicate that voting weights may have no significant impact in instance prediction and thus

can be safely discarded. All algorithms are tested with B = 50 decision trees in their ensemble. The

hyper-parameters for EEL are described in Table 4.1, and no effort was made to optimize these values.

88

Table 4.1: Hyper-parameters used for EEL.

Parameter Description Value

B Number of decision trees 50
G Number of generations 50
S Number of individuals 100
δ Fitness threshold 0.01
∆ Generation threshold 5
x̄ Gaussian Mean AdaBoost weights

σ Gaussian Standard deviation 0.25
τ Standard deviation decrease 0.005

4.2.2 Datasets

We evaluate EEL and baseline methods in 15 UCI Datasets [165], shown in Table 4.2. All

datasets present only numeric attributes and no missing data. The restriction on numeric attributes

is due to the implementation of decision trees we are using, which is from Python’s scikit-learn pack-

age [205], though it is not a conceptual limitation of our method per se. We perform a three-fold

cross-validation, with 2/3 folds being used as training set and 1/3 as test set, for each run. We repeat

the three-fold cross validation 10 times.

Table 4.2: Datasets used in our experiments.

Dataset Instances Attributes Min class Max class classes

diabetes 768 8 268 500 2

ecoli 336 7 2 143 8

glass 214 9 9 76 6

hayes roth 160 4 31 65 3

ionosphere 351 33 126 225 2

iris 150 4 50 50 3

KDD synth control 600 60 100 100 6

liver disorders 345 6 145 200 2

segment 2310 18 330 330 7

semeion 1593 265 158 1435 2

sonar 208 60 97 111 2

vehicle 846 18 199 218 4

wine 178 13 48 71 3

winequality red 1599 11 10 681 6

winequality white 4898 11 5 2198 7

4.3 Experimental Results

We use a Friedman aligned ranks [121] test for evaluating if algorithms within a group are

statistically different among themselves. As stated by Demšar [70], the original Friedman Test [101]

requires more than five classifiers, and more than ten datasets to yield a significant analysis, under

the risk of being too conservative on the results. Since we are here comparing four methods, we use

Friedman aligned ranks, which is more appropriate for smaller sets [108].

If the Friedman aligned ranks test detects a statistical difference within the group of algo-

rithms, we proceed the analysis with a Nemenyi post-hoc test [185]. Both tests were conducted with

89

a significance level of 0.05, which is standard for most machine learning experiments. We use the

STAC site [221]
1

for statistical tests, and Orange Python library
2

for generating critical difference

graphics. The exact script used is available in our Github repository
3
.

The Friedman Aligned ranks yields a p-value of 5e−5, which rejects the null hypothesis (that

is, that two or more algorithms within the group present the same average predictive performance)

with great confidence. We can then proceed with the Nemenyi test. The critical difference graph is

depicted in Figure 4.6. EEL is the best algorithm on average, followed by Adaboost, Adaboost-ones,

and finally Adaboost-normal. We can draw the following conclusions: first, simply guessing voting

weights (Adaboost-normal) is not sufficient to solve the problem. Secondly, there is a reason why

Adaboost assigns different voting weights; not all classifiers are the same, which is what Adaboost-

ones is performing. EEL is not statistically equivalent to any one of these algorithms, which reinforces

our opinion that a careful optimization must be performed to extract the best voting weights from

Adaboost.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647

EEL

AdaBoost AdaBoost_ones

AdaBoost_normal

CD

Figure 4.6: Critical difference graph for Nemenyi post-hoc test, on compared algorithms. Recall that

ranks are aligned.

We proceed the analysis, now comparing EEL to Adaboost. It is true that both methods were

found statistically equivalent; however EEL performs better on average than Adaboost. As shown in

Table 4.3, EEL is the best algorithm in 9 out of 15 datasets, with Adaboost comparatively being the

best in only one – Adaboost-ones performs better, with 5 wins. Also, Adaboost performs better than

EEL in only one dataset, tying with it in another two (or, in other words, Adaboost manages to be

better or at least as good as EEL on only three occasions). Based on this data, from all compared

algorithms, we recommend EEL as the best algorithm in terms of predictive performance.

1
Available at http://tec.citius.usc.es/stac/index.html. Accessed July 17 2021.

2
Available at https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html, accessed July

22 2021.

3
https://github.com/henryzord/thesis_experiments

http://tec.citius.usc.es/stac/index.html
https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html
https://github.com/henryzord/thesis_experiments

90

Table 4.3: Mean accuracy across 10 runs of a three-fold cross-validation procedure. Bold values indi-

cate the best algorithm for that dataset.

Dataset Adaboost Adaboost-ones Adaboost-normal EEL (ours)

diabetes 0.755± 0.000 0.727± 0.000 0.716± 0.013 0.756± 0.004
ecoli 0.705± 0.000 0.720± 0.000 0.661± 0.089 0.818± 0.003
glass 0.579± 0.000 0.561± 0.000 0.487± 0.034 0.598± 0.004
hayes roth 0.594± 0.000 0.600± 0.000 0.598± 0.003 0.598± 0.003
ionosphere 0.917± 0.000 0.926± 0.000 0.920± 0.004 0.917± 0.006
iris 0.933± 0.000 0.940± 0.000 0.933± 0.004 0.933± 0.000
KDD synth control 0.745± 0.000 0.733± 0.000 0.717± 0.016 0.784± 0.003
liver disorders 0.725± 0.000 0.635± 0.000 0.654± 0.019 0.730± 0.006
segment 0.818± 0.000 0.777± 0.000 0.691± 0.065 0.866± 0.000
semeion 0.964± 0.000 0.967± 0.000 0.954± 0.007 0.966± 0.001
sonar 0.815± 0.002 0.797± 0.007 0.797± 0.014 0.809± 0.017
vehicle 0.621± 0.000 0.603± 0.000 0.589± 0.012 0.664± 0.009
wine 0.944± 0.000 0.961± 0.000 0.950± 0.004 0.953± 0.006
winequality red 0.548± 0.000 0.477± 0.000 0.441± 0.018 0.566± 0.003
winequality white 0.473± 0.000 0.415± 0.000 0.408± 0.032 0.494± 0.001

Wins (including ties) 1 5 0 9

Average rank 2.50 2.37 3.53 1.60

Average rank (aligned) 24.23 36.23 46.87 14.67

4.3.1 Execution Analysis

In this section we analyze how EEL conducted its evolutionary search procedure. Figure 4.7

depicts the mean of the Gaussian distributions throughout EEL’s procedure, in a given run on the

ecoli dataset. In the first generation (i.e., lowermost line), weights come from a previous Adaboost

execution. Recall that Adaboost uses one weight per classifier (that is, it yields B = 50 weights at

the end of its execution), whereas EEL uses one weight per classifier per class (i.e., it must start with

B×C = 50× 7 weights, with B as the number of base classifiers and C the number of classes). Due

to that fact, we broadcast Adaboost weights into the first Gaussians of the GM (initial population), as

explained in Figure 4.1. Note that EEL adapts to the classifiers strengths and weaknesses in certain

classes, as demonstrated by the smaller line trends in Figure 4.7.

By looking at the standard deviation of EEL in Table 4.3, it is possible to see that the proposed

method is stable. This could mean that using the scores of incorrect predictions as fitness function

provides a smooth fitness landscape, with few local minima. To better visualize it, we present the

known fitness landscape in Figure 4.8. The horizontal axis is the mean of the first W/2 weights, and

the vertical axis the mean of the last W/2 weights. Note that this projection increases the likelihood

that two individuals are in the same position in the projection. To counter this undesired effect, we

show the mean fitness of all individuals occupying that spot in the projection. Please note that this

is an oversimplification of the fitness landscape to fit in a 2D projection. With this in mind, one can

verify that it appears to exist a region in the left-down portion of the landscape with better individuals.

Indeed, we verified in our experiments that EEL starts with a population in the top-right corner that

migrates to the bottom-left as the evolution progresses.

91

w0, 0 w12, 3 w24, 7 w37, 3 w49, 7
Weights

0

4

8

12

17

21

25

29

34

38

42

46

51

Ge
ne

ra
tio

n

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Figure 4.7: Probabilistic graphical model evolution on the ecoli dataset. Vertical axis denotes the gen-

erations whereas the horizontal axis denotes the 50 × 7 = 350 weights for that particular dataset.

Brighter colors indicate more importance (heavier weights) in a given region. Note that EEL penalizes

for incorrect predictions per class, as opposed to Adaboost that penalizes the entire classifier.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Mean of first W/2 weights

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n
of

 la
st

 W
/2

 w
ei

gh
ts

8

10

12

14

16

Figure 4.8: Fitness landscape of EEL. Darker spots indicate valleys (better regions), whereas brighter

spots indicate peaks.

92

4.4 Discussion and Final Remarks

In this chapter we introduced EEL: Estimation of Distribution Algorithms for Ensemble Learn-

ing. EEL resumes the optimization pipeline started by AdaBoost. It uses AdaBoost’s previous base

classifiers and finds a new set of weights for those classifiers by conducting a population-based global

search procedure with the aim of minimizing the error rate of ensemble predictions.

By using multiple weights, one weight per classifier per class, as opposed to AdaBoost, which

uses a single weight per classifier, we are capable of enhancing AdaBoost in 12 cases, and producing

the best results in 9 out of 15 datasets.

As future work for this specific algorithm, we would like to investigate whether a Pareto

approach for decreasing error rate and maximizing accuracy can yield better results than simply us-

ing a single-objective EDA. We also intend to consider a multivariate probabilistic graphical model,

which may improve the quality of the produced ensembles. In addition, we would like to investigate

whether Random Forests benefits from a voting weight optimization procedure, since it assigns the

same importance to all of its base classifiers.

93

5. PUMA: PROBABILISTIC UNIVARIATE ESTIMATION OF DISTRIBUTION

ALGORITHM FOR ENSEMBLE LEARNING

If we want to deploy truly interpretable classifiers in real-life problems, we need to make use

of white-box models. As explained in Section 2.3, building explanation models is not enough – they

could disagree with the prediction models, and for some applications (such as medicine) this may be

unacceptable. Secondly, since white-box models do not perform as well as black-box models, an ap-

propriate induction strategy must be chosen to allow the former to achieve comparable performance

to the latter.

PUMA – Probabilistic Univariate Estimation of Distribution Algorithm for Ensemble Learning

– is our first take on ensemble learning with evolutionary algorithms aimed specifically at building

interpretable models. It was published in the Proceedings of the Brazilian Conference of Intelligent

Systems [30], in 2020.

PUMA performs Auto-ML, an area that has recently gained attention due to its capability of

replacing the manual optimization step of the algorithms’ hyper-parameters, which can be a repetitive

and tiresome task, and often requires advanced domain-specific knowledge [90, 194, 272].

There are several ways to perform Auto-ML, but we deem appropriate to employ evolution-

ary algorithms for such a task. Evolutionary algorithms can explore several regions in the solution

space in parallel, adapting its search depending on the quality of solutions found in those regions,

and performing a global-search in the space of solutions [105, 144, 161, 272].

PUMA selects the best hyper-parameters for a small set of ensemble members, all of them

white-box models. Selecting the best setting (or configuration) of hyper-parameters for each base

learner in an ensemble is a difficult task per se [90, 249], which involves testing a very large number

of candidate settings in order to find the most suitable configuration for the dataset at hand. Besides

optimizing hyper-parameters, our method can also choose to use a number of base learners varying

within [1, 5] in the final ensemble, along with the most appropriate aggregation policy (the strategy

to use to aggregate vote weights for the final predictions).

We conducted experiments to verify the predictive performance of PUMA against a set of

baseline algorithms, which includes Adaboost and Random Forests. PUMA, as shown later in this chap-

ter, outperforms Adaboost while being statistically equivalent to Random Forests. We recall that nei-

ther one of these two baseline algorithms is interpretable; both methods generate ensemble members

that perform predictions on very specific regions of the input space, either by being tailored to predict

outliers (Adaboost) or producing trees with feature randomization (Random Forests).

The rest of this chapter is organized as follows. Section 5.1 describes the proposed method.

Sections 5.2 and 5.3 present the experimental setup and results, respectively. Section 5.4 presents

the conclusions and future research directions regarding this particular method.

94

5.1 Proposed Method

EDAs evolve a probabilistic graphic model of candidate solutions, so that each solution (in-

dividual) is sampled from that model and evaluated at each generation. In general, an EDA consists of

three stages performed at each generation: (a) sampling of new individuals (candidate solutions) from

the probabilistic graphic model; (b) evaluation of the new individuals’ performance; and (c) updating

of the probabilistic graphic model based on the best individuals selected from the current generation.

Importantly, EDAs avoid the need for specifying genetic operators like crossover and mutation (and

their corresponding probabilities of application). Instead of generating new individuals by applying

genetic operators over pre-selected candidates, they generate new individuals by sampling from the

current probabilistic graphic model, which captures the main characteristics of the best individuals

(based on fitness) along the evolutionary process.

Among several EDA types, PUMA is based on PBIL: Probabilistic Incremental Learning [13].

The main characteristic of PBIL is that it assumes independence between variables in the probabilistic

graphical model. Although this has the disadvantage of ignoring interactions among variables, it has

an important advantage in the context of our task of evolving an ensemble of classifiers: it makes

PBIL much more computationally efficient by comparison with other EDA types that consider complex

variable interactions, whilst still allowing PBIL to learn ensembles with good predictive accuracy, as

shown later.

Another aspect of PBIL is the use of a learning rate α hyper-parameter for updating probabil-

ities in the graphical model, making this process smoother. Take for example two initial probabilities

for a binary variable V , P(V = 0) = 0.5 and P(V = 1) = 0.5, and a learning rate of 0.3. Assume only

two individuals are selected to update the graphic model’s probabilities, and both have V = 0. In this

extreme case, an EDA without learning rate would update V so that it would be P(V = 0) = 2
2 = 1 and

P(V = 1) = 0
2 = 0 in the next generation. However, using a learning rate, the new probabilities for V

are P(V = 0) = (1− 0.3)× 0.5 + 0.3× 2
2 = 0.65 and P(V = 1) = (1− 0.3)× 0.5 + 0.3× 0

2 = 0.35.

Section 5.1.3 discusses in more detail how probabilities are updated.

PUMA keeps track of the best individual found so far in variableφ. At the end of a PUMA run,

the returned solution can be the best individual stored inφ or the best individual in the last generation

(these two approaches are compared in the experimental analysis). An overview of PUMA’s pipeline is

shown in Figure 5.1.

5.1.1 Individuals

Each individual is an ensemble and comprises five base models (each learned by a different

type of base learner) and an aggregation policy. For the base learners, we choose the ones that can

generate readily-interpretable models [98, 123, 209].

95

Setup

Initialize
Probabilistic

Graphical Model

Sampling order
is always the

same

Evaluate on
5-fold internal

cross validation

Update
Graphical Model

probabilities

Sample
individual

from Graphical
Model

Does PUMA still
have running

time left?

Has PUMA
sampled S

individuals?

no

Select fittest
individuals

Has early stop
triggered?

Report best
individual as

solution

yes

yes

yes

no

no

Sampling

U
pd
at
e

Figure 5.1: Overview of the processing pipeline of PUMA.

The five base learners employed are: two decision-tree induction algorithms (C4.5 [213]

and CART [25]); two rule induction algorithms (RIPPER [50] and PART [96]); and a decision table algo-

rithm [143]. We use the implementations of those algorithms in the well-known Weka Toolkit [113].

For the rest of this chapter, we will refer to them by their Weka names: J48 for C4.5, SimpleCart for

CART, JRip for RIPPER, PART, and Decision Table.

An individual is encoded as an array, where each position denotes a variable and each value

denotes the assigned value for that variable. Some variables may not have assigned value, because

they are not used by an individual. Figure 5.2 depicts a portion of an individual’s array regarding some

variables of its J48 classifier. J48 has three options for tree pruning: reduced error pruning, confidence

factor, and unpruned. In this example, reduced error pruning is used. For that reason, there is no need

to set hyper-parameters to the confidence factor strategy, which are then set to null.

Aggregators

An aggregator is a method responsible for finding consensus among votes from base models.

Consider a three-dimensional probability tensor P, of dimensions (B, N, C) – respectively the number

of base classifiers in the ensemble, number of instances, and number of classes. The objective of

96

Reduced Error Pruning Hyper-parameters

pruning

Confidence Factor
 hyper-parameters

value Subtree
Raising

Num
Folds seed Subtree

Raising

reduced
Error

Pruning
null null 3 1 true

Figure 5.2: An example individual in PUMA. Although PUMA assumes probabilistic independence be-

tween variables, some values do dependent on others.

an aggregator is to transform this three-dimensional tensor into a unidimensional array of length N ,

where each position has the predicted class for each instance.

We use two types of aggregators: majority voting and weighted aggregators. The proba-

bilistic majority voting aggregator uses the fusion function described in [156, p. 150]:

ρ(j)
c =

B∑
i=1

P (i ,j)
c (5.1)

h(X (j)) = arg max
c∈C

(
ρ(j)

c∑C
k=1 ρ

(j)
k

)
(5.2)

where ρ(j)
c is the sum of the probabilities that the j -th instance belongs to the c-th class over all B

classifiers, with C being the number of classes. The weighted aggregator is similar to majority vot-

ing, except that individual probabilities from classifiers are weighted according to the fitness of each

classifier:

ρ(j)
c =

B∑
i=1

ψ(i)P (i ,j)
c (5.3)

h(X (j)) = arg max
c∈C

(
ρ(j)

c∑C
k=1 ρ

(j)
k

)
(5.4)

where ψ(i)
is the fitness value of individual S(i)

.

5.1.2 Fitness evaluation

At the start of the evolutionary process, PUMA receives a training set as input. This set is split

into five subsets, which are used to compute each individual’s fitness by performing an internal 5-fold

stratified cross validation (SCV). By keeping the subsets constant throughout all evolutionary process,

97

we allow direct comparisons between individuals from different generations. The fitness function is

the Area Under the Receiving Operator Characteristic (ROC) curve (AUC) [85], a popular predictive

measure.

AUC values are within [0, 1], with 0.5 representing the performance of a random classifier

in the case of binary-class problems. For PUMA, regardless of the number of classes in the dataset, we

calculate one AUC for each class, and then average the AUC among all classes. Hence, the fitness of

an individual is actually a mean of means: first, the mean AUC among all classes, for a given fold; then,

the mean AUC among all five internal folds. Figure 5.3 depicts the fitness calculation procedure.

1: function compute_�tness(X, y , C)

2: train← (generate_train_subsets(y))
3: val← (generate_validation_subsets(y))
4: Ψ← (0|i = 1, 2, ... , |S|)
5: for i = 1, 2, ... , |S| do
6: for k = 1, ... , 5 do
7: S(i) ← build_model(X(train

(k))
, y (train

(k))
)

8: P (i) ← predict(S(i), X(val
(k))

)

9: ψ ← 1
5C

∑C
c=1 AUC(P (i)

c , (y (j) = c|j ∈ val
(k)))

10: Ψ(i) ← Ψ(i) + ψ
11:)
12: return Ψ

Figure 5.3: Pseudo-code for fitness calculation.

5.1.3 PUMA’s Probabilistic Graphical Model

At each generation, new individuals are sampled from the probabilistic graphical model (GM),

and the best individuals will update the GM’s probabilities. Recall that PUMA assumes that the vari-

ables in the GM are independent, though we know (as shown in Figure 5.2) that there exist depen-

dencies. However, this does not prevent PUMA from finding good-performing solutions, analogously

to the overall good performance of the Naïve Bayes classifier, which also assumes that attributes are

independent [220].

The sampling procedure is based on hierarchical relationships among the variables repre-

senting hyper-parameters in PUMA’s GM, as shown in Figure 5.4, where the top-level variables are

hyper-parameters of base learners that will activate or deactivate the sampling of other variables/hyper-

parameters at a lower level. When sampling a new individual, higher-level variables are sampled first,

and their descendants are sampled next. Using J48 as example, the variables for this algorithm are use-

Laplace, minNumObj, useMDLcorrection, collapseTree, doNotMakeSplitPointActualValue, binarySplits, and

pruning. Since none of these variables have any descendant variable with the exception of pruning, the

sampling proceeds to choose which type of pruning will be used by J48, and depending on the chosen

option, it samples the variables descendant to that option. Unused variables are set to null. Once all

98

pertinent variables are sampled, their values are fed to the base classifier constructor, which will in

turn generate the model. Figure 5.4 depicts the variables in PUMA’s GM.

PBIL

J48

PART

JRip

Decision
Table

pruning

confidence
Factor

reduced
Error

Pruning

unpruned

Value

Subtree
Raising

Subtree
Raising

seed

numFolds

binary
Splits

useMDL
correction

useLaplace

doNotMake
SplitPoint

ActualValue

min
NumObj

collapseTree

search

evaluation
Measure

useIBk

crossVal

search
Backwards

conservative
Forward
Selection

direction
search

Termination

pruning

Value

numFolds

seed

binary
Splits

useMDL
correction

doNotMake
SplitPoint

ActualValue

min
NumObj

seed

foldsoptimizations

usePruning

check
ErrorRate

minNo

Greedy
Stepwise

BestFirst

confidence
Factor

reduced
Error

Pruning

unpruned

True

False

aggregators

Majority
Voting

Competence
Based
Voting

SimpleCart
min

NumObj

numFolds
Pruning

seed

sizePer

useOneSE

usePrune

heuristic

True

False

Value

PBIL

Variable (level 1)

Variable (level 2)

Variable (level 3)

Variable (level 4)

Figure 5.4: Graphical model used by PUMA. Edges denote an implicit correlation, since no probabilistic

correlation is designed. Borderless nodes denote values that were sampled from the variable in the

above level (not variables).

Initial values

There are two types of variables in PUMA’s GM: 48 of them are discrete and 2 are continuous.

Discrete variables were first introduced in the original PBIL work [13]. We use the EDA ability of biasing

probabilities to increase by 10% the probability to sample values that are the base learner’s default in

Weka. For all other values, we set uniform probabilities. For instance, for J48’s numFolds, the default

value 3 folds has probability 20%, while each other value in {2, 4, 5, 6, 7, 8, 9, 10} has probability

10%. Exceptionally for variable evaluationMeasure of Decision Table, auc has a 50% probability of

being sampled. We do this to increase the chances that a base learner is using the same metric used

as our fitness function, which for PUMA is the AUC.

For continuous variables, we use unidimensional Gaussian distributions. The mean is the

default Weka value for the hyper-parameter, and the standard deviation was chosen in a way that

borderline values have at least 10% chance of being sampled. Values outside the valid range are

99

clipped to the closest valid value. The range of valid values was inferred by inspecting Weka’s source

code. The full list of of variables and their values is present in the source-code of our method
1
.

Updating PUMA’s GM

The updating of the variables’ probabilities is dependent on their type. If a variable is discrete,

the update follows the scheme known as PBIL-iUMDA [272, 277], shown in Equation 5.5:

pg+1(Vj = v) = (1− α)× pg(Vj = v) + α× pΦ,g(Vj = v) (5.5)

where pg(Vj = v) is the probability that variable Vj assumes discrete value v in the g-th generation

(estimated by the proportion of observed occurrences of value v for variable Vj among all individuals

in that generation), α is the learning rate, and pΦ,g(Vj = v) is the proportion of occurrences of value

v for Vj in the set of individuals Φ which were selected (based on fitness) at the g-th generation. This

process is iterated over all values of a discrete variable. Note that when computing pg(Vj = v) and

pΦ,g(Vj = v), if some individuals do not have any value set for variable Vj , their null values are discarded

and do not contribute at all to the updating of probabilities for Vj ’s values.

Equation 5.5 was adapted to deal with continuous variables, which encode the mean and

the standard deviation of a normal distribution, as follows. The mean of the normal distribution is

updated by

µg+1(Vj) = µg(Vj) + α× (µg(Vj)− µΦ,g(Vj)) (5.6)

where µg(Vj) is the mean of the normal distribution of the j -th variable Vj in the g-th generation, α

is the learning rate, and µΦ,g(Vj) is the observed mean for the variable Vj in the set of individuals Φ

selected at the g-th generation, again considering only individuals where the variable Vj was used.

The standard deviation is decreased as follows:

σg+1(Vj) = σg(Vj)−
σ1(Vj)

G
(5.7)

where σg(Vj) is the standard deviation of the j -th variable Vj in the g-th generation, σ1(Vj) the initial

standard deviation for variable Vj , and G is the number of generations.

5.1.4 Early-Stopping and Termination

If the fitness of the best individual does not improve more than ϵ in ε generations, we assume

that PUMA is stuck in a local optimum solution and we choose to terminate the execution of the

algorithm. In our experiments, we use ϵ = 5 × 10−4
and ε = 10. At the end of the evolutionary

process, we report the best individual from the last generation as the final solution.

1
Available at https://github.com/henryzord/PBIL

https://github.com/henryzord/PBIL

100

5.1.5 Complexity Analysis

Assume T (train) to be the time to train an ensemble, and T (fitness) to be the time to assert

the fitness of the given ensemble. At every generation S new ensembles are generated. This process

is repeated at most G times (assuming that the early stop mechanism of the previous section is not

triggered). This procedure has complexity GS × (T (train) + T (fitness)).

Sampling and updating the graphical model are procedures directly dependent on the num-

ber of variables |V |. Variables need first to be initialized with default values, for later sampling and

update. Variables are sampled S times every generation, and are updated based on the number of

fittest individuals, |Φ|. For each variable, we iterate over all of its values but assuming the number of

values are not significant – discrete variables have between 2 and 10 values, with 4 as average; con-

tinuous variables count as 2 values, i.e., mean and standard deviation of normal distributions. From

this analysis we have |V | × (1 + G(S + |Φ|)). Thus, the overall complexity of training the proposed

PUMA is

O(GS × (T (train) + T (fitness)) + |V | ×G(S + |Φ|)). (5.8)

5.2 Experimental setup

We describe in this section the experiments performed on PUMA to assess its performance

against baseline algorithms. We choose a nested cross-validation procedure coupled with a grid search

in the space of PUMA’s hyper-parameters. In this sense, each external fold of the nested-cross valida-

tion will have an optimized version of PUMA for that external fold. We choose grid search for simplicity,

aware that this is not the state-of-the-art for hyper-parameter optimization; however we did not want

to incur on a costly evaluation process, since running PUMA for a single dataset in this setup already

takes 12× 5× 10 = 600 hours at most.

The nested cross-validation procedure is described as follows. The whole dataset is divided

into ten folds, which we will refer to as external folds. Nine folds are used for training, and one for

testing. The nine external folds are split again into five folds, which we will refer to internal folds.

Different combinations of hyper-parameters, for each classifier, are tested with these five internal folds.

The predictions for each internal test fold are stored in an array. At the end of the internal five-fold

cross validation, the unweighted Area Under the ROC curve is computed, and the best combination

of hyper-parameters is chosen. The best combination is then trained with the nine external folds and

cast its predictions on the external test fold. The procedure is described in Figure 5.5.

101

1: function nested_cross_validation(H , X, Y)

2: for i = 1, 2, ... , 10 do
3: X(i)

train
= 9/10 of X

4: Y (i)
train

= 9/10 of Y
5: for each hyper-parameter configuration from set of all hyper-parameters configurations do
6: for j = 1, 2, ... , 5 do
7: X(i ,j)

train
= 4/5 of X(i)

train

8: Y (i ,j)
train

= 4/5 of Y (i)
train

9: train H with hyper-parameter configuration on X(i ,j)
train

, Y (i ,j)
train

10: test H on X(i ,j)
test

, annotate prediction scores

11: compute unweighted Area Under ROC curve with annotated prediction scores

12: choose hyper-parameter configuration with best unweighted AUC

13: train H with best hyper-parameter configuration on X(i)
test

, annotate prediction scores of Y (i)
test

14: compute unweighted AUC with annotated prediction scores

15: return unweighted AUC

Figure 5.5: Nested cross-validation procedure. All subsets follow the same class distribution as the

original dataset (in other words, both the external and internal cross-validations are stratified).

5.2.1 Datasets

We selected 20 datasets from both KEEL
2

[3] and UCI Machine Learning repository
3

[165].

The selected datasets are shown in Table 5.1. We select these datasets to cover a wide range or

characteristics. Datasets have from 1066 to 10992 instances, from 3 to 61 attributes, and from 2 to

13 classes.

Table 5.1: Datasets used in the experiments.

name instances attributes classes

banana 5300 3 2

banknotes 1372 5 2

car 1728 7 4

contraceptive 1473 10 3

diabetic 1151 20 2

flare 1066 12 6

krvskp 3196 37 2

page_blocks 5472 11 5

penbased 10992 17 10

phoneme 5404 6 2

ring 7400 21 2

seismicbumps 2584 19 2

splice 3190 61 3

steelfaults 1941 34 2

texture 5500 41 11

thyroid 7200 22 3

titanic 2201 4 2

turkiye 5820 33 13

twonorm 7400 21 2

waveform 5000 41 3

2
Available at https://sci2s.ugr.es/keel/datasets.php

3
Available at https://archive.ics.uci.edu/ml/datasets

https://sci2s.ugr.es/keel/datasets.php
https://archive.ics.uci.edu/ml/datasets

102

5.2.2 Modifications to PUMA

We perform adaptations to PUMA source-code to allow it to run in a nested-cross validation

experiment. We refer to this modified version as PUMA-star. Instead of performing an internal five-fold

cross-validation procedure, PUMA-star performs an internal holdout procedure, splitting the training

set at a 80/20 proportion for learning and validation sets, respectively. We perform this modification

to avoid that datasets are split into too many smaller subsets under the nested cross-validation proce-

dure. If we were to use an internal five-fold cross-validation, the set used to evolve ensembles would

be
9

10
4
5

5
6

4
5 = 0.48 of the whole dataset, which increases the chances that our algorithm overfits the

data. By using holdout with 80% of the data for learning and 20% for validation, the data used to

learn ensembles is improved to
9

10
4
5

8
10 = 0.576. We also implement two timeout hyper-parameters,

both for general evolution and individual evolution. The hyper-parameters optimized by grid search

for PUMA-star are shown in Table 5.2.

Table 5.2: Hyper-parameters used for PUMA-star in the nested cross-validation procedure, coupled

with a grid search. Multiple values indicate that the hyper-parameter was optimized; single values

were constant among all grid-search iterations.

Algorithm Hyper-parameter Values

PUMA-star Learning rate {0.13, 0.26, 0.52}

PUMA-star Selection share {0.3, 0.5}

PUMA-star Population size 50

PUMA-star Generations 100

PUMA-star Evolution timeout one hour

PUMA-star Individual timeout one minute

PUMA-star individual to report {best overall, best from last generation}

5.2.3 Baseline Algorithms and Hyper-parameter optimization

We describe in this section the hyper-parameters used (if fixed) or optimized by grid search

(if a range of values is considered) for PUMA-star. We do not optimize population size, leaving it at

a fixed rate of 50 individuals per generation, because it is analogous to Random Forests’ number of

trees: if we could hypothetically have an infinitely large population, then it would be guaranteed to

have at least one individual with the best achievable performance, given PUMA-star’s constraints (e.g.,

aggregation policies, algorithm behavior, etc).

In a similar sense, we do not optimize the number of generations nor the time available

for overall evolutionary process, leaving these hyper-parameters at 100 generations and one hour,

respectively. PUMA-star also has a time limit for evolving individuals, which is implemented in the

same way: if an individual exceeds 60 seconds to sample and train its ensemble members, then it is

discarded and a new individual must be sampled.

103

PUMA-star is compared to other algorithms in thematic groups. Table 5.7, at the end of

this section, summarizes the composition of all groups. The first group comprises the base classi-

fiers used by PUMA-star, namely J48, SimpleCart, PART, JRip, and Decision Table. The reasoning for

comparing PUMA-star to these algorithms is to check whether it is not simpler to simply optimize

the hyper-parameters of an already-interpretable well-established classifier. These classifiers also have

their hyper-parameters optimized by grid search. The list of optimized hyper-parameters is described

in Table 5.3.

Table 5.3: List of base classifiers and hyper-parameters optimized by grid search. Hyper-parameters

not shown in this table were kept constant at the default Weka values.

Algorithm Hyper-parameter Values

J48 Minimum number of examples in leaf nodes {2, 4, 6, 8}

J48 pruning policy
{unpruned, reduced error,

confidence factor}

SimpleCart Minimum number of examples in leaf nodes {2, 5, 8}

SimpleCart Apply pruning {true, false}

SimpleCart
Use heuristic for binary splits of categorical

attributes
{true, false}

JRip
Minimum number of examples to be

covered by a rule
{2, 4, 6, 8}

JRip use pruning {true, false}

PART
Minimum number of examples to be

covered by a rule
{2, 4, 6, 8}

PART pruning policy
{unpruned, reduced error,

confidence factor}

Decision Table internal evaluation metric

{AUC, accuracy, Root Mean

Squared Error, Mean Absolute

Error}

Decision Table Search Policy {Greedy Stepwise, Best First}

Decision Table
Default rule assigns majority class or uses

IBK
{majority class, IBK}

The second group of algorithms is comprised of baseline ensembles. The first algorithm is

an unoptimized baseline ensemble, consisting of the five base classifiers from PUMA-star (J48, CART,

JRip, PART, and Decision Table) with their default hyper-parameter configuration and a simple majority

voting scheme as aggregation policy. The reasoning for doing so is to check whether there is a dif-

ference between simply ensembling these five base classifiers and optimizing their hyper-parameter

configurations with an evolutionary algorithm.

The second algorithm in this group is an optimized baseline ensemble. It has the same five

base classifiers and also uses majority voting, but each base classifier had its hyper-parameters indi-

vidually optimized by grid search. We compare evolutionary algorithms to this optimized baseline

ensemble in order to verify whether it is worth to apply an evolutionary algorithm to perform global

optimization or it is simply better to individually optimize base classifiers and ensemble them with a

simple majority voting policy.

The next group has only one algorithm: a random-search procedure with the same time

budget of the evolutionary algorithms. We are evaluating whether it is really justified to apply an

evolutionary algorithm or simply randomly guessing solutions solves the problem. Since we run PUMA-

star with a fixed population of 50 individuals for 100 generations, we use the source code of EDNEL

104

(Introduced in Chapter 6) to perform random search in the space of solutions with a budget of 5, 000
evaluations, with no compromise to sample distinct solutions. This is achieved by running EDNEL with

5000 individuals and 1 generation. Note that the initial probabilities are the same, as described in

Section 5.1 – that is, they are slightly biased towards the default Weka values. Since we are re-using

the source code of EDNEL, we have to set some hyper-parameters. The hyper-parameters used are

listed in Table 5.4.

Table 5.4: Hyper-parameters used on EDNEL to perform random search in the space of solutions.

Hyper-parameters marked with an asterisk (*) have no effect on the outcome of the algorithm run

but are listed here since EDNEL requires a value.

Algorithm Hyper-parameter Values

Random Search Learning rate 0.1*

Random Search Selection share 0.1*

Random Search Population size 5000

Random Search Generations 1

Random Search Evolution timeout no limit

Random Search Individual timeout no limit

Random Search Burn-in 100

Random Search thinning factor 0

Random Search Early stop generations 1*

Random Search
Maximum probabilistic parents per variable

(same value for all variables)
0*

Random Search Delay Structure Learning in N generations 5*

Random Search evaluation procedure holdout

Random Search individual to report best overall*

The fourth group has six ensembles, each comprising the boosted version (using Adaboost

[100]) of each one of the five aforementioned base classifiers, plus Adaboost with its default base

classifier (decision stumps). We use the Weka toolkit version of Adaboost, which – translating to the

original paper [100] – is the M1 version. We optimize these algorithms with grid search. It is important

to note that none of the algorithms in this group is interpretable, nor their ensemble members, since

the boosting process produces classifiers with hypothesis that only make sense for that particular

distribution of instances. We explain boosting in greater detail in Section 2.1.1.

In Weka, only three hyper-parameters are available for customization: weight threshold

([0, 1]) – how much of the training data should be used for training the classifier at each iteration);

number of iterations (i.e. number of classifiers in the ensemble); and type of classifier. We decide to

leave weight threshold at 1 (i.e., use all training data), and since the type of classifier is not really an

optimization option (we will be using six different types of base classifiers), we optimize only the num-

ber of iterations, or conversely the number of classifiers in the final ensemble. The choice of ranges

are defined in Table 5.5, and we base the choice of values on the work of Rijn and Hutter [258].

Finally, the fifth and last group has also only one classifier, Random Forests [24]. Random

Forests is a well-known ensemble algorithm and is in general among the best classification methods

regarding predictive performance [88]. A Random Forests ensemble solely comprises decision trees.

Each decision tree is learned from a different subset of instances, randomly sampled with replacement

from the training set. For each internal node in each tree, a subset of M attributes is randomly sampled

without replacement, and the attribute that minimizes the local class impurity is selected as splitting

105

Table 5.5: Hyper-parameters of Adaboost optimized with grid search. Note that we consider all entries

in this table as distinct algorithms.

Algorithm Hyper-parameter Values

Adaboost (decision stumps) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (J48) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (SimpleCart) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (JRip) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (PART) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (DecisionTable) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

criterion. This process is repeated recursively until no further split improves the impurity metric, when

nodes are then turned into leaves. We explain Random Forests in greater detail in Section 2.1.4.

Random forests usually require a large number of trees in the ensemble to achieve good

predictive performance. Also, despite using decision trees, the ensemble as a whole is not directly

interpretable, since there are a very large number of trees. Even if the number of trees were small,

interpreting each tree would still be problematic due to the large degree of randomness involved in

learning each tree. That randomness is necessary to provide diversity to the ensemble, which improves

its predictive accuracy but hinders interpretability.

We also optimize Random Forests’ hyper-parameters. Based on [212], we consider the fol-

lowing hyper-parameters and range of values: percentage of the training set that will be used by

each tree in the forest in {0.9, 1.0}; percentage of attributes to randomly sample for considering

in a given internal node of a given tree, in relation to the total number of attributes in the dataset

in {
√

M
2 ,
√

M, 2
√

M, log2 M
2 , log2 M, 2 log2 M}. We do not optimize the number of trees in the forest,

leaving it always at 1000 trees, because it is not really an important hyper-parameter, and it should

be left in a sufficiently-large number [212]. A summary of the hyper-parameters and their values is

shown in Table 5.6.

Table 5.6: Hyper-parameters optimized (when multiple values) or used (when single value) for Random

Forests using grid search. Unmentioned hyper-parameters use the default Weka values.

Algorithm Hyper-parameter Values

Random Forest Number of trees in forest 1000

Random Forest
Share of training set to be used at any given

tree (randomly sampled)
{90%, 100%}

Random Forest
Number of features sampled to be used at

any given split of trees
{

√
M

2 ,

√
M , 2
√

M ,
log2 M

2 , log2 M , 2 log2 M}

5.2.4 Hardware specifications and source code

The hardware specifications where we ran PUMA-star are described in Table 5.8. The source

code used for performing nested cross-validation is available at https://github.com/henryzord/PBIL.

https://github.com/henryzord/PBIL

106

Table 5.7: Groups of algorithms that were compared to PUMA-star.

Group Algorithms

Base classifiers

J48

SimpleCart

JRip

PART

DecisionTable

Baseline Ensembles
Unoptimized ensemble

Optimized ensemble

Random Search Random Search

Boosted

Adaboost

J48

SimpleCart

JRip

PART

DecisionTable

Random Forests Random Forests

Table 5.8: Hardware components of the machine on which PUMA-star was run.

Specification Z Machine

Processor AMD Ryzen Threadripper 1950X

Core speed 3.4GHz

Cores 32

Architecture x86_64

RAM Memory 128GB

Operating System Ubuntu 20.04.2 LTS

5.3 Experimental results

We use an assortment of statistical tests to assess PUMA-star performance. If the group has

more than five classifiers (including PUMA-star), we use the Friedman Test [70, 101]. If the group has

exactly or less than five classifiers, we use the Friedman aligned ranks [121]. As stated by Demšar [70],

the original Friedman Test [101] requires more than five classifiers and more than ten datasets to yield

a significant analysis, under the risk of being too conservative on the results. Friedman aligned ranks

is more appropriate for smaller sets [108].

If any one of the two tests detects a significant difference within the group, we proceed

with a post-hoc Nemenyi test [185] for pairwise comparisons. On the occasion that a group contains

only a single algorithm, we instead use a Wilcoxon test [265].

All tests were conducted with a significance level of 0.05, which is standard for most ma-

chine learning experiments. We use the STAC site [221]
4

for statistical tests and the Orange Python

library
5

for generating critical difference graphics. The exact script used is available in our Github

repository
6
.

4
Available at http://tec.citius.usc.es/stac/index.html. Accessed July 17 2021.

5
Available at https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html, accessed July

22 2021.

6
https://github.com/henryzord/thesis_experiments

http://tec.citius.usc.es/stac/index.html
https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html
https://github.com/henryzord/thesis_experiments

107

We start the analysis with the group of base classifiers. All base classifiers were optimized

with grid search. The p-value for the Friedman test is virtually 0. PUMA-star places first regarding

average ranking – and according to Nemenyi – is not statistically similar to any other algorithm in

this group. In other words, just performing a greedy hyper-parameter optimization on interpretable

classifiers is statistically worse than using an evolutionary algorithm tailored for this task. The critical

difference graph is shown in Figure 5.6), while individual unweighted AUCs are shown in Table 5.9.

1 2 3 4 5 6

PUMA-star
PART

SimpleCart J48
DecisionTable
JRip

CD

Figure 5.6: Critical difference graph for PUMA-star and optimized base classifiers in nested cross-

validation experiment.

Table 5.9: Unweighted AUCs for base classifiers and PUMA-star. Best algorithm for each dataset is

shown in bold.

Dataset PUMA-star J48 SimpleCart JRip PART DecisionTable

banana 0.9588 0.9423 0.9559 0.8950 0.9453 0.8077

banknotes 0.9969 0.9876 0.9891 0.9804 0.9912 0.9825

car 0.9973 0.9724 0.9942 0.9533 0.9907 0.9742

contraceptive 0.7341 0.7040 0.7015 0.6373 0.7014 0.7126

diabetic 0.7335 0.7133 0.6810 0.6408 0.6955 0.7001

flare 0.9255 0.9109 0.9076 0.8629 0.9089 0.9193

krvskp 0.9991 0.9975 0.9979 0.9947 0.9960 0.9903

page-blocks 0.9902 0.9576 0.9477 0.9057 0.9553 0.9773

penbased 0.9989 0.9897 0.9889 0.9873 0.9883 0.9646

phoneme 0.9468 0.9061 0.9032 0.8282 0.9037 0.8735

ring 0.9854 0.9402 0.9334 0.9402 0.9614 0.8389

seismicbumps 0.7739 0.7248 0.7464 0.5252 0.7207 0.7601

splice 0.9893 0.9683 0.9811 0.9586 0.9756 0.9629

steelfaults 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9981 0.9814 0.9808 0.9796 0.9819 0.9719

thyroid 0.9997 0.9977 0.9964 0.9948 0.9962 0.9982

titanic 0.7615 0.7100 0.7549 0.6755 0.7549 0.7389

turkiye 0.8495 0.8182 0.8402 0.7384 0.8345 0.8325

twonorm 0.9828 0.8895 0.8868 0.9216 0.9398 0.8538

waveform 0.9518 0.8940 0.8994 0.8842 0.9117 0.8924

Average rank 1.125 3.500 3.450 5.400 3.300 4.225

The second group comprises baseline ensembles: the first with default Weka hyper-parameters,

and the other with individually-optimized base classifiers. The p-value of the Friedman Aligned ranks

test is 2.28e− 3, which rejects the null hypothesis. The Nemenyi test corroborates that PUMA-star is

not similar (statistically better) to (than) any of the algorithms in this group, although both baseline

versions are similar between themselves. The critical difference graph is shown in Figure 5.7. This fur-

ther corroborates the view that the task of selecting good sets of hyper-parameters and algorithms

for classification with ensemble learning is not an easy task achievable with a greedy strategy. The

unweighted AUCs for each algorithm are shown in Table 5.10.

108

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

PUMA-star

baseline ensemble (optimized)

baseline ensemble (unoptimized)

CD

Figure 5.7: Critical difference graph for PUMA-star and both versions of baseline ensemble: one unop-

timized (using base classifiers with their default hyper-parameters) and another that just ensembles

the individually optimized base classifiers by means of a grid search. Note that ranks are aligned.

Table 5.10: Unweighted AUCs for PUMA-star, and two ensembles: one with its default hyper-

parameters from Weka, and another with its members individually optimized by means of a grid search.

Best algorithm for each dataset is shown in bold.

dataset PUMA-star

baseline

ensemble

(unoptimized)

baseline

ensemble

(optimized)

banana 0.9588 0.9529 0.9582

banknotes 0.9969 0.9980 0.9967

car 0.9973 0.9959 0.9939

contraceptive 0.7341 0.7278 0.7280

diabetic 0.7335 0.7188 0.7302

flare 0.9255 0.9218 0.9236

krvskp 0.9991 0.9986 0.9989

pageblocks 0.9902 0.9885 0.9910
penbased 0.9989 0.9992 0.9988

phoneme 0.9468 0.9374 0.9349

ring 0.9854 0.9824 0.9816

seismicbumps 0.7739 0.6693 0.7667

splice 0.9893 0.9876 0.9871

steelfaults 1.0000 1.0000 1.0000
texture 0.9981 0.9984 0.9979

thyroid 0.9997 0.9997 0.9996

titanic 0.7615 0.7566 0.7588

turkiye 0.8495 0.8482 0.8521
twonorm 0.9828 0.9825 0.9812

waveform 0.9518 0.9508 0.9489

Average rank 1.325 2.275 2.400

Aligned rank 17.875 39.875 33.750

The third group is not a group per se, but instead a single algorithm, random search. There

are no surprises in this experiment: PUMA-star performs much better than simply guessing hyper-

parameter sets for base classifiers. The Wilcoxon test has a p-value of 1e − 4 and predictive perfor-

mance for both methods is shown in Table 5.11.

The next two groups comprise non-interpretable algorithms. The fourth group, of boosted

algorithms, “distorts” the input data by applying a transformation to it. With the increase of iteration,

harder-to-classify instances have an increased weight on the hypothesis decision. While this technique

improves predictive performance, it harms interpretability. The best algorithm for this group, according

109

Table 5.11: Unweighted AUCs for PUMA-star and random search in the space of solutions. Best algo-

rithm for each dataset is shown in bold.

dataset PUMA-star Random Search

banana 0.9588 0.8265

banknotes 0.9969 0.9853

car 0.9973 0.9459

contraceptive 0.7341 0.6398

diabetic 0.7335 0.6803

flare 0.9255 0.9234

krvskp 0.9991 0.9902

pageblocks 0.9902 0.9367

penbased 0.9989 0.9906

phoneme 0.9468 0.8221

ring 0.9854 0.9607

seismicbumps 0.7739 0.6092

splice 0.9893 0.9543

steelfaults 1.0000 1.0000
texture 0.9981 0.9772

thyroid 0.9997 0.9995

titanic 0.7615 0.7248

turkiye 0.8495 0.7342

twonorm 0.9828 0.9514

waveform 0.9518 0.8781

to average rank, is the boosted version of SimpleCart, followed by PUMA-star. The next best boosted

algorithms are JRip, DecisionTable, PART, J48, and finally the original Adaboost. The p-value for the

Friedman test is 2.86e − 3. Subsequent Nemenyi tests find statistical difference between Adaboost

and the boosted version of SimpleCart, but no statistically-significant difference between all other

pairs of algorithms. The critical difference graph is shown in Figure 5.8.

The fact that Adaboost places last is interesting: while the boosting framework works with

any type of base classifier, this experiment demonstrates that using a stronger base classifier (any

one of the five considered) is better than a single, slightly-better-than-random-guessing classifier (i.e.,

decision stumps). We also note that PUMA-star is found to be statistically equivalent to all other

algorithms in this group, which is actually an advantage given that PUMA-star uses (i) less classifiers

than the others, and (ii) all models generated by PUMA-star are interpretable. Individual unweighted

AUC are shown in Table 5.12.

Finally, we compare PUMA-star with Random Forests. The p-value for the Wilcoxon test is

0.6008, which means that PUMA-star and Random Forests are statistically equivalent – at least for

the group of datasets of this experiment. Random Forests presents an overall better performance than

PUMA-star. We believe that this is – similarly to what happened to the boosted algorithms – a positive

outcome. By using at most five base classifiers, all of them interpretable and without transformations

on the input data, PUMA-star is able to achieve comparable performance to Random Forests with its

hyper-parameters optimized by grid search, and using 1000 trees in its forest. The Unweighted AUCs

for compared algorithms are shown in Table 5.13.

110

Table 5.12: Unweighted AUCs for PUMA-star, Adaboost, and boosted base classifiers. Best algorithm

for each dataset is show in bold.

dataset PUMA-star Adaboost
J48

(boosted)

SimpleCart

(boosted)

JRip

(boosted)

PART

(boosted)

Decision

Table

(boosted)

banana 0.9588 0.7842 0.9564 0.9385 0.9598 0.9589 0.8899

banknotes 0.9969 0.9997 0.9990 0.9997 0.9996 0.9993 0.9996

car 0.9973 0.8297 0.9967 0.9997 0.9948 0.9983 0.9937

contraceptive 0.7341 0.5441 0.6866 0.6887 0.6348 0.6702 0.6942

diabetic 0.7335 0.7537 0.7273 0.7609 0.7294 0.7231 0.7068

flare 0.9255 0.6707 0.8992 0.9039 0.8814 0.8997 0.8981

krvskp 0.9991 0.9953 0.9981 0.9975 0.9984 0.9972 0.9988

pageblocks 0.9902 0.8778 0.9857 0.9925 0.9843 0.9913 0.9517

penbased 0.9989 0.7085 0.9994 0.9993 0.9996 0.9993 0.9979

phoneme 0.9468 0.8836 0.9511 0.9544 0.9374 0.9365 0.9044

ring 0.9854 0.9946 0.9894 0.9915 0.9929 0.9900 0.9895

seismicbumps 0.7739 0.7486 0.5865 0.6542 0.7066 0.6099 0.7295

splice 0.9893 0.9681 0.9829 0.9884 0.9897 0.9846 0.9862

steelfaults 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9981 0.7353 0.9994 0.9996 0.9995 0.9990 0.9989

thyroid 0.9997 0.9895 0.9989 0.9980 0.9994 0.9978 0.9930

titanic 0.7615 0.7466 0.7571 0.7605 0.7586 0.7578 0.7559

turkiye 0.8495 0.7587 0.6625 0.7385 0.7316 0.6942 0.8333

twonorm 0.9828 0.9965 0.9910 0.9936 0.9944 0.9906 0.9946

waveform 0.9518 0.8795 0.9556 0.9599 0.9633 0.9556 0.9651

Average rank 3.300 5.275 4.475 2.850 3.325 4.400 4.375

Table 5.13: Unweighted AUCs for PUMA-star, and grid-search optimized Random Forest. Best algo-

rithm for each dataset is show in bold.

dataset PUMA-star Random Forest

banana 0.9588 0.9637
banknotes 0.9969 0.9999
car 0.9973 0.9921

contraceptive 0.7341 0.7045

diabetic 0.7335 0.7715
flare 0.9255 0.909

krvskp 0.9991 0.9988

pageblocks 0.9902 0.993
penbased 0.9989 0.9997
phoneme 0.9468 0.9671
ring 0.9854 0.994
seismicbumps 0.7739 0.7543

splice 0.9893 0.9957
steelfaults 1.0000 1.0000
texture 0.9981 0.9997
thyroid 0.9997 0.9999
titanic 0.7615 0.755

turkiye 0.8495 0.8305

twonorm 0.9828 0.9965
waveform 0.9518 0.9684

111

1 2 3 4 5 6 7

SimpleCart (boosted)

PUMA-star

JRip (boosted)

DecisionTable (boosted)

PART (boosted)

J48 (boosted)

Adaboost

CD

Figure 5.8: Critical difference graph for PUMA-star, AdaBoost, and boosted base classifiers, all opti-

mized with grid search.

5.3.1 Fair Analysis on Interpretability

Let us take a deeper look on the results obtained so far. The boosted version of SimpleCart

and Random Forests outperformed PUMA-star in terms of predictive performance considering the av-

erage ranking. The reader could then assume that, if the justification for using a limited amount of

base classifiers in PUMA (only five) is to achieve an interpretable solution, then it could be possible to

use a similar strategy by limiting the number of classifiers for both boosted SimpleCart and Random

Forests, while hopefully achieving superior predictive performance than PUMA.

We recall the reader that boosted classifiers are not necessarily interpretable. The hypothe-

sis drawn by ensemble members are custom-tailored to the instances that are harder to classify. Like-

wise, Random Forests intrinsically require randomizing the choice of attributes for each tree’s internal

node, which could hinder interpretability. Nonetheless, we carry an additional experiment in this sec-

tion to compare PUMA-star to seven new baseline ensembles, namely: the five boosted base classifiers

(J48, SimpleCart, PART, JRip, DecisionTable) with only five base classifiers in the ensemble; Adaboost

(which uses decision stumps as default classifier) with five base classifiers; and Random Forests with

five trees.

While PUMA-star and Random Forests are grid-search optimized and submitted to a nested

cross-validation procedure, this is not performed on any of the six boosted classifiers, since the only

hyper-parameter we had previously optimized for them is the number of ensemble members, and for

this set of experiments, that is fixed on five base classifiers.

The unweighted AUCs are shown in Table 5.14. PUMA-star is now the best algorithm with an

average rank of 2.225, followed by PART (3.275), JRip (3.825), J48 (3.9), SimpleCart (4.4), Random

Forests (5.4), DecisionTable (5.475), and finally the original Adaboost (7.5). In other words, when

given the same number of base classifiers, PUMA-star is able to outperform any other method, which

indicates that the optimization performed by this algorithm is tailored to its needs, whereas boost-

ing or the bagging procedure in Random Forests are inadequate for small-sized ensembles. Indeed,

Adaboost is the worst algorithm from this group, with Random Forests being the third from last.

112

When this group of algorithms is submitted to a Friedman test, the p-value is zero. The criti-

cal difference graph can be viewed in Figure 5.9. Note that, since the ratio of algorithms-to-datasets is

larger for this experiment than any other compared group from the last section, the Nemenyi post-hoc

test is assessing some statistical equivalences that would otherwise not be detected if the number of

algorithms were smaller (e.g., PUMA-star and boosted SimpleCart).

Table 5.14: Unweighted AUCs for PUMA-star, Adaboost, boosted base classifiers, and Random Forests.

While PUMA-star may have from one to five base classifiers, the remaining methods all have exactly

five classifiers in the ensemble. Best algorithm for each dataset is shown in bold.

dataset PUMA-star
Random

Forests (5)

Adaboost

(5)

J48

(B, 5)

SimpleCart

(B, 5)

JRip

(B, 5)

PART

(B, 5)

Decision

Table

(B, 5)

banana 0.9588 0.9389 0.6995 0.9562 0.9458 0.9579 0.9586 0.8846

banknotes 0.9969 0.9982 0.9631 0.9994 0.9986 0.9989 0.9996 0.9977

car 0.9973 0.9758 0.8297 0.9891 0.9985 0.9801 0.9991 0.9925

contraceptive 0.7341 0.6606 0.5441 0.6922 0.6691 0.6358 0.6695 0.6798

diabetic 0.7335 0.7073 0.6618 0.7107 0.6660 0.7020 0.7013 0.6938

flare 0.9255 0.8820 0.6707 0.8964 0.9049 0.8779 0.8979 0.8957

krvskp 0.9991 0.9974 0.9150 0.9990 0.9980 0.9994 0.9993 0.9987

page-blocks 0.9902 0.9600 0.8775 0.9791 0.9817 0.9704 0.9840 0.9405

penbased 0.9989 0.9984 0.7085 0.9992 0.9992 0.9992 0.9993 0.9892

phoneme 0.9468 0.9350 0.8095 0.9315 0.9336 0.9238 0.9167 0.8971

ring 0.9854 0.9759 0.7222 0.9832 0.9761 0.9822 0.9890 0.9615

seismicbumps 0.7739 0.6719 0.7547 0.6580 0.6487 0.7184 0.6426 0.7191

splice 0.9893 0.9802 0.9525 0.9852 0.9852 0.9876 0.9829 0.9757

steelfaults 1.0000 0.9999 0.8112 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9981 0.9965 0.7353 0.9983 0.9976 0.9988 0.9987 0.9888
thyroid 0.9997 0.9996 0.9823 0.9997 0.9997 0.9995 0.9991 0.9965

titanic 0.7615 0.7590 0.7396 0.7594 0.7594 0.7597 0.7637 0.7570

turkiye 0.8495 0.7790 0.7591 0.6550 0.7298 0.7315 0.6995 0.8298

twonorm 0.9828 0.9720 0.8587 0.9733 0.9733 0.9840 0.9886 0.9555

waveform 0.9518 0.9305 0.8578 0.9285 0.9231 0.9343 0.9310 0.9386

Average rank 2.225 5.400 7.500 3.900 4.400 3.825 3.275 5.475

1 2 3 4 5 6 7 8

PUMA-star
PART (B, 5)
JRip (B, 5)
J48 (B, 5) SimpleCart (B, 5)

Random Forest (5)
DecisionTable (B, 5)
Adaboost (5)

CD

Figure 5.9: Critical difference graph for PUMA-star, Random Forests, AdaBoost, and boosted base

classifiers. While PUMA-star can have between one and five classifiers, the remaining algorithms all

have five base classifiers in their ensembles.

113

5.4 Discussion and Final Remarks

In this chapter we presented PUMA, a new evolutionary algorithm for optimizing hyper-

parameters for a small number of intepretable classifiers, as well as the best aggregation policy for en-

sembling them. PUMA aims at maximizing predictive performance while also generating interpretable

models by design. The proposed algorithm, along with Random Forests and some boosted algorithms,

achieved the best predictive performance. However, among those classifiers, only PUMA generates an

interpretable ensemble, composed of white-box models that do not perform any kind of transforma-

tion in the input space.

An experimental analysis of PUMA-star performance was conducted, comparing it with a

thorough list of distinct baselines, namely base classifiers optimized by grid search, random search,

boosted base classifiers, Adaboost, Random Forests, and baseline ensembles. PUMA-star was the best

algorithm for all groups except two: boosted algorithms and Random Forests. For all groups that

PUMA-star was the best algorithm, PUMA-star was also not statistically similar to any other algorithm

in the groups. For the groups that PUMA-star was not the best algorithm, it was found that it was

statistically similar to the best algorithm for that group. This result was expected, since boosted clas-

sifiers, and Random Forest transform the input space while also using many more base classifiers than

PUMA-star was allowed to use, a constraint imposed solely by the pursuit of interpretability.

When confined to the constraints imposed on PUMA (that is, small-ish ensembles composed

by interpretable classifiers), Adaboost and Random Forests are unable to match PUMA predictive per-

formance. This implicates that PUMA is the best algorithm when interpretability is a must-have feature.

However, we recall the reader that restricting the number of base classifiers from either Adaboost or

Random Forests defeats the mechanisms from which these algorithms achieve good predictive perfor-

mance, which relies on a sufficient number of base classifiers.

Future work involves designing a more advanced version of PUMA that takes into account

dependencies among variables in the graphical model, as presented in the next chapter.

114

115

6. EDNEL: ESTIMATION OF DEPENDENCY NETWORKS FOR ENSEMBLE

LEARNING

In Chapter 5 we introduced PUMA, an EDA for learning ensembles of interpretable classifiers.

PUMA uses PBIL as its base EDA, which means it does not take into account probabilistic relationships

between variables, only deterministic ones. In this sense, PUMA is limited: if there are correlations

between variables, it will never detect (nor exploit) them. To overcome this limitation, we followed

one of the topics in the future work section of PUMA: to take into account these relationships.

EDNEL – Estimation of Dependency Networks for Ensemble Learning – is an EDA much

like PUMA, but with a few differences, one of them critical: its graphical model uses a Dependency

Network [119] for capturing relationships among variables. Dependency Networks are different to

Bayesian networks in the sense that they allow cycles and mutual relationships (that is, two variables

can interact with each other at the same time).

In order to sample new values from the Dependency Network, we make use of a sampler

algorithm, namely Gibbs sampling. It makes use of a starting set of values for each variable (which

allows it to navigate a network that has cycles), and it updates variable values as soon as they are

sampled. We discretize the two continuous-valued variables of PUMA (namely the confidence factor

from J48 and PART), using a range of five evenly-distributed values for each variable in order to simplify

the process of computing correlation between pairs of variables – a step introduced by the use of a

Dependency Network.

Apart from graphical model modifications, we also experiment with a new aggregation pol-

icy. From base classifiers that we can extract unordered rules (namely J48, SimpleCart, and Deci-

sionTable), we apply the CN2 rule learning algorithm [47, Section 3.2.1]. CN2 not only selects rules

but also learns them; in our case, we already have the rules (they were learned by J48, SimpleCart,

and DecisionTable) and we leave to CN2 to perform the second part of its process. Hence, EDNEL can

choose between three aggregation policies: simple majority voting, weighted majority voting, or rule-

extraction aggregation. While in the two first aggregation policies EDNEL can range from one to five

base classifiers, in the third it ranges from one to at most three, since the rule-extraction aggregation

will merge the rules from aforementioned three classifiers into a single rule-set classifier.

The rest of this chapter is organized as follows. Section 6.1 describes the proposed method.

Section 6.2 describes the experiments performed on EDNEL, as well as our findings. Section 6.3 draws

conclusions and point to future research directions.

116

6.1 Proposed Method

In this section we describe in more details the particularities of EDNEL. Even though EDNEL

is the next iteration of PUMA, and the two methods are similar in several aspects, we explain every-

thing concerning EDNEL even when being slightly repetitive regarding what was already explained in

Section 5.1. An overview of EDNEL’s pipeline is shown in Figure 6.1.

Initialize
Probabilistic

Graphical Model

Assign a
sampling order

Evaluate on
5-fold internal

cross validation

Update
Graphical Model

probabilities

Sample
individual

from Graphical
Model

Does EDNEL still
have running

time left?

Has EDNEL
sampled S

individuals?

no

Select fittest
individuals

Has early stop
triggered?

Report best
individual as

solution

yes

yes

yes

no

no

Initialize baseline
individual

Update
Graphical Model

Structure

Setup

Sampling

U
pd
at
e

Figure 6.1: Overview of the processing pipeline of EDNEL.

6.1.1 Individuals

Each individual is an ensemble that comprises set of base models and an aggregation policy.

An ensemble can have at least one and at most five base models at the same type. Base models

are generated by different base learners; that is, a base learner does not generate more than one

model per individual. We choose base learners that can generate readily-interpretable models [98,

123, 209]. The recent literature on classification focuses mainly on producing classifiers with ever-

increasing predictive performance, with little attention devoted to interpretability [103]. For instance,

deep learning classifiers, which have received great attention lately due to obtaining high predictive

117

accuracy in image tasks, are very difficult to interpret [103], with interested researchers shifting the

focus from interpreting the models themselves to interpreting their predictions [160].

The five base learners employed are two decision-tree induction algorithms (C4.5 [213] and

CART [25]); two rule induction algorithms (RIPPER [50] and PART [96]); and a Decision Table algo-

rithm [143]. We use these algorithms’ implementations in the well-known Weka Toolkit [113]. For

the rest of this chapter, we will refer to them by their Weka names: J48 for C4.5, SimpleCart for CART,

JRip for RIPPER, PART, and Decision Table.

At the implementation level, an individual is encoded as an array of values, where each po-

sition denotes a variable, and each value denotes the assigned value for that variable. Some variables

may not have any value, since they are not used by an individual. Figure 6.2 depicts a segment from an

individual’s array, regarding some variables of its J48 classifier. J48 has three options for tree pruning:

reduced error pruning, confidence factor, and unpruned. For this individual, reduced error pruning is used,

hence there is no need to set hyper-parameters of the confidence factor strategy, which are then set

to null.

Reduced Error Pruning Hyper-parameters

pruning

Confidence Factor
 hyper-parameters

value Subtree
Raising

Num
Folds seed Subtree

Raising

reduced
Error

Pruning
null null 3 1 true

Figure 6.2: An example individual in EDNEL.

Aggregators

An aggregator is a method responsible for finding a consensus among votes from base mod-

els. We use three types of aggregators: majority voting, weighted majority voting, and CN2 rule-based

aggregator. The probabilistic majority voting aggregator uses the fusion function described in [156, p.

150]:

h(X (j)) = arg max
c∈C

(
ρ(j)

c∑C
k=1 ρ

(j)
k

)
(6.1)

ρ(j)
c =

B∑
i=1

P (i ,j)
c (6.2)

where ρ(j)
c is the sum of the probabilities that the j -th instance belongs the c-th class over all B clas-

sifiers, and C is the number of classes. The weighted aggregator is similar to majority voting, except

that individual probabilities from classifiers are weighted according to the fitness of each classifier:

118

ρ(j)
c =

B∑
i=1

ψ(i)P (i ,j)
c (6.3)

h(X (j)) = arg max
c∈C

(
ρ(j)

c∑C
k=1 ρ

(j)
k

)
(6.4)

where ψ(i)
is the fitness computed over the learning set of individual S(i)

.

Finally, the CN2 rule-based aggregator performs a post-process on the ensemble models,

merging classifiers that generate unordered rules (i.e., J48, SimpleCart, and Decision Table) into a sin-

gle (unordered) rule-based classifier, while keeping ordered classifiers (i.e., JRip, and PART) separated.

The process is described as follows. For learners that generated tree models (J48, Simple-

Cart), each path, from root to leaves, is converted to a rule as shown in Figure 6.3. For the model

generated by the Decision Table learner, it is sufficient to treat each row in the table as an indepen-

dent rule. Once extracted, we use a modification of the CN2 algorithm [47, Section 3.2.1] where

instead of iteratively generating and selecting rules, we only select from the available rules from J48,

SimpleCart, and Decision Table models. Given a dataset with predictive attributes X and class labels

Y , and a set of rules R, it starts by creating an auxiliary array A of size N (where N is the number of

instances in the training set), denoting whether a given instance is yet to be covered by a rule in rule

set R̂. At the beginning of the process, no instance is covered, hence all values in array A are set to 1.

It then iteratively searches for a rule r̂ with the best quality q̂ = precision × recall on the subset of

yet-to-be-covered instances. The current best rule r̂ is added to the set of rules R̂, and has its voting

weight computed based on the quality of that rule (precision× recall) in the whole training set (not

to be confused with the quality on yet-to-be-covered instances A). Correctly covered instances are

set to 0 in A (i.e., removed), and the process is repeated until all instances are covered or no rule in R
covers none of the remaining instances in A. Figure 6.4 shows the pseudocode for the CN2 rule-based

aggregator.

We do not merge the models from the remaining learners in the ensemble, JRip, and PART,

since these models produce ordered lists, which are dependent on one another to produce mean-

ingful predictions (Section 2.3.1). However, the voting weight used when these models are making

predictions is not the precision × recall of the entire classifier, but instead for the single rule that is

activated. Figure 6.5 shows the algorithm used for assessing the quality of rules in an ordered list of

rules.

During prediction, each rule that covers a new instance votes with its consequent class, with

voting weight q̂. All class votes are normalized. In an individual where all base models are present, at

least three rules (one from PART, one from JRip, and at least one from J48 + DecisionTable + Simple-

Cart, when a rule from one of these models supersedes the two other rules that could cover that

instance) and at most five rules (same as previous case but with no merging) will be activated during

the prediction for any new instance.

119

No Yes

Outlook

No

Humidity WindYes

Yes

RainSunny Overcast

High Normal Weak Strong

(a) a

#1: (Outlook is Sunny) and (Humidity is High) then Play is No
#2: (Outlook is Sunny) and (Humidity is Normal) then Play is Yes
#3: (Outlook is Overcast) then Play is Yes
#4: (Outlook is Rain) and (Wind is Weak) then Play is Yes
#5: (Outlook is Rain) and (Wind is Strong) then Play is No

(b) b

Figure 6.3: (a) A tree generated by J48 for the “play tennis” dataset. (b) Corresponding rule set ex-

tracted by our post-processing algorithm used by the CN2 rule-based aggregator.

1: function combine_rules(R, X, Y)

2: A← (1|i = 1, ... , N)
3: Â← (1|i = 1, ... , N)
4: R̂ ← ∅
5: Q̂ ← ∅
6: while ∃a ∈ A|a = 1 do
7: q̂ ← −∞
8: r̂ ← ∄
9: for {r |r ∈ R ∧ r /∈ R̂} do
10: q ← quality(r , X, Y , A)
11: if q > q̂ then
12: q̂ ← q
13: r̂ ← r
14: if r̂ = ∄ then return R̂, Q̂
15: R̂ ← R̂ ∪ r̂
16: Q̂ ← Q̂ ∪ quality(r̂ , X, Y , Â)
17: A← A⊗ ¬(covers(r̂ , X)⊗ (consequent(r̂) = Y))
18: return R̂, Q̂
19: function quality(r , X, Y , A)

20: TP, FP, TN, FN← 0
21: for (X(i)|Ai = 1, i = 1, ... , N) do
22: if covers(r , X(i)) then
23: if consequent(r) = Y (i) then
24: TP← TP + 1
25: else
26: FP← FP + 1
27: else if consequent(r) ̸= Y (i) then
28: TN← TN + 1
29: else
30: FN← FN + 1
31: q ← TP

TP+FP ×
TP

TP+FN
32: return q

Figure 6.4: CN2 rule-based aggregator: algorithm used for combining rules in a rule-based classifier.

Adapted from [47, Section 3.2.1].

120

1: function ordered_rules_quality(R, X, Y)

2: A← (1|i = 1, ... , N)
3: while {∃a ∈ A|a = 1} do
4: for (r = R(i)|i = 1, ... , |R|) do
5: Q̂ ← Q̂ ∪ quality(r , X, Y , A)
6: A← A⊗ ¬(covers(r , X)⊗ (consequent(r) = Y))
7: return R, Q̂

Figure 6.5: Algorithm used for assessing quality of rules from ordered rule-list classifiers.

6.1.2 Probabilistic Graphical Model

The graphical model of EDNEL is a Dependency Network [119]. Dependency networks are

different from Bayesian Networks in two main aspects: (i) the former allows cycles, whereas the latter

does not; and (ii) because cycles are allowed, recently-sampled values are used right away, influencing

the probability distribution of children variables, as shown in Figure 6.6.

1: function gibbs_sampler(D(i)
)

2: D(i+1)
1 ∼ P(D1 = d1|D2 = d (i)

2 , ... , D|D| = d (i)
|D|)

3: D(i+1)
2 ∼ P(D2 = d2|D1 = d (i+1)

1 , ... , D|D| = d (i)
|D|)

4:

.

.

.

5: D(i+1)
|D| ∼ P(D|D| = d|D||D1 = d (i+1)

1 , ... , D|D|−1 = d (i+1)
|D|−1)

6: return D(i+1)

Figure 6.6: Pseudo-code for a single Gibbs sampling execution. Adapted from [275].

In Figure 6.6, D(i)
is the current assignment of values for each variable in the GM (i.e., the

current point in the solution space), |D| is the number of variables, Dj the j -th variable, and dj its

respective value, while D(i+1)
is its next value.

The reasons for considering a Dependency network over a Bayesian network are as follows.

First, since Dependency networks allow cycles, it is capable of capturing relationships that a Bayesian

Network cannot. Consider the relationship A → B, i.e., A influences the outcome of B, but not

the opposite. It might be the case that the value of B is as influential on A as A is on B; however a

Bayesian Network could never capture this relationship. With a Dependency Network, not only A→ B
is allowed, as A↔ B and A← B as well.

The second reason to prefer Dependency Networks is that they allow a better understanding

of correlation relationships between variables, whereas the rigor of a causal relationship (expressed by

Bayesian Networks) is a concept difficult to grasp to non-experts [119]. Hence, EDNEL provides inter-

pretability in two levels: first, by generating small, interpretable ensembles of classifiers, and second

by generating a graphical model that allows interpreting correlation relationships between variables

in the problem.

Variables

Each variable encodes either a classifier’s hyper-parameter (e.g., J48_minNumObj, the mini-

mum number of instances allowed in a leaf node of a J48 tree), or a derivation of it (e.g., J48_pruning:

121

this variable will choose between three hyper-parameters, each of which defining a pruning policy).

There are also five variables to decide whether each of the five base classifiers is present in that indi-

vidual’s ensemble, and a variable for deciding the aggregation policy.

All 41 GM variables are discrete. For the two variables that encode continuous hyper-parameters,

namely J48_confidenceFactorValue and PART_confidenceFactorValue, we generate five values evenly dis-

tributed within the range of valid values (according to Weka) for that hyper-parameter. This approach

is opposed to the one adopted for PUMA (Section 5.1.3), which keeps the variables continuous and

samples new values from a Gaussian distribution. This adaptation is made to simplify the source code

for computing the Adjusted Mutual Information (AMI) between pairs of variables, a step necessary for

detecting correlation (described in Section 6.1.6). In our opinion, it is much easier to implement the

code to compute AMI between two discrete variables, or two continuous variables, then to compute it

between discrete-continuous pairs. We left the AMI computation between discrete-continuous pairs

for future work.

We use EDA’s ability of biasing probabilities to increase by 10% the probability to sample val-

ues that are default in Weka. We assume that some effort was made to define those hyper-parameters

as the default choice for the base learners. For all other values, we set uniform probabilities. For in-

stance, for J48_numFolds, the default value 3 has probability 20%, while values in [2, 10]− {3} have

probability 10%. All of this happens execpt for variable DecisionTable_evaluationMeasure, where the

value auc has a 50% probability of being sampled. We do this to increase the chances that a base

learner is using the same metric used as fitness function, which for EDNEL (similarly to PUMA) is the

Area Under the ROC curve.

Sampling procedure

There are two ways to perform direct inference from a Dependency Network [119]: the

first one converts the Dependency Network to a Markov network, deriving a decomposable graphical

model, and then applies an algorithm for probabilistic inference (e.g., the junction-tree algorithm); the

second one uses Gibbs sampling [275], which is the method we adopt in EDNEL.

We modify Gibbs Sampling to better suit our needs. Variables can manifest in two ways: as

they appear on the graphical model, being denoted V ; and on the individual’s array of values, which

is a dictionary of values, referred to as D. Variables in the GM are joint-probability distribution tables,

whereas D contains pairs (D(i)
j , d (i)

j), where D(i)
j is a given variable and d (i)

j the value assumed by said

variable in the i -th iteration of the Gibbs Sampler. We can refer to V as to-be-sampled variables, as

opposed to D already-sampled variables. Additionally, D is allowed to have empty values for some

keys (which, at implementation level, is a null value), but not V .

We initialize D with what we call a baseline individual: an ensemble with five base models

(one for each base learner), generated by using default Weka hyper-parameters for each one of the

base learners, with majority voting as aggregation policy. As mentioned earlier, we assume that some

122

effort was made to define those hyper-parameter as the default ones, hence rendering them attractive

for at least starting the search process in EDNEL.

Variables may have two types of parents: deterministic and probabilistic.

Definition 6.1. A deterministic parent is a variable that influences on the outcome of its children, and

that can not have its relationship modified by EDNEL. In other words, deterministic relationship are

defined prior to the start of EDNEL evolutionary procedure, and are never modified throughout this

procedure.

Definition 6.2. Like a deterministic parent, a probabilistic parent also influences the outcome of its

children. However, the relationship is not permanent, and can be modified by EDNEL. For example,

in one generation a variable A can be parent of another variable B, but in the next generation both

variables may be independent.

The value of a variable depends on the values assumed by its parents. Deterministic par-

ents do not have their values included in the joint-probability table of their children, but nonetheless

influence in the sampling process. Let us assume two examples for the sake of clarity. In the first,

variable J48 (which encodes the probability of including a J48 model in the ensemble) is the deter-

ministic parent of variable J48_pruning. If J48 = false, then there is no need to choose a prun-

ing policy for J48 with J48_pruning; we may skip that variable and set J48_pruning = null in D.

On the second example, J48_pruning is a probabilistic parent of JRip. If J48_pruning = null in

D, then JRip may be sampled via an unconditional distribution; otherwise it will be conditioned to

J48_pruning ∈ {reducedErrorPruning, confidenceFactor, unpruned}.

Deterministic relationships were created through a manual study of hyper-parameters of the

base classifiers in the Weka toolkit. In the first generation, there are only deterministic relationships;

all variables are probabilistically independent – which is to say that all distributions are unconditional.

The graphical model for the first generation is shown in Figure 6.7.

We assign a sampling order for Gibbs sampling [118] once per generation, which will be used

for sampling that generation’s population. The sampling order is inferred by analyzing the topology

of the GM at the current generation. At first, all variables that do not have any parent whatsoever are

added to the list. Then, all variables that have all their parents (both deterministic and probabilistic)

already in the sampling order list, and so on and so forth until all variables are added. If, for a given

iteration of this process, none of the remaining variables have all its parents in the sampling list (both

deterministic and probabilistic), a compromise is made. We perform a lexicographic sorting on the

remaining variables, where the first sorting criterion is the number of missing deterministic parents;

then the number of missing probabilistic parents; and lastly the number of children (both deterministic

and probabilistic) that the candidate variable has. This procedure is repeated until all variables are

added to the sampling list.

123

Aggregator

J48
binary
Splits

useLaplace

minNumObj
useMDL
correction

collapse
Tree

doNotMake
SplitPoint
Actual
Value

pruning
numFolds

subtree
Raising

confidence
Factor
Value

SimpleCart

heuristic

minNumObj

usePrune

numFolds
Pruning

useOneSE

PART

doNotMake
SplitPoint
Actual
Value

minNumObj

binary
Splits useMDL

correction

pruning

numFolds

confidence
Factor
Value

JRip
checkError

Rate

minNo

usePruning

optimizations

folds

Decision
Table

useIBk

crossVal

evaluation
Measure

search

direction

search
Termination

conservative
Forward
Selection

search
Backwards

Figure 6.7: Initial structure of the graphical model used by EDNEL. All connections are deterministic

(no probabilistic relationship is displayed). The structure is updated once per generation. The colors

used denote which variables will be sampled: darker green-ish variables first; lighter yellow-ish variables

last.

6.1.3 Sampling individuals

We choose to employ burn-in to help the Dependency Network achieve its stationary state.

Burn-in is commonly used when one does not know a good starting point for sampling values in de-

pendency networks, and thus wants to reduce the over-representation that uncommon states could

have in a small sample size.

Definition 6.3. In a practical sense, burn-in refers to the process of sampling new individuals and

immediately discarding them. Since Dependency Networks use newly sampled values as soon as they

are available, performing burn-in helps a Dependency Network achieve its stationary state – in other

words, a region of the solution space that does not contains outlier individuals.

There is a debate in the literature whether or not burn-in is effective in its purpose [27, p.19,

c.1.11.4]. Since most of the related work do use burn-in, and in a sense burn-in does not negatively

124

affects the outcome of our algorithm, we choose to use it in our experiments. The number of Gibbs

Sampler executions to perform burn-in is a hyper-parameter.

We do not make any attempt to thin our Gibbs Sampler, since there are no clear indica-

tions that thinning produces more precise samples (in relation to the source distribution) than not

thinning [168].

Definition 6.4. Thinning refers to the process of considering only samples that are divisible by a

given number F , with F being a hyper-parameter. If e.g. F = 2, and 10 values are sampled from

the Dependency Network, then only samples {2, 4, 6, 8, 10} are deemed valid; odd number samples

{1, 3, 5, 7, 9} are discarded.

Moreover, it seems more reasonable to keep more (if not all) samples than to rely on only

a few. However, it may be the case that some samples generate invalid individuals, due to (i) the

nature of Gibbs sampling of using new values for variables as soon as they are available, as shown in

Figure 6.6; and (ii) that some variables may have null values in D for that Gibbs sampling execution, if

their deterministic parent was not sampled. We refer to this event as passive thinning, a by-product of

our modified Gibbs Sampler.

The procedure of sampling new individuals is described as follows. We initialize D with the

baseline individual, as described in the previous section. During burn-in, individuals (ensembles) are

not trained, only values in D are changed. Since no ensemble is trained, no passive thinning occurs.

The variable values are sampled based on the product of several bi-variate conditional distributions,

one for each probabilistic parent, inspired by [107]:

Di =
∏

j∈Pa(g)
prob,i

P(Vi |Vj) (6.5)

where Di is the sampled value for variable Vi , and Pa(g)
prob,i the probabilistic parents of Vi in the current

generation.

After burn-in, any new sampled individual will be trained as soon as the Gibbs sampling

finishes an iteration, and (provided that the individual is valid) added to the population of the current

generation. The Gibbs sampling procedure finishes once it successfully sampled the requested number

of individuals by the EDA.

There are two events worth noting that can occur during sampling: when a deterministic

or a probabilistic parent for a child variable is non-defined (i.e., null) for a given execution. Recall that

joint-probability tables in a GM do not allow null values, only D. In the former case, if a deterministic

parent is non-defined, its children are also non-defined; on the other hand, if a probabilistic parent of a

variable is non-defined, but all deterministic parents are defined, then the conditional joint-probability

distribution P(child |parent) is replaced by an unconditional distribution P(child), computed based

on the fittest population of the last generation; or the original distribution for the first generation of

the EDA.

125

6.1.4 Fitness evaluation

Fitness assessment is done as soon as a new individual is sampled and trained. At the start

of the evolutionary process, EDNEL receives a training set. This training set is split into two smaller

sets: a learning set (5/6 of the training set), and a validation set (1/6). The learning set is used both

for base classifiers to learn the data and to evaluate fitness, by means of an internal five-fold cross-

validation. The learning set does not change throughout the evolutionary process, with all five folds

remaining the same. This allows direct comparisons between individuals from different generations.

For fitness function, we use the area under the Receiving Operator Characteristic curve, or

AUC [85]. AUC has a robust computation methodology when compared to, for example, the more

popular accuracy score. For probabilistic classifiers, AUC does not impose a threshold for deciding

whether an instance belongs to the positive or negative class; it is also more tolerant to changes in

the distribution of classes, whereas accuracy is more sensitive [85].

AUC values are within [0, 1], with the value 0.5 representing the predictive performance

of random predictions in the case of binary-class problems. For EDNEL, regardless of the number of

classes in the dataset, we calculate one AUC for each class, and then average the AUC among all

classes. Hence, the fitness of an individual is actually a mean of means: first, the mean AUC among all

classes for a given fold; then, the mean AUC among all five internal folds.

6.1.5 Population selection and Elitism

We use hyper-parameter |Φ| for selecting the fittest individuals from a generation’s popula-

tion (|Φ| < |S|) for updating both GM’s structure and probabilities. We carry on the fittest individual

from the current generation to the next (i.e., elitism), while the rest of the population is resampled

with the updated GM.

6.1.6 Updating the GM’s structure

The first update performed is in the GM’s structure. This procedure detects correlation be-

tween variables and link then within the Dependency Network. Thus, probabilistic relationships are

updated once every Gupdate generations (with Gupdate as a hyper-parameter) for all variables. Deter-

ministic relationships are built before the EDA starts its evolutionary process and are never changed.

We do not allow a child variable to add a deterministic parent to its set of probabilistic parents. If

Gupdate = 1, the structure of the GM will be updated every generation using the current fittest popu-

lation for detecting correlation between variables. If Gupdate > 1, then the last Gupdate fittest subpop-

ulations will be used.

126

For detecting correlation, we use the Adjusted Mutual Information (AMI), which detects

both linear and non-linear correlations between variables [226]. Mutual information “is a symmetric

measure that quantifies the mutual dependence between two random variables. It measures how

much knowing one of these variables reduces our uncertainty about the other” [187].

The reason for deciding for the adjusted version of mutual information is twofold. First,

variables in the GM have varying number of values (e.g., J48_pruning with 3 values; J48_minNumObj

with 9; etc.). If not adjusted, variables with large number of values would be more likely to be linked

(in the GM) with other variables with large number of values. Secondly, mutual information is an

unbounded metric, with a lower bound at zero but no upper bound. By adjusting it, we are closer

to limit its values to the range [0, 1], where 0 is no correlation and 1 perfect correlation between

variables. Computing AMI between discrete variable pairs is given by

AMI(Vi , Vj) =
MI(Vi , Vj)− E(MI(Vi , Vj))

max(H(Vi), H(Vj))− E(MI(Vi , Vj))
(6.6)

where MI(Vi , Vj) is the (unadjusted) mutual information, E(MI(Vi , Vj)) its expected value, and H(Vi)
is the entropy for Vi .

AMI can yield negative values when the actual mutual information is smaller than its ex-

pected value. Since a negative AMI is as bad as a zero-valued AMI for linking variables, we clip negative

values to zero.

When computing these metrics, we only consider pairs of valid values, that is, for each indi-

vidual in the fittest population, we collect values for a pair of variables where Vi ̸= null and Vj ̸= null .
We call individuals that have valid pairs of values for (Vi , Vj) relevant elite Φ+

. Thus, it is possible that

the number of pairs for (Vi , Vj) is larger than, say, (Vi , Vk): another reason why AMI is preferred over

Mutual Information, since coincidences are more likely to occur in small samples.

Having a small correlation does not mean that the EDA will link variables in the GM; the

correlation must be strong enough to justify the linking. We use an heuristic proposed in [106] to

decide which variables will parent other variables. The heuristic behaves as follows. Given variable Vi ,

a searching algorithm is employed to find another variable Vj to be a probabilistic parent of Vi . If the

correlation (in this case, AMI) between Vi , Vj is greater than the average correlation between Vi and

its probabilistic parents, and greater than heuristic_tolerance (an hyper-parameter), we add Vj to

the parent set Paprob,i , removing it from candidate set candi ; otherwise, we terminate the searching

process for variable Vi . We now proceed to find another variable that is strongly correlated to Vi , but

not Paprob,i :

AMI(Vi , Vj)−
∑

Vk∈ Pa
prob,i

AMI(Vk , Vj)

|Paprob,i | + 1
(6.7)

While searching for candidate parents, if a variable happens to have a heuristic equal or less than

heuristic_tolerance, we prematurely discard it from the candidate set. The reasoning behind the

heuristic is that a new candidate parent must be more correlated to its candidate child than it is

127

correlated to the rest of the parent set. In our experiments, we use heuristic_tolerance = 0.1. The

algorithm we use for searching parents is described in Figure 6.8, where τ is the maximum number of

probabilistic parents a variable is allowed to have at any given time. This algorithm returns a a set of

parents for each variable in the GM. Note that, if Vi is the parent of Vj and Vj is the parent of Vk , Vk

is allowed to close the cycle – i.e., be the probabilistic parent of Vi even though it is in a deterministic

chain of relationships.

Note that a variable cannot be a parent of its deterministic parents Padet,i , nor can it be a

probabilistic parent of its deterministic children Chdet,i . Once all probabilistic parents are identified, the

next task is to update the structure of the probability tables. If probabilistic parents are the same from

the previous generation, the structure of table is kept, otherwise all entries are removed and replaced

by the combination of non-null values for each probabilistic parent and each value of child variable.

For example, if child variable J48_pruning (3 values) is linked to parent variable J48_minNumObj (9
values), then J48_pruning’s table will have 3 × 8 = 24 entries. The next task at hand is to update

probabilities for each entry.

1: function search_parents(V ,Φ+
)

2: for (i = 1, ... , |V |) do
3: Pamut,i ← ∅
4: candi ← V − {Vi} ∪ Pa

det,i ∪ Ch
det,i

5: heuristicmax ← 0
6: cand

best
← ∄

7: while candi ̸= ∅ and |Pa
prob,i | < τ do

8: for Vj ∈ candi do
9: heuristicj ← use Φ+

on Equation 6.7

10: if heuristicj ≤ heuristic_tolerance then
11: candi ← candi − {Vj}
12: else if heuristicj > heuristicmax then
13: heuristicmax ← heuristicj
14: cand

best
← Vj

15: if cand
best
̸= ∄ then

16: Pa
prob,i ← Pa

prob,i ∪ {cand
best
}

17: else
18: candi ← ∅

return Pa

Figure 6.8: Algorithm used for detecting parents of variables. Adapted from [106].

6.1.7 Updating the GM’s probabilities

We apply the same procedure used to update the structure of the GM using only individuals

with valid values (i.e., defined) for each pair of variables. We refer to these individuals as relevant

elite Φ+
. We update the GM’s probabilities every generation, as opposed to the structure update,

which is learned every Gupdate generations. We use a learning rate to update probabilities, with small

modifications to suit our specificities.

The update of probabilities is done in three steps. The first step is to collect all valid (parent,

child) pairs. From this valid set, bivariate conditional distributions P(child |parent) are computed.

The second step is to update these bivariate statistics with a learning rate, much the same procedure

128

used by PBIL-iUMDA [272, 277]. Using a learning rate requires that all probabilistic parents be kept

the same between two generations, which might not be the case; if so, the unconditional probability

distribution of the child variable in the current fittest population is used instead. The pseudocode for

the second step of updating bivariate conditional distributions is shown in Equation 6.8:

p(g+1)(Vi = v |Vj ∈ Pa(g+1)
prob,i) =

(1− α)× p(g)(Vi = v |Vj)+
α× p(g)

Φ+ (Vi = v |Vj)
if Vj ∈ Pa(g)

prob,i

p(g)
Φ+ (Vi = v) otherwise

(6.8)

where Vi is the i -th variable, Vj a probabilistic parent of Vi , Pa(g)
prob,i , Pa(g+1)

prob,i are respectively the set

of probabilistic parents of Vi in the current and next generations, α the learning rate, p(g)(Vi) the

probability from the GM in the current generation, and P (g)
Φ+ (Vi) the probability from the relevant elite

individuals of the current generation. Equation 6.8 is iterated over all probabilistic parents of Vi , and

all pairs of values vi , vj . Note that if parents change from one generation to another, only probabilities

observed in the relevant elite are used (i.e., previous probabilities are discarded).

Once the bivariate statistics are updated, the product of all bivariate statistics can be com-

puted as shown in Equation 6.5. All distributions – the many supportive bivariate distributions and

the final product distribution – are normalized.

6.1.8 Early Stop, termination, and validation set

As discussed in Section 6.1.4, EDNEL splits the training set into two subsets: a learning

set (which comprises 5/6 of the training data), and a validation set (1/6). EDNEL individuals do not

have access to the validation set; it is used solely by the early-stop algorithm to decide whether it is

beneficial to prematurely stop the evolutionary process.

The early-stop policy is described next. Let ϕlearn be the fitness of an individual S(i)
in the

learning set (given by an internal five-fold cross-validation procedure), and ϕval be the predictive per-

formance of said individual when trained with the whole learning set whose inference is performed on

the validation set. We take note of the best individual found so far given by ϕlearn and evaluate its per-

formance on the validation set recording ϕval. For the next generation, we take note if the fitness ϕval

of the next generation’s best individual (by ϕlearn) decreases. If so we start a countdown of counter
generations (a hyper-parameter). This is the number of generations that EDNEL has to recover a fit-

ness ϕval as good as the best found so far. If no improvement is detected, we prematurely terminate

the evolutionary process, returning the individual with the best ϕval; otherwise, we annotate the new

best ϕval and proceed until no generations remain to be executed or the countdown reaches counter
generations. In our experiments, counter is also a hyper-parameter.

129

6.2 Experiments

We divide the experiments of this section in two parts: a nested cross-validation procedure,

described in Section 6.2.1, and a holdout procedure, described in Section 6.2.3. The reason for dividing

into two parts is also twofold. First, we informally detected that EDNEL does not present a set of

hyper-parameters that work well for all cases, which means it must be optimized for different types of

datasets in order to provide the best predictive performance. Thus, a nested cross-validation procedure

coupled with a grid search for EDNEL hyper-parameters is best suited for evaluating EDNEL. Second, we

could not – even with the best of our efforts – adapt the code of AUTOCVE [161] (the evolutionary

algorithm chosen as baseline) for this framework. Hence, we use the authors’ results in their last

paper [162], which performs a holdout procedure, to compare AUTOCVE to EDNEL.

For the interested reader, we make available the source which we developed that tries to

adapt AUTOCVE code to a nested cross-validation coupled with a grid search for AUTOCVE hyper-

parameters. For such, we make available two Github repositories
12

.

6.2.1 Nested Cross-validation experimental setup

We describe in this section the nested cross-validation procedure performed to EDNEL and

baseline algorithms. The advantage of using a nested cross-validation procedure is that it allows an

algorithm to optimize a set of hyper-parameters for each one of the external folds of the nested cross-

validation, by means of an optimization strategy. We choose grid search for simplicity, aware that this

is not the state-of-the-art for hyper-parameter optimization.

The nested cross-validation procedure is described as follows. The whole dataset is divided

into ten folds, which we will refer to as external folds. Nine folds are used for training and one for

testing. The nine external folds are split again into five folds, which we will refer to as internal folds.

Different combinations of hyper-parameters for each classifier are tested via these five internal folds.

The predictions for each internal test fold are stored in an array. At the end of the internal five-fold

cross validation, the unweighted Area Under the ROC curve is computed, and the best combination

of hyper-parameters is chosen. The best combination is then trained with the nine external folds, and

its predictions are provided over the external test fold. This procedure is described in Figure 6.9.

1
https://github.com/henryzord/AUTOCVE

2
https://github.com/henryzord/AUTOCVE-star

https://github.com/henryzord/AUTOCVE
https://github.com/henryzord/AUTOCVE-star

130

1: function nested_cross_validation(H , X, Y)

2: for i = 1, 2, ... , 10 do
3: X(i)

train
= 9/10 of X

4: Y (i)
train

= 9/10 of Y
5: for each hyper-parameter configuration from set of all hyper-parameters configurations do
6: for j = 1, 2, ... , 5 do
7: X(i ,j)

train
= 4/5 of X(i)

train

8: Y (i ,j)
train

= 4/5 of Y (i)
train

9: train H with hyper-parameter configuration on X(i ,j)
train

, Y (i ,j)
train

10: test H on X(i ,j)
test

, annotate prediction scores

11: compute unweighted Area Under ROC curve with annotated prediction scores

12: choose hyper-parameter configuration with best unweighted AUC

13: train H with best hyper-parameter configuration on X(i)
test

, annotate prediction scores of Y (i)
test

14: compute unweighted AUC with annotated prediction scores

15: return unweighted AUC

Figure 6.9: Nested cross-validation procedure. All subsets follow the same class distribution as the

original dataset (in other words, both the external and internal cross-validations are stratified).

Datasets

We select 20 datasets from both KEEL
3

[3] and UCI Machine Learning repository
4

[165],

which are shown in Table 6.1. We select these datasets to cover a wide range or characteristics. The

datasets have from 1066 to 10992 instances, from 3 to 61 attributes, and from 2 to 13 classes.

Table 6.1: Datasets used in the experiments.

name instances attributes classes

banana 5300 3 2

banknotes 1372 5 2

car 1728 7 4

contraceptive 1473 10 3

diabetic 1151 20 2

flare 1066 12 6

krvskp 3196 37 2

page_blocks 5472 11 5

penbased 10992 17 10

phoneme 5404 6 2

ring 7400 21 2

seismicbumps 2584 19 2

splice 3190 61 3

steelfaults 1941 34 2

texture 5500 41 11

thyroid 7200 22 3

titanic 2201 4 2

turkiye 5820 33 13

twonorm 7400 21 2

waveform 5000 41 3

Modifications to EDNEL

We had to adapt EDNEL to perform under this experimental setup. We refer to the origi-

nal EDNEL code, as describe in the previous sections, as production code, whereas the modifications

explained here are referred to as evaluation code.

3
Available at https://sci2s.ugr.es/keel/datasets.php

4
Available at https://archive.ics.uci.edu/ml/datasets

https://sci2s.ugr.es/keel/datasets.php
https://archive.ics.uci.edu/ml/datasets

131

Both source-codes behave exactly the same, except for the way that the evaluation code

computes the fitness function. Recall that, in production code, EDNEL receives a training set that is split

into two subsets: learning set (
5
6 of the training set) and validation set (

1
6). An internal five-fold cross-

validation is performed with the learning set to evaluate fitness of individuals (ensembles), whereas

the validation set is used to check whether EDNEL is stuck in local optima. In the evaluation code, on

the other hand, the training set is also split into learning and validation sets, but a holdout procedure is

done instead using the learning set to evolve ensembles and the validation set to compute the fitness

of individuals. We do this to avoid that datasets be split into many smaller subsets; remember that

the evaluation code is used under a nested cross-validation procedure. If we were to use the production

code, the set used to evolve ensembles would be
9

10
4
5

5
6

4
5 = 0.48 of the entire dataset, which increases

the chances that our algorithm overfits the data. By using holdout with 80% of the data for learning

and 20% for validation, the data used to learn ensembles is improved to
9

10
4
5

8
10 = 0.576.

Baseline Algorithms and Hyper-Parameter Optimization

The comparison to EDNEL is separated into groups. All groups are summarized in Table 6.7,

at the end of this section. The first group is comprised of evolutionary algorithms, containing two

versions of EDNEL (one with and another without the CN2 rule extraction algorithm, described in Sec-

tion 6.1.1), and PUMA [30]. PUMA was described in greater details in Chapter 5, and is similar to

EDNEL, with the key difference that it does not capture relationships between variables. We modify

PUMA to allow performing an internal holdout procedure, splitting the training set at a 80/20 pro-

portion for learning and validation sets, respectively (the same modification done to EDNEL and de-

scribed in Section 6.2.1); and to allow two timeout hyper-parameters, both for general evolution and

individual evolution. We denominate this modified PUMA version as PUMA-star. The hyper-parameters

optimized by grid search, for both PUMA-star and EDNEL versions, are shown in Table 6.2.

For both EDNEL versions and PUMA-star, we do not optimize their population size because

it is analogous to the Random Forests’ number of trees: if we could hypothetically have an infinitely

large population, then it would be guaranteed to have at least one individual with the best achievable

performance, given each algorithm constraints (e.g., aggregation policies, algorithm behavior, etc).

We use 50 individuals in all evolutionary algorithms.

In a similar sense, we do not optimize the number of generations nor the time available for

each algorithm evolving their population, leaving these hyper-parameters at 100 generations and one

hour, respectively. All algorithms also have a time limit for evolving individuals, which is implemented

in the same way: if an individual exceeds 60 seconds to sample and train its ensemble members, then

it is discarded and a new individual must be sampled.

The second group comprises base classifiers used by all evolutionary algorithms, namely J48,

SimpleCart, PART, JRip, and Decision Table. If at least one of these algorithms outperforms either one

of the evolutionary algorithms, then there is no justification to employ the EAs for evolving ensembles

of interpretable classifiers: it would be easier to just use the single best base classifier. These classifiers

132

Table 6.2: Hyper-parameters used by both EDNEL versions and PUMA-star in the nested cross-validation

procedure. Multiple values indicate that the hyper-parameter was optimized; single values were con-

stant among all grid search iterations.

Algorithm Hyper-parameter Values

EDNEL Learning rate {0.13, 0.26, 0.52}

EDNEL Selection share 0.5

EDNEL Population size 50

EDNEL Generations 100

EDNEL Evolution timeout one hour

EDNEL Individual timeout one minute

EDNEL Burn-in 100

EDNEL thinning factor 0

EDNEL Early stop generations {10, 20}

EDNEL
Maximum probabilistic parents per variable

(same value for all variables)
{0, 1}

EDNEL Delay structure learning 5

EDNEL individual to report best overall

PUMA-star Learning rate {0.13, 0.26, 0.52}

PUMA-star Selection share {0.3, 0.5}

PUMA-star Population size 50

PUMA-star Generations 100

PUMA-star Evolution timeout one hour

PUMA-star Individual timeout one minute

PUMA-star individual to report
{best overall, best from last

generation}

also have their hyper-parameters optimized by means of grid search, and no modifications were made

to their source code. The list of optimized hyper-parameters is described in Table 6.3.

Table 6.3: List of base classifiers and hyper-parameters optimized by grid search. Hyper-parameters

not shown in this table were kept constant, and the values used were the default ones from Weka.

Algorithm Hyper-parameter Values

J48 Minimum number of examples in leaf nodes {2, 4, 6, 8}

J48 pruning policy
{unpruned, reduced error,

confidence factor}

SimpleCart Minimum number of examples in leaf nodes {2, 5, 8}

SimpleCart Apply pruning {true, false}

SimpleCart
Use heuristic for binary splits of categorical

attributes
{true, false}

JRip
Minimum number of examples to be

covered by a rule
{2, 4, 6, 8}

JRip use pruning {true, false}

PART
Minimum number of examples to be

covered by a rule
{2, 4, 6, 8}

PART pruning policy
{unpruned, reduced error,

confidence factor}

Decision Table internal evaluation metric

{AUC, accuracy, Root Mean

Squared Error, Mean Absolute

Error}

Decision Table Search Policy {Greedy Stepwise, Best First}

Decision Table
Default rule assigns majority class or uses

IBK
{majority class, IBK}

We call the algorithms in the third group as baseline ensembles. The first algorithm is an

unoptimized baseline ensemble, and consists of the five base classifiers from EDNEL (J48, CART, JRip,

PART, and Decision Table) with their default hyper-parameter configuration, and a simple majority vot-

ing scheme as aggregation policy. The reasoning for doing so is to check whether there is a difference

133

between simply ensembling these five base classifiers and optimizing their hyper-parameter configu-

rations with an evolutionary algorithm.

The second algorithm in this group is an optimized baseline ensemble. It has the same five

base classifiers and also uses majority voting, but each base classifier had its hyper-parameters indi-

vidually optimized by grid search. We compare the EAs to this optimized baseline ensemble in order

to verify whether it is worth to apply an EA to perform global optimization or it is simply better to

individually optimize base classifiers and ensemble them with a simple majority voting policy.

The fourth group, which contains a single algorithm, is the random classifier: a random

search procedure with the same budget of the EAs. In the same sense, we are evaluating whether

it is really justified to apply an EA or simply randomly guessing solutions over enough time solves the

problem. Since we execute the EAs with a fixed population of 50 individuals for 100 generations, we

use the source code of EDNEL to perform a random search in the space of solutions with a budget

of 5, 000 evaluations, with no compromise to sample distinct solutions. This is achieved by running

EDNEL with 5, 000 individuals and 1 generation. Note that the initial probabilities are the same as de-

scribed in Section 6.1.2 – that is, they are slightly biased towards the default Weka values. Since we

are re-using the source code of EDNEL, we have to set some hyper-parameters. The hyper-parameters

used are listed in Table 6.4.

Table 6.4: Hyper-parameters used on EDNEL to perform random search in the space of solutions.

Hyper-parameters marked with an asterisk (*) have no effect on the outcome of the algorithm run,

but are listed here since EDNEL requires their values to be set.

Algorithm Hyper-parameter Values

Random Search Learning rate 0.1*

Random Search Selection share 0.1*

Random Search Population size 5000

Random Search Generations 1

Random Search Evolution timeout no limit

Random Search Individual timeout no limit

Random Search Burn-in 100

Random Search thinning factor 0

Random Search Early stop generations 1*

Random Search
Maximum probabilistic parents per variable

(same value for all variables)
0*

Random Search Delay Structure Learning in N generations 5*

Random Search evaluation procedure holdout

Random Search individual to report best overall*

The fifth group has six ensembles, each one comprising the boosted versions (using Ad-

aboost [100]) of each of the five aforementioned base classifiers, plus Adaboost itself with its default

base classifier, decision stumps. We use the Weka toolkit version of Adaboost, which – translating to

the original paper [100] – is the M1 version. We optimize these six ensembles with a grid search. It is

important to note that none of the algorithms of this group is interpretable, nor their ensemble mem-

bers, since the boosting process produces ensemble members with hypothesis that only make sense

for that particular distribution of instances. We explain boosting in greater detail in Section 2.1.1.

In Weka, only three hyper-parameters are available for customization: weight threshold

([0, 1]) – how much of the training data should be used for training the classifier at each iteration;

134

number of iterations (i.e., number of classifiers in the ensemble), and type of classifier. We decide

to leave the weight threshold at 1 (i.e., use all training data), and since the type of classifier is not

really an optimization option (we will be using six different types of base classifiers), we optimize only

the number of iterations, or conversely the number of classifiers in the final ensemble. The choice of

ranges are defined in Table 6.5, and we base the choice of values on the work of Rijn and Hutter [258].

Table 6.5: Hyper-parameters of Adaboost optimized with grid search. Note that we consider all entries

in this table as distinct algorithms.

Algorithm Hyper-parameter Values

Adaboost (decision stumps) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (J48) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (SimpleCart) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (JRip) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (PART) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Adaboost (DecisionTable) number of iterations {50, 91, 132, 173, 214, 255, 295, 336, 377, 418, 459, 500}

Finally, the sixth and last group has two classifiers, Random Forests [24] and Random Forests-

star. Random Forests is a well-known ensemble algorithm, and is in general among the best classifica-

tion methods regarding predictive performance [88]. We explain Random Forests in greater detail in

Section 2.1.4.

Random Forests is also optimized by means of grid search. Based on [212], we consider

the following hyper-parameters and range of values: percentage of the training set that will be used

by each tree in the forest in {0.9, 1.0}; percentage of attributes to randomly sample for considering

in a given internal node of a given tree, in relation to the total number of attributes in the dataset

in {
√

M
2 ,
√

M, 2
√

M, log2 M
2 , log2 M, 2 log2 M}. As before, we do not optimize the number of trees in

the forest, leaving it always at 1000. A summary of the hyper-parameters and their values is shown in

Table 6.6. Random Forests-star, on the other hand, is not directly optimized by grid search; instead, it

is the application of CN2 rule-based aggregator, described in Section 6.1.1, to the best forest found

for a given external fold.

Table 6.6: Random Forests and the hyper-parameters used in nested cross-validation. Unmentioned

hyper-parameters imply the use of Weka defaults.

Algorithm Hyper-parameter Values

Random Forest Number of trees in forest 1000

Random Forest
Share of training set to be used at any given

tree (randomly sampled)
{90%, 100%}

Random Forest
Number of features sampled to be used at

any given split of trees

{

√
M

2 ,

√
M , 2
√

M ,
log2 M

2 , log2 M ,

2 log2 M}

135

Table 6.7: Groups of algorithms in EDNEL nested-cross validation experiment.

Group Algorithms

Evolutionary Algorithms

EDNEL (with CN2)

EDNEL (without CN2)

PUMA-star

Base classifiers

J48

SimpleCart

JRip

PART

DecisionTable

Baseline Ensembles
Unoptimized ensemble

Optimized ensemble

Random Search Random Search

Boosted

Adaboost

J48

SimpleCart

JRip

PART

DecisionTable

Random Forest
Random Forest

Random Forest-star

Hardware specifications and source code

EDNEL (both-versions) and PUMA-star were executed in two separate machines with the

same hardware components. While there are minor differences between the machines (such as the

operating system, and memory size), we do not expect any impact on the outcome of the experi-

ments. The hardware specifications are described in Table 6.8. All other baseline algorithms were run

in the G-Machine. The source code used for performing nested cross-validation in PUMA-star is avail-

able at https://github.com/henryzord/PBIL, while EDNEL source code is available at https://github.com/

henryzord/ednel.

Table 6.8: Hardware components of machines on which code was run.

Specification G-Machine Z-Machine

Processor AMD Ryzen Threadripper 1950X AMD Ryzen Threadripper 1950X

Core speed 3.4GHz 3.4GHz

Cores 32 32

Architecture x86_64 x86_64

RAM Memory 125GB 128GB

Operating System Ubuntu 18.04.3 LTS Ubuntu 20.04.2 LTS

6.2.2 Nested Cross-validation experimental results

As in PUMA’s evaluation, We use the same assortment of statistical tests to assess EDNEL

performance. All tests were conducted with a significance level of 0.05, which is standard for most

machine learning experiments. We use the STAC site [221]
5

for statistical tests, and the Orange

5
Available at http://tec.citius.usc.es/stac/index.html. Accessed July 17 2021.

https://github.com/henryzord/PBIL
https://github.com/henryzord/ednel
https://github.com/henryzord/ednel
http://tec.citius.usc.es/stac/index.html

136

Python library
6

for generating critical difference graphics. The exact script used is available in our

Github repository
7
.

We discuss the results regarding the pre-established groups, starting with the EAs: EDNEL

(both versions) and PUMA-star. For this group, the p-value of Friedman aligned ranks test is 8e − 5,

indicating a significant difference within the group. The Nemenyi post-hoc test, whose critical dif-

ference graph can be visualized in Figure 6.10, confirms that no algorithm in this group is similar to

any other. With PUMA-star being the best algorithm in this group, this frustrated our expectations,

as we expected EDNEL (any version) to outperform the former algorithm considering its capability of

capturing complex relationships between variables in the graphical model. With the data we have,

we speculate on the reasons for this outcome as follows: (i) PUMA-star is simpler than EDNEL, hence

allowing it to execute for more generations (as it can be viewed in Figure 6.11), and this has a positive

impact on the predictive performance; (ii) the class of datasets tested in this thesis do not exploit the

added benefits of inferring relationships between variables in the problem; (iii) the early stop policy

of PUMA-star is more effective than EDNEL’s; or (iv) EDNEL, which naturally requires more data than

PUMA-star, due to its Dependency Network, is overfitting the learning data. Indeed, the EDNEL version

with CN2 rules – which, in some sense, performs a pruning on the aggregated models – outperforms

the EDNEL version without CN2 rules, providing some strong evidence regarding data overfitting. The

unweighted AUCs for each algorithm are shown in Table 6.9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

PUMA-star

EDNEL (with CN2)

EDNEL (without CN2)

CD

Figure 6.10: Critical difference graph for the EAs in the nested cross-validation experiment. Note that

the ranks are aligned.

We proceed the analysis to the next group of algorithms, now comparing the two best

evolutionary approaches (PUMA-star and EDNEL with CN2) to the group of base classifiers. All base

classifiers were optimized with grid search. The p-value for the Friedman test is virtually 0. The Nemenyi

post-hoc test (that can be seen in Figure 6.12) verifies that none of the EAs is statistically similar to

the base classifiers. In other words, simply performing a grid search on the space of hyper-parameters

is not as powerful as employing an EA for the same task. Table 6.10 shows the unweighted AUC for

each algorithm.

The third group comprises the two baseline ensembles, the first with the default Weka’s

hyper-parameters values, the second a concatenation of individually-optimized base classifiers (the

6
Available at https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html, accessed July

22 2021.

7
https://github.com/henryzord/thesis_experiments

https://orange3.readthedocs.io/projects/orange-data-mining-library/en/latest/index.html
https://github.com/henryzord/thesis_experiments

137

0 500 1000 1500 2000 2500 3000 3500
Time to run (in seconds)

texture

turkiye

waveform

twonorm

ring

penbased

splice

krvskp

thyroid

phoneme

steelfaults

page-blocks

seismicbumps

banana

diabetic

contraceptive

flare

car

banknotes

titanic EDNEL with CN2

EDNEL without CN2

PUMA-star

Figure 6.11: Average time to execute PUMA-star, EDNEL (with CN2 rule extractor), and EDNEL (without

CN2 rule extractor). Datasets are ordered by average time among the three algorithms.

Table 6.9: Unweighted AUC for the EAs. Best algorithm for each dataset is shown in bold.

Dataset
EDNEL

(with CN2)

EDNEL

(without CN2)

PUMA-star

banana 0.9587 0.9531 0.9588
banknotes 0.9970 0.9971 0.9969

car 0.9974 0.9943 0.9973

contraceptive 0.7253 0.7167 0.7341
diabetic 0.7289 0.7280 0.7335
flare 0.9235 0.9223 0.9255
krvskp 0.9983 0.9983 0.9991
pageblocks 0.9885 0.9827 0.9902
penbased 0.9991 0.9988 0.9989

phoneme 0.9446 0.9323 0.9468
ring 0.9837 0.9814 0.9854
seismicbumps 0.7057 0.7463 0.7739
splice 0.9902 0.9857 0.9893

steelfaults 1.0000 1.0000 1.0000
texture 0.9971 0.9974 0.9981
thyroid 0.9997 0.9986 0.9997
titanic 0.7582 0.7573 0.7615
turkiye 0.8532 0.8408 0.8495

twonorm 0.9677 0.9757 0.9828
waveform 0.9493 0.9456 0.9518

Average rank 1.950 2.675 1.375
Aligned rank 30.975 44.450 16.075

best versions from the last group). The p-value for the Friedman aligned ranks test is 3.45e−3, which

rejects the null hypothesis. Following a Nemenyi post-hoc test, we verify, according to Figure 6.13, that

PUMA-star is the best algorithm, followed by the optimized baseline ensemble, then EDNEL with CN2

rules, and finally the unoptimized baseline ensemble. The fact that this test finds PUMA-star and the

138

1 2 3 4 5 6 7

PUMA-star
EDNEL (with CN2)

PART
SimpleCart

J48
DecisionTable
JRip

CD

Figure 6.12: Critical difference graph for PUMA-star, EDNEL (with CN2), and optimized base classifiers

in the nested cross-validation experiment.

Table 6.10: Unweighted AUCs for the base classifiers and the EAs (PUMA-star and EDNEL with CN2).

Best algorithm for each dataset is shown in bold.

Dataset
EDNEL

(with CN2)

PUMA-star J48 SimpleCart JRip PART DecisionTable

banana 0.9587 0.9588 0.9423 0.9559 0.8950 0.9453 0.8077

banknotes 0.9970 0.9969 0.9876 0.9891 0.9804 0.9912 0.9825

car 0.9974 0.9973 0.9724 0.9942 0.9533 0.9907 0.9742

contraceptive 0.7253 0.7341 0.7040 0.7015 0.6373 0.7014 0.7126

diabetic 0.7289 0.7335 0.7133 0.6810 0.6408 0.6955 0.7001

flare 0.9235 0.9255 0.9109 0.9076 0.8629 0.9089 0.9193

krvskp 0.9983 0.9991 0.9975 0.9979 0.9947 0.9960 0.9903

page-blocks 0.9885 0.9902 0.9576 0.9477 0.9057 0.9553 0.9773

penbased 0.9991 0.9989 0.9897 0.9889 0.9873 0.9883 0.9646

phoneme 0.9446 0.9468 0.9061 0.9032 0.8282 0.9037 0.8735

ring 0.9837 0.9854 0.9402 0.9334 0.9402 0.9614 0.8389

seismicbumps 0.7057 0.7739 0.7248 0.7464 0.5252 0.7207 0.7601

splice 0.9902 0.9893 0.9683 0.9811 0.9586 0.9756 0.9629

steelfaults 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.9814 0.9808 0.9796 0.9819 0.9719

thyroid 0.9997 0.9997 0.9977 0.9964 0.9948 0.9962 0.9982

titanic 0.7582 0.7615 0.7100 0.7549 0.6755 0.7549 0.7389

turkiye 0.8532 0.8495 0.8182 0.8402 0.7384 0.8345 0.8325

twonorm 0.9677 0.9828 0.8895 0.8868 0.9216 0.9398 0.8538

waveform 0.9493 0.9518 0.8940 0.8994 0.8842 0.9117 0.8924

Average rank 2.025 1.425 4.425 4.375 6.375 4.225 5.150

optimized baseline ensemble statistically equivalent does not concern us; we perform a similar test

in Section 5.3, Figure 5.7, and PUMA-star was found to be statistically different from both baseline

ensembles. Also note that PUMA-star and the optimized baseline ensemble are on the edge of the

critical difference distance. We believe the outcome from Figure 6.13 is due to the addition of EDNEL

into the group, which diluted the analysis power of the Nemenyi test. Nonetheless, PUMA-star is

the best algorithm in this group. Unfortunately, EDNEL is outperformed by the optimized baseline

ensemble, at least when using aligned ranks, which takes into account the average performance of

each method in each dataset. On another note, notice that both baseline ensembles present similar

rank values; that is, the benefit from individually optimizing each base classifier does not significantly

improve the predictive performance, at least not for this group of datasets. The unweighted AUCs for

this group are shown in Table 6.11.

We already expected the results shown in Figure 6.14: both EAs outperform random search

on the space of solutions. The p-value for the Friedman aligned ranks test is zero. Note that random

search is so inferior to any one of the other two methods that makes the scale of the ranks very large,

139

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

PUMA-star
baseline ensemble (optimized) EDNEL (with CN2)

baseline ensemble (unoptimized)

CD

Figure 6.13: Critical difference graph for PUMA-star, EDNEL (with CN2), and both versions of baseline

ensembles: one unoptimized (using base classifiers with their default hyper-parameters), and another

that just ensembles the individually-optimized base classifiers by means of a grid search. Note that

the ranks are aligned.

Table 6.11: Unweighted AUCs for PUMA-star, EDNEL with CN2, and two baseline ensembles: one

with its default hyper-parameters from Weka, and another with its members individually optimized by

means of a grid search. Best algorithm for each dataset is shown in bold.

dataset
EDNEL

(with CN2)

PUMA-star
baseline ensemble

(unoptimized)

baseline ensemble

(optimized)

banana 0.9587 0.9588 0.9529 0.9582

banknotes 0.9970 0.9969 0.9980 0.9967

car 0.9974 0.9973 0.9959 0.9939

contraceptive 0.7253 0.7341 0.7278 0.7280

diabetic 0.7289 0.7335 0.7188 0.7302

flare 0.9235 0.9255 0.9218 0.9236

krvskp 0.9983 0.9991 0.9986 0.9989

pageblocks 0.9885 0.9902 0.9885 0.9910
penbased 0.9991 0.9989 0.9992 0.9988

phoneme 0.9446 0.9468 0.9374 0.9349

ring 0.9837 0.9854 0.9824 0.9816

seismicbumps 0.7057 0.7739 0.6693 0.7667

splice 0.9902 0.9893 0.9876 0.9871

steelfaults 1.0000 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.9984 0.9979

thyroid 0.9997 0.9997 0.9997 0.9996

titanic 0.7582 0.7615 0.7566 0.7588

turkiye 0.8532 0.8495 0.8482 0.8521

twonorm 0.9677 0.9828 0.9825 0.9812

waveform 0.9493 0.9518 0.9508 0.9489

Average rank 2.600 1.625 2.850 2.925

Aligned rank 43.050 23.625 53.350 41.975

tricking Nemenyi into assessing that both EAs are statistically similar, even though we already verified

that this is not the case. Predictive performance for random search is shown in Table 6.12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

PUMA-star
EDNEL (with CN2)

Random Search

CD

Figure 6.14: Critical difference graph for PUMA-star, EDNEL (with CN2), and random search. The

random-search procedure has the same budget as both EAs (i.e., 50× 100 = 5, 000 random samples

from the solution space). Note that the ranks are aligned.

Up to now, the presented algorithms were interpretable to some degree – be it base clas-

sifiers, baseline ensembles, or EAs. The next two groups comprise non-interpretable algorithms. Take

boosted algorithms for example. For each iteration of Adaboost, the generated classifier is tailored

towards drawing hypothesis to the the most difficult-to-classify instances. For this reason, the hy-

potheses do not fit the entire dataset, but a piece of it. It is not enough to understand a single clas-

sifier in this type of ensemble; one has to see the whole picture to understand the contribution of

140

Table 6.12: Unweighted AUCs for PUMA-star, EDNEL with CN2, and random search in the space of

solutions. Best algorithm for each dataset is shown in bold.

dataset EDNEL (with CN2) PUMA-star Random Search

banana 0.9587 0.9588 0.8265

banknotes 0.9970 0.9969 0.9853

car 0.9974 0.9973 0.9459

contraceptive 0.7253 0.7341 0.6398

diabetic 0.7289 0.7335 0.6803

flare 0.9235 0.9255 0.9234

krvskp 0.9983 0.9991 0.9902

pageblocks 0.9885 0.9902 0.9367

penbased 0.9991 0.9989 0.9906

phoneme 0.9446 0.9468 0.8221

ring 0.9837 0.9854 0.9607

seismicbumps 0.7057 0.7739 0.6092

splice 0.9902 0.9893 0.9543

steelfaults 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.9772

thyroid 0.9997 0.9997 0.9995

titanic 0.7582 0.7615 0.7248

turkiye 0.8532 0.8495 0.7342

twonorm 0.9677 0.9828 0.9514

waveform 0.9493 0.9518 0.8781

Average rank 1.725 1.325 2.950

Aligned rank 22.225 18.925 50.350

ensemble members, which adds complexity to the analysis. Besides – and because – of this effect,

boosted algorithms present in general better predictive performance than their evolutionary counter-

parts (PUMA-star and EDNEL with CN2), on average, although no statistical difference was detected

with Nemenyi (Figure 6.15). The Friedman test for this group yielded a p-value of 4.34e− 3. The best

algorithm in this group, according to the average rank, is the Boosted (and grid-search optimized) ver-

sion of SimpleCart, followed by PUMA-star. EDNEL (with CN2) is in fourth place, also behind boosted

JRip. At a first glance, this seems to be bad news for the EAs. However, by looking at it from another

perspective, this also means that prioritizing interpretability (which in general hinders predictive per-

formance, as discussed in Section 2.3) does not significantly decreases predictive performance when

using EAs. This can be due to the EA’s capability of performing a global robust search on the space of

solutions. Unweighted AUCs for methods in this group are shown in Table 6.13.

1 2 3 4 5 6 7 8

SimpleCart (boosted)

PUMA-star

JRip (boosted)

EDNEL (with CN2) PART (boosted)

DecisionTable (boosted)

J48 (boosted)

Adaboost

CD

Figure 6.15: Critical difference graph for PUMA-star, EDNEL (with CN2), AdaBoost, and boosted base

classifiers, all optimized with grid search.

141

Table 6.13: Unweighted AUCs for PUMA-star, EDNEL with CN2, Adaboost, and boosted base classifiers.

Best algorithm for each dataset is shown in bold.

dataset
EDNEL (with

CN2)
PUMA-star Adaboost

J48

(boosted)

SimpleCart

(boosted)

JRip

(boosted)

PART

(boosted)

Decision

Table

(boosted)

banana 0.9587 0.9588 0.7842 0.9564 0.9385 0.9598 0.9589 0.8899

banknotes 0.9970 0.9969 0.9997 0.9990 0.9997 0.9996 0.9993 0.9996

car 0.9974 0.9973 0.8297 0.9967 0.9997 0.9948 0.9983 0.9937

contraceptive 0.7253 0.7341 0.5441 0.6866 0.6887 0.6348 0.6702 0.6942

diabetic 0.7289 0.7335 0.7537 0.7273 0.7609 0.7294 0.7231 0.7068

flare 0.9235 0.9255 0.6707 0.8992 0.9039 0.8814 0.8997 0.8981

krvskp 0.9983 0.9991 0.9953 0.9981 0.9975 0.9984 0.9972 0.9988

pageblocks 0.9885 0.9902 0.8778 0.9857 0.9925 0.9843 0.9913 0.9517

penbased 0.9991 0.9989 0.7085 0.9994 0.9993 0.9996 0.9993 0.9979

phoneme 0.9446 0.9468 0.8836 0.9511 0.9544 0.9374 0.9365 0.9044

ring 0.9837 0.9854 0.9946 0.9894 0.9915 0.9929 0.9900 0.9895

seismicbumps 0.7057 0.7739 0.7486 0.5865 0.6542 0.7066 0.6099 0.7295

splice 0.9902 0.9893 0.9681 0.9829 0.9884 0.9897 0.9846 0.9862

steelfaults 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.7353 0.9994 0.9996 0.9995 0.9990 0.9989

thyroid 0.9997 0.9997 0.9895 0.9989 0.9980 0.9994 0.9978 0.9930

titanic 0.7582 0.7615 0.7466 0.7571 0.7605 0.7586 0.7578 0.7559

turkiye 0.8532 0.8495 0.7587 0.6625 0.7385 0.7316 0.6942 0.8333

twonorm 0.9677 0.9828 0.9965 0.9910 0.9936 0.9944 0.9906 0.9946

waveform 0.9493 0.9518 0.8795 0.9556 0.9599 0.9633 0.9556 0.9651

Average rank 4.350 3.600 6.000 5.100 3.275 3.750 4.925 5.000

Finally, we compare the EAs with Random Forests and a version of Random Forests that

uses the same algorithm to extract rules from the trees in the ensemble. The p-value for Friedman

aligned ranks test is zero, allowing us to proceed with a Nemenyi test. The only significant difference

found was between Random Forests with rules and the other three algorithms; no statistical difference

was detected between Random Forests, PUMA-star, and EDNEL (with CN2). By analyzing the average

ranks of Figure 6.14, one can see that the best method was Random Forests, followed by PUMA-star,

EDNEL (with CN2), and then Random Forests with rules. This indicates that simply applying the rule

extractor algorithm as a post-hoc method over Random Forests significantly decreases its predictive

performance. On the other hand, EDNEL can effectively accommodate a rule extract algorithm in

its procedure, while not losing too much in terms of predictive performance – the lack of statistical

difference is regarding the original version of Random Forests. The Unweighted AUCs for all methods

are shown in Table 6.14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Random Forest
PUMA-star EDNEL (with CN2)

Random Forest (CN2 rules)

CD

Figure 6.16: Critical difference graph for PUMA-star, EDNEL (with CN2), Random Forests, and rules

extracted from Random Forests using the CN2 algorithm. Note that the ranks are aligned.

142

Table 6.14: Unweighted AUCs for PUMA-star, EDNEL with CN2, grid-search optimized Random Forests,

and rules extracted with CN2 algorithm from the optimized Random Forests. Best algorithm for each

dataset is shown in bold.

dataset EDNEL (with CN2) PUMA-star Random Forest
Random Forest (CN2

rules)

banana 0.9587 0.9588 0.9637 0.9308

banknotes 0.9970 0.9969 0.9999 0.9941

car 0.9974 0.9973 0.9921 0.9474

contraceptive 0.7253 0.7341 0.7045 0.6492

diabetic 0.7289 0.7335 0.7715 0.6929

flare 0.9235 0.9255 0.9090 0.8508

krvskp 0.9983 0.9991 0.9988 0.9963

pageblocks 0.9885 0.9902 0.9930 0.9488

penbased 0.9991 0.9989 0.9997 0.9916

phoneme 0.9446 0.9468 0.9671 0.9059

ring 0.9837 0.9854 0.9940 0.9712

seismicbumps 0.7057 0.7739 0.7543 0.6099

splice 0.9902 0.9893 0.9957 0.9504

steelfaults 1.0000 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.9997 0.9889

thyroid 0.9997 0.9997 0.9999 0.8558

titanic 0.7582 0.7615 0.7550 0.7234

turkiye 0.8532 0.8495 0.8305 0.7026

twonorm 0.9677 0.9828 0.9965 0.9666

waveform 0.9493 0.9518 0.9684 0.9101

Average rank 2.450 1.950 1.675 3.925

Aligned rank 36.725 29.825 25.575 69.875

Comparison to Random Forests

The previous section compared EDNEL and PUMA-star to the “default” configuration of Ran-

dom Forests, with a sufficient number of trees in the ensemble (i.e., 1000). One argument that the

reader could make is that if a more manageable number of trees was used (say, as many trees as there

are models in the EAs’ ensembles), then direct inspection of Random Forests trees would be humanly

possible, while maintaining high predictive performance. We recall the reader that, while this is possi-

ble, Random Forests builds trees based on randomization; the choice of attributes to use in the inner

nodes for each tree is randomized, and odd choices are often present in trees. Consider for exam-

ple the play tennis dataset, introduced in Section 2.3.1, Table 2.2. The attributes that are the better

predictors to whether play tennis or not are, in decreasing order of power: Outlook, Humidity, Tem-

perature, and Wind. It is well within the realm of possibility that most trees in Random Forests still put

Outlook as root node, but then opt more often than not for Wind, Humidity, and finally Temperature,

effectively subverting the order of impurity decrease of attributes.

Still, even if the trees are not effectively explaining the underlying data, but only randomly

guessing a path of tests that best fits them, a human user could grasp the dataset concept from a

small-ish number of trees. If we use a sufficiently small number of trees, it could be possible to also keep

the high predictive performance of Random Forests, right? To answer this question, we conducted a

separated experiment, comparing EDNEL with CN2 rules and PUMA-star to two versions of Random

Forests (one with and another without CN2 rules, as explained in the previous section), both with 5
trees in the ensemble (to match the ensemble size of the EAs). We follow the same protocol of the

previous section, using Friedman aligned ranks, since four classifiers are being compared, followed by

143

a Nemenyi test. Confidence interval for both tests is 0.05. The unweighted areas under the ROC curve

of all methods are shown in Table 6.15.

Table 6.15: Unweighted AUCs for PUMA-star, EDNEL with CN2, grid-search optimized Random Forests

(with only five trees in the ensemble), and rules extracted with CN2 algorithm from optimized Random

Forests (again with five trees in the ensemble). Best algorithm for each dataset is shown in bold.

dataset EDNEL (with CN2) PUMA-star
Random Forest

(5 trees)

Random Forest

(5 trees,

CN2 rules)

banana 0.9587 0.9588 0.9389 0.9162

banknotes 0.9970 0.9969 0.9982 0.9961

car 0.9974 0.9973 0.9758 0.9246

contraceptive 0.7253 0.7341 0.6606 0.6410

diabetic 0.7289 0.7335 0.7073 0.6825

flare 0.9235 0.9255 0.8820 0.8173

krvskp 0.9983 0.9991 0.9974 0.9939

pageblocks 0.9885 0.9902 0.9600 0.9504

penbased 0.9991 0.9989 0.9984 0.9901

phoneme 0.9446 0.9468 0.9350 0.8912

ring 0.9837 0.9854 0.9759 0.9507

seismicbumps 0.7057 0.7739 0.6719 0.5700

splice 0.9902 0.9893 0.9802 0.9367

steelfaults 1.0000 1.0000 0.9999 0.9982

texture 0.9971 0.9981 0.9965 0.9824

thyroid 0.9997 0.9997 0.9996 0.8325

titanic 0.7582 0.7615 0.7590 0.7172

turkiye 0.8532 0.8495 0.7790 0.6454

twonorm 0.9677 0.9828 0.9720 0.9425

waveform 0.9493 0.9518 0.9305 0.9005

Average rank 1.850 1.350 2.800 4.000

Aligned rank 25.225 21.675 46.150 68.950

The Friedman Aligned ranks test yields a value of zero, which refuses the null hypothesis.

Proceeding with a Nemenyi test (whose critical difference graph is shown in Figure 6.17), we can see

that only EDNEL (with CN2) and PUMA-star are statistically equivalent; both methods far surpasses

the average aligned rank of Random Forests (5 trees), and Random Forests with CN2 rules (5 trees).

Thus, and confirming what the authors in [212] noted, it is evident that Random Forests requires a

sufficient amount of trees in the forest to achieve good results and stability.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

PUMA-star
EDNEL (with CN2) Random Forest (5 trees)

Random Forest (CN2 rules + 5 trees)

CD

Figure 6.17: Critical difference graph for PUMA-star, EDNEL (with CN2), Random Forests (5 trees), and

rules extracted from Random Forests using CN2 algorithm (5 trees). Note that ranks are aligned.

Comparison to Adaboost and boosted base classifiers

Likewise, the reader could make a point that, since the boosted SimpleCart classifier pre-

sented better predictive performance (according to average rank) than both EDNEL with CN2 rules

and PUMA-star, it could be possible that if boosted SimpleCart had less classifiers, it could achieve

good performance while also being interpretable – after all, one of the points we make for consid-

ering EDNEL and PUMA interpretable is the fact that produced ensembles never have more than five

144

classifiers. We recall the reader that we do not consider boosted classifiers interpretable, due to the

fact that ensemble members from these algorithms are trained to classify harder instances (which, in

most cases, are outliers), instead of presenting a general hypothesis, which is the case for both EDNEL

and PUMA ensemble members. Hence, to understand the whole dataset, one has to understand each

and every ensemble member from boosted classifiers.

However, the reader could make the same argument than from previous section: if the en-

semble is small enough (say, composed from five base classifiers), and composed solely from white-box

classifiers, then it is still possible to interpret each end every one of them. To show that this approach is

inadequate, we carry another experiment, this time comparing PUMA-star and EDNEL with CN2 rules

to Adaboost with five ensemble members, as well as each one of the boosted base classifiers (namely

J48, SimpleCart, JRip, PART, and DecisionTable) with exactly five classifiers in the final ensemble –

which is the maximum amount of classifiers that either EDNEL and PUMA-star have in their ensem-

bles. Since the only hyper-parameter optimized for boosted algorithms is the number of ensemble

members, these algorithms are not grid-search optimized; only EDNEL and PUMA-star undergo this

procedure, described in Section 6.2.1. We use a Friedman test (since eight algorithms are being com-

pared), followed by a Nemenyi test. Confidence interval for both tests is 0.05. The unweighted areas

under the ROC curve of all methods are shown in Table 6.16.

Table 6.16: Unweighted AUCs for PUMA-star, EDNEL with CN2, Adaboost, and boosted base classifiers:

J48, SimpleCart, PART, JRip, and DecisionTable. While EDNEL and PUMA-star can have from one to five

classifiers, all other algorithms have exactly five ensemble members. Best algorithm for each dataset

is shown in bold.

dataset
EDNEL

(with CN2)
PUMA-star

Adaboost

(5)

J48

(B, 5)

SimpleCart

(B, 5)

JRip

(B, 5)

PART

(B, 5)

Decision

Table

(B, 5)

banana 0.9587 0.9588 0.6995 0.9562 0.9458 0.9579 0.9586 0.8846

banknotes 0.9970 0.9969 0.9631 0.9994 0.9986 0.9989 0.9996 0.9977

car 0.9974 0.9973 0.8297 0.9891 0.9985 0.9801 0.9991 0.9925

contraceptive 0.7253 0.7341 0.5441 0.6922 0.6691 0.6358 0.6695 0.6798

diabetic 0.7289 0.7335 0.6618 0.7107 0.6660 0.7020 0.7013 0.6938

flare 0.9235 0.9255 0.6707 0.8964 0.9049 0.8779 0.8979 0.8957

krvskp 0.9983 0.9991 0.9150 0.9990 0.9980 0.9994 0.9993 0.9987

page-blocks 0.9885 0.9902 0.8775 0.9791 0.9817 0.9704 0.9840 0.9405

penbased 0.9991 0.9989 0.7085 0.9992 0.9992 0.9992 0.9993 0.9892

phoneme 0.9446 0.9468 0.8095 0.9315 0.9336 0.9238 0.9167 0.8971

ring 0.9837 0.9854 0.7222 0.9832 0.9761 0.9822 0.9890 0.9615

seismicbumps 0.7057 0.7739 0.7547 0.6580 0.6487 0.7184 0.6426 0.7191

splice 0.9902 0.9893 0.9525 0.9852 0.9852 0.9876 0.9829 0.9757

steelfaults 1.0000 1.0000 0.8112 1.0000 1.0000 1.0000 1.0000 1.0000
texture 0.9971 0.9981 0.7353 0.9983 0.9976 0.9988 0.9987 0.9888
thyroid 0.9997 0.9997 0.9823 0.9997 0.9997 0.9995 0.9991 0.9965

titanic 0.7582 0.7615 0.7396 0.7594 0.7594 0.7597 0.7637 0.7570

turkiye 0.8532 0.8495 0.7591 0.6550 0.7298 0.7315 0.6995 0.8298

twonorm 0.9677 0.9828 0.8587 0.9733 0.9733 0.9840 0.9886 0.9555

waveform 0.9493 0.9518 0.8578 0.9285 0.9231 0.9343 0.9310 0.9386

Average rank 3.425 2.475 7.500 4.350 4.800 4.150 3.600 5.700

The best algorithm from this experiment is PUMA-star (with an average ranking of 2.475),

followed by EDNEL with CN2 rules (3.425), then boosted base classifiers PART (3.600), JRip (4.150),

J48 (4.350), SimpleCart (4.800), DecisionTable (5.700), and finally the original Adaboost (7.500). The

Friedman test yields a p-value of zero, with following Nemenyi post-hoc tests being shown in the critical

145

difference graph of Figure 6.18. It is important to note that, due to the high algorithms-to-datasets

ratio, the graph is being compressed, thus showing some equivalences that would be unlikely to occur

if the number of compared methods were lower.

1 2 3 4 5 6 7 8

PUMA-star
EDNEL (with CN2)

PART (b, 5)
JRip (b, 5) J48 (b, 5)

SimpleCart (b, 5)
DecisionTable (b, 5)
Adaboost (5)

CD

Figure 6.18: Critical difference graph for EDNEL with CN2 rules, PUMA-star, AdaBoost, and boosted

base classifiers. While PUMA and EDNEL can have between one and five classifiers, the remaining

algorithms all have five ensemble members.

With this experiment, we conclude that PUMA-star and EDNEL with CN2 are tailored to the

task of inducing smallish, interpretable ensembles of white-box models; whereas the greedy technique

of boosting is inadequate to this task. Indeed, the original Adaboost is the worst algorithm from this

group. We speculate that this is because because it uses Decision Stumps as its default base classifier,

which is not a strong classifier per se. On the other hand, base classifiers (J48, SimpleCart, JRip, PART,

DecisionTable) are already well-performing classifiers on their on, being only benefited from boosting –

although not benefited enough to surpass either EDNEL or PUMA regarding predictive performance.

6.2.3 Holdout experimental setup

This section describes the second experiment carried on EDNEL and PUMA, this time employ-

ing a holdout procedure. This experiment is aimed at comparing these algorithms to AUTOCVE [161,

162], a co-evolutionary algorithm. AUTOCVE uses two populations: one Genetic Programming (GP)

population, for evolving ensemble members; and a Genetic Algorithm (GA) population, for selecting

said members. AUTOCVE is non-interpretable in three fronts. First, it uses ensemble members that are

already non-interpretable (e.g. Random Forests [24], XGBoost [40], among others). Second, the GP

algorithm also performs transformations on the input data. Finally, there is no compromise in evolving

small-ish ensembles: the number of ensemble members is bounded by the GA population size.

The experimental setup described in this section is the same proposed by AUTOCVE authors

in their most recent work [162]: for each dataset, a holdout procedure is set, splitting datasets in a

70/30 proportion, and the mean balanced accuracy of 10 runs is collected. We do not submit AU-

TOCVE to the nested cross-validation procedure, described in Section 6.2.1, because we could not

execute it in any of our machines – segmentation faults, temporary memory folders being filled to the

146

maximum, and CPUs being overflowed with a torrent of subprocesses plagued the experiment. E-mails

were exchanged back and forth with the corresponding author, Celio Larcher, in hopes of solving these

issues, but to no avail. Finally, we asked for the experimental metadata from their algorithm and base-

line methods. We kindly thank the authors for attending our request, which allowed the experiments

in this section. Hence, we compare EDNEL and PUMA to other two methods: the aforementioned AU-

TOCVE, and XGBoost [40], which is a gradient tree boosting algorithm. Both algorithms are executed

with their default hyper-parameters.

Once we have the metadata for the baseline methods, we had only to run our EAs, EDNEL

with CN2 and PUMA. We will refer to our algorithms as EDNEL-v2, and PUMA-v2, to make distinctions

between the versions described in this section and the versions tested in the nested cross-validation

experiment, described in Section 6.2.1. The new naming is necessary because new modifications were

made to both algorithms. EDNEL-v2 and PUMA-v2 perform an internal 5-fold cross validation, which

is the same procedure adopted by AUTOCVE. We use balanced accuracy as fitness function to match

AUTOCVE’s function. For equivalent hyper-parameters (e.g., population size, number of generations),

we use AUTOCVE values. For other hyper-parameters, such as learning rate, selection share, we use the

most frequently chosen hyper-parameters that yielded the best unweighted AUC when performing a

grid search in the experiments of Section 6.2.1. While this might seem unfair, since neither AUTOCVE

or XGBoost undergo a hyper-parameter optimization process, we should note that the datasets used in

this section are different from the ones used in Section 6.2.1. Besides, there is no evidence to support

that either PUMA or EDNEL benefits from a common set of hyper-parameters. Hyper-parameters used

by three algorithms are shown in Table 6.17, while the datasets used in this experiment are shown in

Table 6.18.

Hardware specifications and source code

For this experiment, both EDNEL-v2 and PUMA-v2 were executed in the same machine. As

stated earlier, we do not run AUTOCVE or XGBoost, using the results provided by the authors in their

work [162]. The hardware specifications for the T-Machine are described in Table 6.19. PUMA and ED-

NEL source codes are available respectively at https://github.com/henryzord/PBIL and https://github.

com/henryzord/ednel, while AUTOCVE source code is available at https://github.com/celiolarcher/AUTOCVE.

6.2.4 Holdout experimental results

For this set of experiments, we repeat the same statistical tests used so far. We found

that AUTOCVE is the best algorithm, with an average aligned rank of 10.679, followed by XGBoost

(23.321), EDNEL-v2 (37.286), and finally PUMA-v2 (42.714). The Friedman aligned ranks test yields

a p-value of 1e − 5, which discards the null hypothesis with high confidence. Pairwise comparisons

find that AUTOCVE is statistically different from both EDNEL-v2 and PUMA-v2, but similar to XGBoost;

XGBoost is also statistically similar to EDNEL-v2, but different from PUMA-v2. Finally, EDNEL-v2 and

https://github.com/henryzord/PBIL
https://github.com/henryzord/ednel
https://github.com/henryzord/ednel
https://github.com/celiolarcher/AUTOCVE

147

Table 6.17: Hyper-parameters used in EDNEL-v2, PUMA-v2, and AUTOCVE.

Algorithm Hyper-parameter Values

EDNEL-v2 Learning rate 0.52

EDNEL-v2 Selection share 0.5

EDNEL-v2 Population size 50

EDNEL-v2 Generations 100

EDNEL-v2 Fitness function balanced accuracy

EDNEL-v2 Fitness calculation method internal 5-fold CV

EDNEL-v2 Evolution timeout one and a half hour

EDNEL-v2 Individual timeout one minute

EDNEL-v2 Burn-in 100

EDNEL-v2 thinning factor 0

EDNEL-v2 Early stop generations 20

EDNEL-v2
Maximum probabilistic parents per variable

(same value for all variables)
1

EDNEL-v2 Delay structure learning 5

EDNEL-v2 individual to report best overall

PUMA-v2 Learning rate 0.13

PUMA-v2 Selection share 0.3

PUMA-v2 Population size 50

PUMA-v2 Generations 100

PUMA-v2 Fitness function balanced accuracy

PUMA-v2 Fitness calculation method internal 5-fold CV

PUMA-v2 Evolution timeout one and a half hour

PUMA-v2 Individual timeout one minute

PUMA-v2 individual to report best from last generation

AUTOCVE Population: base classifiers (GP) 50

AUTOCVE Population: ensembles (GA) 50

AUTOCVE Generations 100

AUTOCVE Mutation rate: base classifiers (GP) 0.9

AUTOCVE Mutation rate: ensembles (GA) 0.1

AUTOCVE Crossover rate: base classifiers (GP) 0.9

AUTOCVE Crossover rate: ensembles (GA) 0.9

AUTOCVE Evolution timeout one hour and half

AUTOCVE Individual timeout one minute

AUTOCVE Fitness function balanced accuracy

AUTOCVE Fitness calculation method internal 5-fold CV

Table 6.18: Datasets used in this experiment. The ID column refers to the ID as it appears in the work

of Balaji and Allen [12], which is same name system used in AUTOCVE [161, 162].

ID name instances attributes classes

15 BREAST-W 699 10 2

37 DIABETES 768 9 2

307 VOWEL 990 13 11

451 IRISH 500 6 2

458 ANALCATDATA AUTHORSHIP 841 71 4

469 ANALCATDATA DMFT 797 5 6

1476 GAS-DRIFT 13910 129 6

1485 MADELON 2600 501 2

1515 MICRO-MASS 571 1301 20

6332 CYLINDER-BANDS 540 38 2

23517 NUMERAI28.6 96320 22 2

40496 LED-DISPLAY-DOMAIN-7DIGIT 500 8 10

40499 TEXTURE 5500 41 11

40994 CLIMATE-MODEL-SIMULATION-CRASHES 540 19 2

148

Table 6.19: Hardware components of the machine used in the experiments.

Specification T-Machine

Processor Intel Core i7-5930K

Core speed 3.7GHz

Cores 12

Architecture x86_64

RAM Memory 96GB

Operating System Ubuntu 20.04.2 LTS

PUMA-v2 were found to be equivalent. Individual balanced accuracy for each method are shown in

Table 6.20, with the critical difference graph shown in Figure 6.19.

These results are expected for a number of reasons. AUTOCVE has no limitation on (i) the

number of classifiers in the ensemble (except for the GA population-size hyper-parameter), (ii) type of

base classifiers (i.e., interpretable or not), and (iii) the type of transformations that can be performed

on the input data. All these limitations are present in our algorithms EDNEL-v2 and PUMA-v2. Be-

sides, AUTOCVE is an EA, which allows it to perform a global search on the space of solutions. This

can help explain why it outperformed XGBoost, although they are still statistically equivalent. Another

way of interpreting these results is that EAs are powerful optimization methods; when applied uncon-

strained to a problem, they can outperform well-established algorithms. Comparatively, when applied

with constraints, they can still extract the best achievable outcome (e.g., XGBoost and EDNEL-v2).

However, when two versions of EAs are compared, one unconstrained and another constrained, the

unconstrained version is likely to win – and our experiments demonstrate just that (e.g., AUTOCVE

and EDNEL-v2).

Finally, the fact that EDNEL-v2 outperforms PUMA-v2 in this experiment (even though both

methods are statistically equivalent) is, to us, another indication that EDNEL could actually be over-

fitting the training set. From Figure 6.11 from the previous section, it is safe to assume that EDNEL

takes longer to run than PUMA; hence, if for some datasets EDNEL was not able to sample a single solu-

tion, it defaults to the unoptimized baseline ensemble (this mechanism is described in Section 6.1.2).

Therefore, it could be the case that EDNEL is actually benefiting from this mechanism, while PUMA has

to perform yet another sampling procedure to sample at least one valid individual. Recall that EDNEL’s

baseline ensemble uses the Weka default hyper-parameters, which are likely to be good all-around

values; and PUMA, with only one individual, is more likely to generate a worse result than EDNEL.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

AUTOCVE
XGBOOST EDNEL-v2

PUMA-v2

CD

Figure 6.19: Critical difference graph for AUTOCVE, XGBoost, PUMA-v2, and EDNEL-v2. Note that the

ranks are aligned.

149

Table 6.20: Average balanced accuracy for all methods from 10 holdout runs and the respective stan-

dard deviations. Best algorithm for each dataset is shown in bold.

dataset (id) EDNEL-v2 PUMA-v2 AUTOCVE XGBoost

15 0.9522± 0.01 0.9491± 0.01 0.9589± 0.02 0.9539± 0.01

37 0.7035± 0.03 0.7098± 0.02 0.7244± 0.03 0.7291± 0.02
307 0.8461± 0.03 0.7986± 0.04 0.9816± 0.01 0.8663± 0.03

451 0.9169± 0.17 0.9139± 0.17 1.0000± 0.00 1.0000± 0.00
458 0.9628± 0.02 0.9200± 0.02 0.9938± 0.00 0.9747± 0.01

469 0.1918± 0.02 0.1840± 0.02 0.2181± 0.03 0.2177± 0.03

1476 0.9886± 0.00 0.9862± 0.00 0.9954± 0.00 0.9881± 0.00

1485 0.7596± 0.02 0.7536± 0.02 0.8709± 0.02 0.7257± 0.02

1515 0.7115± 0.17 0.7149± 0.18 0.9007± 0.02 0.8564± 0.02

6332 0.7033± 0.05 0.7006± 0.05 0.7877± 0.02 0.7720± 0.03

23517 0.5179± 0.00 0.5098± 0.01 0.5205± 0.00 0.5196± 0.00

40496 0.7325± 0.03 0.7231± 0.03 0.7354± 0.02 0.7090± 0.03

40499 0.9620± 0.00 0.9552± 0.01 0.9988± 0.00 0.9756± 0.00

40994 0.6709± 0.13 0.6676± 0.06 0.8458± 0.06 0.7061± 0.05

Average rank 2.929 3.714 1.107 2.250

Aligned rank 37.286 42.714 10.679 23.321

Individual interpretability analysis

Statistically, EDNEL-v2 and XGBoost are equivalent, so why should we consider EDNEL-v2

as a usable classifier? We perform an analysis of EDNEL-v2 ensemble members to verify whether the

gain in interpretability justifies the decrease in predictive performance.

We should recall that interpretability is difficult to be measured objectively, as discussed

in Section 2.3. For this reason, we perform a subjective analysis of the ensemble members, without

strong assumptions or conclusions.

We choose an ensemble produced by EDNEL-v2 on the LED-DISPLAY-DOMAIN-7DIGIT dataset

(ID 40496), which has 500 instances, 8 attributes, and 10 classes. The ensemble generated by EDNEL-

v2 uses all five base classifiers (namely J48, SimpleCart, PART, JRip, and DecisionTable), with majority

voting as aggregation policy, and is the best ensemble found in the last generation (100-th). The

ensemble members are shown in Tables 6.21, 6.22, 6.23, and Figures 6.20, 6.21.

We begin with the tree-based classifiers. Both J48 (Figure 6.20) and SimpleCart (Figure 6.21)

produce smaller trees. J48 model has 21 nodes in total, with 10 internal (decision) nodes, and 11 leaf

(outcome) nodes; while SimpleCart produces a tree with 19 nodes in total, from which 9 are internal

nodes, and 10 leaf nodes. While the dataset per se does not help with regards to interpretability (the

attributes are named VX , with X being the index of the attribute in the dataset), these trees are small

enough for a human reader to grasp the overall concept in a few minutes.

We proceed the analysis with rule-based classifiers. We recall that both PART (Table 6.21)

and JRip (Table 6.22) use an ordered list instead of a rule set. That is, the uppermost rule in the table

is the first to be analyzed; if it is triggered by an instance, then the instance belongs to the class given

by the rule. If this is not the case, then the next rule is analyzed, and so on until at least the last rule

is triggered or the default rule (which usually is the majority class) is chosen. PART produces a system

with 23 rules (including default clause), while JRip outputs a model with 11 rules. While these two

150

algorithm have more tests than tree-based classifiers (because each rule has several conditions), we

believe that 23 and 11 conditions would still qualify as simple models.

Next, we analyze the Decision Table model, in Table 6.23. With 29 rows, Decision Table is

the largest model, however not by a lot. The decision table shown here will classify an instance that

fulfills all criteria (i.e., conditions expressed in the columns). If an instance does not fulfill a single

criterion, then the row is discarded and the instance must be "carried" over to the next row. An aspect

of this model that might compromise interpretability is its default rule, which uses a nearest neighbor

approach to assign instances that do not fit any other rule. While this is not as intuitive as assigning

the majority class for all unmatched instances, there is still an interpretation to this practice: we assign

the class of the instance that resembles the most the unknown example. Additionally, classification

with decision tables can be quick, since a user can acquire intuition over some criteria. For example, if

the instance in question for attribue V1 has a value greater than 0.5, than it is evident that it will not

satisfy any of the multiple rows that have the (−∞–0.5] condition for the respective column in the

table.

Finally, we can interpret the relationship between variables in EDNEL’s Probabilistic Graph-

ical Model (a Dependency Network), shown in Figure 6.22. As it was explained in Section 6.1.2, the

graphical model starts only with deterministic relationships (Figure 6.22a). As the training process pro-

gresses, probabilistic relationships can be learned by EDNEL (Figure 6.22b). In the last generation, for

example, we learn that the aggregation method depends, to some degree, on PART’s pruning policy.

Likewise, J48 pruning policy influences on the search algorithm for Decision Table.

Figure 6.20: J48 classifier from the best ensemble found by EDNEL-v2 for the LED-DISPLAY-DOMAIN-

7DIGIT dataset.

151

Table 6.21: PART classifier from the best ensemble found by EDNEL-v2 for the LED-DISPLAY-DOMAIN-

7DIGIT dataset.

conditions predicted class

(V2≤ 0.0) ∧ (V7≤ 0.0) ∧ (V1 > 0.0) ∧ (V5≤ 0.0) 7 (27.0/2.0)

(V5 > 0.0) ∧ (V6≤ 0.0) ∧ (V2≤ 0.0) ∧ (V4 > 0.0) ∧ (V7 > 0.0) 2 (15.0)

(V5 > 0.0) ∧ (V6≤ 0.0) ∧ (V2≤ 0.0) ∧ (V4≤ 0.0) 2 (6.0/2.0)

(V5 > 0.0) ∧ (V3≤ 0.0) ∧ (V4 > 0.0) ∧ (V1 > 0.0) 6 (24.0/4.0)

(V5 > 0.0) ∧ (V7 > 0.0) ∧ (V4 > 0.0) ∧ (V3 > 0.0) ∧ (V6 > 0.0) 8 (30.0/8.0)

(V2≤ 0.0) ∧ (V4 > 0.0) ∧ (V5≤ 0.0) ∧ (V6 > 0.0) ∧ (V1 > 0.0) 3 (23.0/3.0)

(V2≤ 0.0) ∧ (V4 > 0.0) ∧ (V5≤ 0.0) ∧ (V1 > 0.0) 2 (8.0/4.0)

(V2≤ 0.0) ∧ (V4 > 0.0) ∧ (V5≤ 0.0) 3 (7.0/2.0)

(V2≤ 0.0) ∧ (V6≤ 0.0) ∧ (V1≤ 0.0) 1 (5.0/3.0)

(V1≤ 0.0) ∧ (V2≤ 0.0) 1 (23.0/5.0)

(V1≤ 0.0) ∧ (V7≤ 0.0) ∧ (V5≤ 0.0) ∧ (V3 > 0.0) 4 (22.0/1.0)

(V5 > 0.0) ∧ (V6≤ 0.0) ∧ (V7 > 0.0) 8 (10.0/5.0)

(V3≤ 0.0) ∧ (V5≤ 0.0) ∧ (V1 > 0.0) ∧ (V4 > 0.0) 5 (25.0/3.0)

(V5 > 0.0) ∧ (V6 > 0.0) ∧ (V4≤ 0.0) ∧ (V3 > 0.0) 0 (29.0/7.0)

(V1≤ 0.0) ∧ (V7 > 0.0) ∧ (V5≤ 0.0) 4 (11.0/6.0)

(V1≤ 0.0) ∧ (V7≤ 0.0) 4 (10.0)

(V6≤ 0.0) 2 (9.0/3.0)

(V5 > 0.0) ∧ (V4 > 0.0) 8 (8.0/4.0)

(V5≤ 0.0) ∧ (V3 > 0.0) ∧ (V4 > 0.0) 9 (27.0/10.0)

(V3≤ 0.0) ∧ (V5≤ 0.0) 5 (7.0/3.0)

(V3≤ 0.0) 6 (7.0/3.0)

(V2 > 0.0) 9 (7.0/3.0)

default rule 3 (5.0/3.0)

Table 6.22: JRip classifier from the best ensemble found by EDNEL-v2 for the LED-DISPLAY-DOMAIN-

7DIGIT dataset.

conditions predicted class

(V1≤ 0) ∧ (V4≤ 0) ∧ (V2≤ 0) 1 (28.0/8.0)

(V3≤ 0) ∧ (V5≥ 1) ∧ (V6≥ 1) 6 (35.0/8.0)

(V4≤ 0) ∧ (V5≥ 1) ∧ (V6≥ 1) 0 (29.0/7.0)

(V2≥ 1) ∧ (V3≥ 1) ∧ (V5≤ 0) ∧ (V1≥ 1) 9 (37.0/14.0)

(V3≤ 0) ∧ (V2≥ 1) ∧ (V1≥ 1) ∧ (V5≤ 0) 5 (29.0/4.0)

(V4≤ 0) ∧ (V7≤ 0) ∧ (V1≥ 1) 7 (26.0/2.0)

(V7≤ 0) ∧ (V1≥ 1) ∧ (V5≤ 0) 7 (4.0/1.0)

(V2≤ 0) ∧ (V5≤ 0) ∧ (V3≥ 1) ∧ (V4≥ 1) ∧ (V7≥ 1) ∧ (V6≥ 1) 3 (26.0/2.0)

(V6≤ 0) 2 (46.0/15.0)

(V1≤ 0) ∧ (V7≤ 0) 4 (32.0/1.0)

default rule 8 (53.0/28.0)

152

Table 6.23: Decision Table classifier from the best ensemble found by EDNEL-v2 for the LED-DISPLAY-

DOMAIN-7DIGIT dataset. Columns denote attributes in the dataset, with the last column being the

class attribute; row values indicate the values, for each attribute, that an instance must meet to be

considered from that class.

v1 v2 v3 v4 v5 class

(−∞–0.5] (0.5–∞) (0.5–∞) (0.5–∞) (0.5–∞) 4

(0.5–∞) (0.5–∞) (0.5–∞) (0.5–∞) (0.5–∞) 8

(−∞–0.5] (−∞–0.5] (0.5–∞) (0.5–∞) (0.5–∞) 2

(0.5–∞) (−∞–0.5] (0.5–∞) (0.5–∞) (0.5–∞) 2

(−∞–0.5] (0.5–∞) (−∞–0.5] (0.5–∞) (0.5–∞) 6

(0.5–∞) (0.5–∞) (−∞–0.5] (0.5–∞) (0.5–∞) 6

(0.5–∞) (−∞–0.5] (−∞–0.5] (0.5–∞) (0.5–∞) 2

(−∞–0.5] (−∞–0.5] (−∞–0.5] (0.5–∞) (0.5–∞) 0

(−∞–0.5] (0.5–∞) (0.5–∞) (−∞–0.5] (0.5–∞) 0

(0.5–∞) (0.5–∞) (0.5–∞) (−∞–0.5] (0.5–∞) 0

(−∞–0.5] (0.5–∞) (0.5–∞) (0.5–∞) (−∞–0.5] 4

(−∞–0.5] (−∞–0.5] (0.5–∞) (−∞–0.5] (0.5–∞) 1

(0.5–∞) (0.5–∞) (0.5–∞) (0.5–∞) (−∞–0.5] 9

(0.5–∞) (−∞–0.5] (0.5–∞) (−∞–0.5] (0.5–∞) 0

(0.5–∞) (0.5–∞) (−∞–0.5] (−∞–0.5] (0.5–∞) 6

(−∞–0.5] (−∞–0.5] (0.5–∞) (0.5–∞) (−∞–0.5] 3

(0.5–∞) (−∞–0.5] (0.5–∞) (0.5–∞) (−∞–0.5] 3

(−∞–0.5] (0.5–∞) (−∞–0.5] (0.5–∞) (−∞–0.5] 4

(0.5–∞) (0.5–∞) (−∞–0.5] (0.5–∞) (−∞–0.5] 5

(0.5–∞) (−∞–0.5] (−∞–0.5] (−∞–0.5] (0.5–∞) 0

(0.5–∞) (−∞–0.5] (−∞–0.5] (0.5–∞) (−∞–0.5] 6

(0.5–∞) (0.5–∞) (0.5–∞) (−∞–0.5] (−∞–0.5] 9

(−∞–0.5] (0.5–∞) (0.5–∞) (−∞–0.5] (−∞–0.5] 4

(−∞–0.5] (−∞–0.5] (0.5–∞) (−∞–0.5] (−∞–0.5] 1

(0.5–∞) (−∞–0.5] (0.5–∞) (−∞–0.5] (−∞–0.5] 7

(0.5–∞) (0.5–∞) (−∞–0.5] (−∞–0.5] (−∞–0.5] 5

(−∞–0.5] (−∞–0.5] (−∞–0.5] (−∞–0.5] (−∞–0.5] 1

(0.5–∞) (−∞–0.5] (−∞–0.5] (−∞–0.5] (−∞–0.5] 7

Non-matches are assigned to the closest instance

153

Figure 6.21: SimpleCart classifier from the best ensemble found by EDNEL-v2 for the LED-DISPLAY-

DOMAIN-7DIGIT dataset.

6.3 Discussion and Final Remarks

We presented in this Chapter EDNEL, an Estimation of Distribution Algorithm for evolv-

ing ensembles of interpretable classifiers. EDNEL, as opposed to PUMA (the algorithm presented in

Chapter 5) uses a Dependency Network to infer relationship between variables (namely the hyper-

parameters of base classifiers). This allows EDNEL to draw relationship between variables in the prob-

lem, which can be further interpreted by a user. EDNEL produces an ensemble with at most five classi-

fiers, all from different learning algorithms (namely J48, SimpleCart, PART, JRip, and DecisionTable, from

the Weka Toolkit [113]). EDNEL can also choose between using a simple majority voting, a weighted

majority voting, or a rule extraction algorithm, that transforms J48, SimpleCart, and DecisionTable

models into a single rule-based rule set model.

Despite these improvements, in the nested-cross validation experiments (Section 6.2.1),

PUMA (from Chapter 5) was found to be superior than both versions of EDNEL, presenting a better

average rank while also being statistically different to both versions. PUMA-star and EDNEL with CN2

rules outperform all base classifiers and random search. PUMA-star outperforms both baseline ensem-

bles – be it with or without optimization – while EDNEL is statistically equivalent to the optimized

version.

When comparing evolutionary algorithms to non-interpretable baselines, both PUMA-star

and EDNEL with CN2 rules are statistically equivalent to all Adaboost versions, except for the original

one, which is outperformed by every other algorithm within this group. PUMA-star and EDNEL with

CN2 are also statistically equivalent to Random Forests. EDNEL with CN2 outperforms Random Forests

with CN2 – a proof that simply applying post-hoc explaining methods to already-existing predictive

models in the hope of achieving interpretability is not sufficient; it is necessary to develop an efficient

strategy to accommodate both interpretability and predictive performance.

154

checkError
Rate

pruning

usePrune

confidence
Factor
Value

subtree
Raising

crossVal

binary
Splits

JRip

search
Termination

direction

J48

Decision
Table

confidence
Factor
Value

PART

minNumObj

optimizations

useOneSE

pruning

useIBk

usePruning

search

useMDL
correction

doNotMake
SplitPoint

Actual
Value

SimpleCart

numFolds
Pruning

heuristic

binary
Splits

evaluation
Measure

Aggregator

useLaplace

minNo

collapse
Tree

minNumObj

folds

numFolds

useMDL
correction

numFolds

conservative
Forward
Selection

doNotMake
SplitPoint

Actual
Value

minNumObj

search
Backwards

(a) First generation

checkError
Rate

pruning

usePrune

confidence
Factor
Value

subtree
Raising

crossVal

binary
Splits

JRip

search
Termination direction

J48

Decision
Table

confidence
Factor
Value

PART

minNumObj

optimizations

useOneSE

pruning

useIBk

usePruning

search

useMDL
correction

doNotMake
SplitPoint

Actual
Value

SimpleCart

numFolds
Pruning

heuristic

binary
Splits

evaluation
Measure

Aggregator

useLaplace

minNo

collapse
Tree

minNumObj

folds

numFolds useMDL
correction

numFolds

conservative
Forward
Selection

doNotMake
SplitPoint

Actual
Value

minNumObj

search
Backwards

(b) 100th generation

Figure 6.22: Relationship between variables in EDNEL’s Dependency Network in the (a) first genera-

tion, and (b) last (100th) generation, during training on the LED-DISPLAY-DOMAIN-7DIGIT dataset (ID

40496). Arrows indicate the relationship between variables: heads point to children, whereas arrow

bases point to parents.

155

In another set of experiments, when constraining Adaboost and Random Forests to have five

base classifiers (the same constraint imposed on EDNEL and PUMA), EDNEL is capable of outperform-

ing the two former methods, being only outperformed by PUMA. This confirms an observation made

in Section 5.4, that it is inadequate to have small-ish ensembles learned from Adaboost and Random

Forests; if that is the case – and having small-ish ensembles is a proxy measure of interpretability –,

then an evolutionary algorithm (be it PUMA or EDNEL) is more appropriate for the task.

In a holdout experiment (Section 6.2.3), EDNEL presents better average rank than PUMA-

star, although being deemed still statistically similar to the latter according to a Nemenyi post-hoc

test.

With the data available at the moment, we are unable to pinpoint a reason for the results

from both experiments; EDNEL was expected to outperform PUMA, since it is the next iteration of that

algorithm with a more sophisticated behavior. However, the main suspicion is that EDNEL is actually

meta-overfitting the training data, since it requires more data to correctly learn relationships between

variables in its Dependency Network than PUMA, which does not make use of this structure. For the

holdout results in particular, we believe that since EDNEL takes longer to run than PUMA, for most

datasets the unoptimized baseline ensemble (i.e., the starting search point in the solution space) is

being used, which is already a good all-around set of hyper-parameters for the selected base classifiers.

Overall, we argument that PUMA (either version) should be prioritized as a robust algorithm

for inducing ensembles of interpretable classifiers. It is evident that using more powerful methods

(such as Adaboost and Random Forests) could achieve better results, but at the cost of sacrificing in-

terpretability. Moreover, PUMA-star and EDNEL use at most five base classifiers, while Random Forests

used 1000 among all experiments, and Adaboost versions ranged between 50 and 500.

As future work, we intend to investigate the meta-overfitting suspicion by testing EDNEL in

a new setup: using multiple datasets as input. EDNEL could find an overall set of hyper-parameters for

base classifiers that works well for different training datasets. The performance would be measured as

the average unweighted Area Under the ROC curve across multiple datasets. These hyper-parameters

could then be re-used for new, unseen datasets that present similar properties to the training datasets,

like number of instances, number of attributes, number of classes, class imbalance, or any other geo-

metrical/topological measure.

156

157

7. CONCLUSIONS

This thesis proposed new evolutionary algorithms for learning ensembles of interpretable

classifiers, namely PUMA – Probabilistic Univariate Estimation of Distribution Algorithm for Ensemble

Learning (Chapter 5) and EDNEL – Estimation of Dependency Network Algorithm for Ensemble Learn-

ing (Chapter 6). While investigating the capabilities of this class of evolutionary algorithm, we also

developed EEL (Chapter 4) and conducted a survey on evolutionary algorithms for ensemble learning

(Chapter 3).

While PUMA and EDNEL are conceptually similar, EDNEL presents the advantage of also

explaining the relationship between variable values when inducing ensembles. For example, EDNEL

can show dependencies between the pruning policy of a decision tree, the branching factor of an-

other decision tree, and the search policy of a Decision Table algorithm, all within the same ensemble.

Nonetheless, if such insights are not valuable to the user, we recommend using PUMA since it pre-

sented a better average rank across all experiments while also not being statistically similar to EDNEL.

To assess the performance of these two algorithms, two sets of experiments were con-

ducted. The first compared methods in a nested cross-validation framework, and compared EDNEL

and PUMA to a set of baseline algorithms, e.g., Random Forests, Adaboost, C4.5 (or J48), RIPPER (or

JRip), among others. While both EDNEL and PUMA produce ensembles of interpretable classifiers, none

of the baseline algorithms that were white-box models could achieve statistical equivalence to either

EDNEL or PUMA. EDNEL and PUMA are also statistically equivalent to powerful, black-box models (i.e.,

Random Forests and Adaboost).

In the second set of experiments (using a holdout dataset instead of cross-validation), ED-

NEL and PUMA were compared to AUTOCVE [161, 162], a co-evolutionary algorithm that employs

data transformation and uses powerful black-box models as base classifiers (e.g., XGBoost [40], Ran-

dom Forests [24]), and to XGBoost itself. For the evaluated datasets, AUTOCVE proved to be the

best algorithm regarding predictive performance. AUTOCVE is not statistically equivalent to any other

method, while XGBoost and EDNEL were statistically equivalent, tied in second. PUMA was the third

best algorithm in this experiment in terms of predictive performance. When considering interpretabil-

ity, however, only PUMA and EDNEL produce white-box models and do not transform the input space.

From all surveyed work, described in Chapter 3, no other algorithm operates in the three

stages of ensemble learning: generation, selection, and integration. We produced two algorithms to

this effect: PUMA and EDNEL. These algorithms also automatically adapt to the application domain

at hand: they can choose the best combination of hyper-parameters, base classifiers, and aggregation

policy to the dataset at hand. PUMA and EDNEL, by using already-interpretable white-box models,

and not relying on explanation methods applied to black-box models (e.g., SHAP [176]), also steer

towards producing interpretable ensembles – a shift in ensemble learning design that other proposed

work, be it well-established in the literature (e.g., Random Forests [24]), or recently published (e.g.,

AUTOCVE [161, 162]) do not take into account. By using our algorithms, a user has only five models

158

to interpret at most, which is much easier to analyze than, say, one hundred trees, as it is usually

the case with Random Forests. Finally, while it is known that white-box models are outperformed by

their black-box counterparts [35], we managed to achieve statistical equivalence to two well known

black-box models that often fare among the best algorithms in general [88], i.e., Random Forest and

Adaboost.

7.1 Limitations

There are two types of limitations that PUMA and EDNEL present. The first one is regarding

execution time. This is derived from the framework our methods are built upon, evolutionary algo-

rithms. Evolutionary algorithms will take longer to induce ensembles than greedy-search algorithms,

while consuming more memory and processing power. This is due to the population-based strategy

used. However, techniques can be employed to mitigate this effect [117]; we in fact made use of

parallelization in all of our algorithms to decrease running time during the experiments. Furthermore,

once an ensemble has been evolved, its prediction time will be exactly the same than an ensemble

that has the same base classifiers but was evolved using a greedy-search strategy.

The second type of limitation this work presents is intrinsic to the type of base classifier

our algorithms are evolving, white-box models. These models tend to present predictive performance

inferior to black-box models (e.g., neural networks), however are attractive because no explanation

model needs to be trained – the explanation model is the same as the predictive model. The experi-

ments conducted in Section 6.2.4 confirm our hypothesis; AUTOCVE, an evolutionary algorithm not

restricted to interpretability constraints (i.e., not restricted to using white-box models nor learning

small ensembles), performs significantly better than EDNEL and PUMA. The answer to this shortcom-

ing lies in the type of objective the user is willing to achieve. If it is adamant to have a predictive model

that is also interpretable, such as when one has to decide the possible treatments for a disease, then

our algorithms are a solid option; however, if one wishes to blindly trust the predictions of a black-box

model (or, in other words, if the stakes of the problem are not that high), then a black-box model is

more appropriate indeed.

Finally, a limitation that is specific to EDNEL is meta-overfitting, something that we suspect

occurred in the experiments of Section 6.2. The meta-overfitting would occur since more data is nec-

essary for EDNEL to learn its graphical model (a Dependency Network) structure, thus making EDNEL

commit errors when selecting hyper-parameter settings and classifiers for composing a model.

7.2 Future work

We now discuss opportunities for future work: features that we want to implement for

future iterations of our algorithms, or situations that we wish to investigate further. First, including

159

more datasets is desirable: although we tried to cover as many types of datasets as possible (e.g.,

many instances, few attributes; many attributes, few instances; many classes, binary classification,

etc.), there are certainly application domains not covered in this work. It might be the case that EDNEL

(given the proper corrections) could outperform PUMA in some of these new datasets: for example,

for gene expression problems, datasets usually have thousands of features and just tens or hundred

of instances.

Next, it would be interesting to investigate whether EDNEL could benefit, in terms of predic-

tive performance, from a Bayesian Network as its probabilistic graphical model as opposed to using a

Dependency Network. Dependency Networks allow cycles and explain correlation relationships better

than Bayesian Networks. While the use of Bayesian networks could confuse the user in terms of the

meaning of the found relationships (causal or correlation-based), it would be nonetheless useful to

learn how much the predictive performance of EDNEL could benefit from this new approach.

Finally, we did not test our algorithms in a multi-dataset setup during the evolutionary

search. That is, instead of evolving hyper-parameters that are well-suited to a single dataset, we could

ask PUMA and EDNEL to find the best set of hyper-parameter settings for a group of base classifiers

that could work on multiple datasets. This would require adaptations to our algorithms; the fitness

would be regarding a set of meta-training datasets. Datasets would also need to be grouped accord-

ing to their geometrical/topological properties. Finally, a clustering strategy would need to be chosen

to group the datasets based on their similarities. We believe this could address the meta-overfitting

problem we suspect EDNEL is suffering, since the same was detected in the work of Barros [15] and

the multi-dataset setup helped in achieving better predictive performance.

160

161

REFERENCES

[1] Adair, J.; Brownlee, A.; Daolio, F.; Ochoa, G. “Evolving Training sets for Improved Transfer

Learning in Brain Computer Interfaces”. In: International Workshop on Machine Learning,

Optimization, and Big Data, 2017, pp. 186–197.

[2] Albukhanajer, W. A.; Jin, Y.; Briffa, J. A. “Classifier Ensembles for Image Identification using

Multi-objective Pareto Features”, Neurocomputing, vol. 238, May 2017, pp. 316–327.

[3] Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. “Keel

data-mining software tool: data set repository, integration of algorithms and experimental

analysis framework.”, Journal of Multiple-Valued Logic & So� Computing, vol. 17, April 2011, pp.

255–287.

[4] Ali, S.; Majid, A. “Can–Evo–Ens: Classifier Stacking based Evolutionary Ensemble System

for Prediction of Human Breast Cancer using Amino Acid Sequences”, Journal of Biomedical

Informatics, vol. 54, April 2015, pp. 256–269.

[5] Aliakbarian, M. S.; Fanian, A. “Internet Traffic Classification Using MOEA and Online Refinement

in Voting on Ensemble Methods”. In: Iranian Conference on Electrical Engineering, 2013, pp.

1–6.

[6] Almeida, L. M.; Galvão, P. S. “Ensembles with Clustering-and-Selection Model Using

Evolutionary Algorithms”. In: Brazilian Conference on Intelligent Systems, 2016, pp.

444–449.

[7] Appel, K.; Haken, W. “Every planar map is four colorable”, Bulletin of the American mathematical

Society, vol. 82–5, September 1976, pp. 711–712.

[8] Asafuddoula, M.; Verma, B.; Zhang, M. “A Divide-and-Conquer Based Ensemble Classifier

Learning by Means of Many-Objective Optimization”, IEEE Transactions on Evolutionary

Computation, vol. 22–5, December 2017.

[9] Athar, A.; Butt, W. H.; Anwar, M. W.; Latif, M.; Azam, F. “Exploring the Ensemble of Classifiers

for Sentimental Analysis: A Systematic Literature Review”. In: International Conference on

Machine Learning and Computing, 2017, pp. 410–414.

[10] Augusto, D. A.; Barbosa, H. J. C.; Ebecken, N. F. F. “Coevolutionary Multi-population

Genetic Programming for Data Classification”. In: Conference on Genetic and Evolutionary

Computation, 2010, pp. 933–940.

[11] Bagheri, M. A.; Gao, Q.; Escalera, S. “A Genetic-based Subspace Analysis method for Improving

Error-correcting Output Coding”, Pattern Recognition, vol. 46–10, October 2013, pp. 2830–

2839.

162

[12] Balaji, A.; Allen, A., “Benchmarking automatic machine learning frameworks”, 2018,

unpublished manuscript.

[13] Baluja, S.; Caruana, R. “Removing the genetics from the standard genetic algorithm”. In:

International Conference on Machine Learning, 1995, pp. 38–46.

[14] Barros, R. C.; Basgalupp, M. P.; de Carvalho, A.; Freitas, A. A. “A Survey of Evolutionary

Algorithms for Decision-Tree Induction”, IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 42–3, June 2012, pp. 291–312.

[15] Barros, R. C.; de Carvalho, A. C.; Freitas, A. A. “Automatic Design of Decision-Tree Induction

Algorithms”. Springer, 2015, 176p.

[16] Basto-Fernandes, V.; Yevseyeva, I.; Méndez, J. R.; Zhao, J.; Fdez-Riverola, F.; Emmerich, M. T.

“A Spam Filtering Multi-objective Optimization Study Covering Parsimony Maximization and

Three-way Classification”, Applied So� Computing, vol. 48, November 2016, pp. 111–123.

[17] Basto-Fernandes, V.; Yevseyeva, I.; Ruano-Ordás, D.; Zhao, J.; Fdez-Riverola, F.; Méndez, J. R.;

Emmerich, M. “Quadcriteria Optimization of Binary Classifiers: Error Rates, Coverage, and

Complexity”. In: EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolutionary

Computation VI, Tantar, A.-A.; Tantar, E.; Emmerich, M.; Legrand, P.; Alboaie, L.; Luchian, H.

(Editors), Springer, 2018, pp. 37–49.

[18] Bautista, M. Á.; Pujol, O.; Baró, X.; Escalera, S. “Introducing the Separability Matrix for Error

Correcting Output Codes Coding”. In: International Workshop on Multiple Classifier Systems,

2011, pp. 227–236.

[19] Bazi, Y.; Alajlan, N.; Melgani, F.; AlHichri, H.; Yager, R. R. “Robust Estimation of Water

Chlorophyll Concentrations with Gaussian Process Regression and IOWA Aggregation

Operators”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 7–7, June 2014, pp. 3019–3028.

[20] Belle, V.; Papantonis, I. “Principles and practice of explainable machine learning”, Frontiers in big

Data, vol. 4, July 2021, pp. 39.

[21] Bhowan, U.; Johnston, M.; Zhang, M. “Evolving Ensembles in Multi-objective Genetic

Programming for Classification with Unbalanced Data”. In: Conference on Genetic and

Evolutionary Computation, 2011, pp. 1331–1338.

[22] Bhowan, U.; Johnston, M.; Zhang, M. “Comparing Ensemble Learning Approaches in Genetic

Programming for Classification with Unbalanced Data”. In: Conference on Genetic and

Evolutionary Computation, 2013, pp. 135–136.

[23] Breiman, L. “Bagging predictors”, Machine learning, vol. 24–2, August 1996, pp. 123–140.

163

[24] Breiman, L. “Random Forests”, Machine learning, vol. 45–1, October 2001, pp. 5–32.

[25] Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. “Classification and regression trees”.

Wadsworth International Group, 1984, 368p.

[26] Britto, A. S.; Sabourin, R.; Oliveira, L. E. “Dynamic Selection of Classifiers – A Comprehensive

Review”, Pattern Recognition, vol. 47–11, November 2014, pp. 3665–3680.

[27] Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L. “Handbook of markov chain monte carlo”. CRC

press, 2011, 592p.

[28] Cagnini, H.; Basgalupp, M.; Barros, R. “Increasing Boosting Effectiveness with Estimation of

Distribution Algorithms”. In: Congress on Evolutionary Computation, 2018, pp. 1–8.

[29] Cagnini, H. E.; Barros, R. C.; Basgalupp, M. P. “Estimation of distribution algorithms for decision-

tree induction”. In: Congress on Evolutionary Computation, 2017, pp. 2022–2029.

[30] Cagnini, H. E.; Freitas, A. A.; Barros, R. C. “An Evolutionary Algorithm for Learning Interpretable

Ensembles of Classifiers”. In: Brazilian Conference on Intelligent Systems, 2020, pp. 18–33.

[31] Cao, J.-J.; Kwong, S.; Wang, R.; Li, K. “An Indicator-based Selection Multi-objective Evolutionary

Algorithm with Preference for Multi-class Ensemble”. In: International Conference on Machine

Learning and Cybernetics, 2014, pp. 147–152.

[32] Cao, P.; Li, B.; Zhao, D.; Zaiane, O. “A Novel Cost Sensitive Neural Network Ensemble for

Multiclass Imbalance Data Learning”. In: International Joint Conference on Neural Networks,

2013, pp. 1–8.

[33] Cao, P.; Zhao, D.; Zaiane, O. “Measure Optimized Cost-sensitive Neural Network Ensemble

for Multiclass Imbalance Data Learning”. In: International Conference on Hybrid Intelligent

Systems, 2013, pp. 35–40.

[34] Caruana, R.; Lou, Y.; Gehrke, J.; Koch, P.; Sturm, M.; Elhadad, N. “Intelligible models for

healthcare: Predicting pneumonia risk and hospital 30-day readmission”. In: International

Conference on Knowledge Discovery and Data Mining, 2015, pp. 1721–1730.

[35] Carvalho, D. V.; Pereira, E. M.; Cardoso, J. S. “Machine Learning Interpretability: A Survey on

Methods and Metrics”, Electronics, vol. 8–8, July 2019, pp. 832.

[36] Castro, P. A. D.; Von Zuben, F. J. “Learning Ensembles of Neural Networks by Means

of a Bayesian Artificial Immune System”, IEEE Transactions on Neural Networks, vol. 22–2,

February 2011, pp. 304–316.

[37] Chang, C.; Xu, D.; Quek, H. “Pareto-optimal set based Multiobjective Tuning of Fuzzy Automatic

Train Operation for Mass Transit System”, IEEE Proceedings-Electric Power Applications, vol. 146–

5, September 1999, pp. 577–583.

164

[38] Chaurasiya, R. K.; Londhe, N. D.; Ghosh, S. “Binary DE-based Channel Selection and Weighted

Ensemble of SVM Classification for Novel Brain–computer Interface using Devanagari script-

based P300 Speller Paradigm”, International Journal of Human–Computer Interaction, vol. 32–11,

July 2016, pp. 861–877.

[39] Chen, H.; Yao, X. “Evolutionary Multiobjective Ensemble Learning based on Bayesian Feature

Selection”. In: Congress on Evolutionary Computation, 2006, pp. 267–274.

[40] Chen, T.; Guestrin, C. “Xgboost: A scalable tree boosting system”. In: International Conference

on Knowledge Discovery and Data Mining, 2016, pp. 785–794.

[41] Chen, W.-C.; Tseng, L.-Y.; Wu, C.-S. “A Unified Evolutionary Training scheme for Single and

Ensemble of Feedforward Neural Network”, Neurocomputing, vol. 143, November 2014, pp.

347–361.

[42] Chen, Y.; Yang, B.; Abraham, A. “Flexible Neural Trees Ensemble for Stock Index Modeling”,

Neurocomputing, vol. 70–4, January 2007, pp. 697–703.

[43] Chen, Y.; Zhao, Y. “A novel Ensemble of Classifiers for Microarray Data Classification”, Applied

So� Computing, vol. 8–4, September 2008, pp. 1664–1669.

[44] Chiu, C.-Y.; Verma, B. “Effect of Varying Hidden Neurons and Data Size on Clusters, Layers,

Diversity and Accuracy in Neural Ensemble Classifier”. In: International Conference on

Computational Science and Engineering, 2013, pp. 455–459.

[45] Chiu, C.-Y.; Verma, B. “Multi-objective Evolutionary Algorithm Based Optimization of Neural

Network Ensemble Classifier”. In: International Conference on Signal Processing and

Communication Systems, 2014, pp. 1–5.

[46] Chyzhyk, D.; Savio, A.; Graña, M. “Computer Aided Diagnosis of Schizophrenia on Resting State

fMRI data by Ensembles of ELM”, Neural Networks, vol. 68, August 2015, pp. 23–33.

[47] Clark, P.; Boswell, R. “Rule induction with CN2: Some recent improvements”. In: European

Working Session on Learning, 1991, pp. 151–163.

[48] Coelho, A. L.; Lima, C. A.; Von Zuben, F. “GA-based Selection of Components for Heterogeneous

Ensembles of Support Vector Machines”. In: Congress on Evolutionary Computation, 2003, pp.

2238–2245.

[49] Coello Coello, C. A. “MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization”.

In: Congress on Evolutionary Computation, 2002, pp. 1051–1056.

[50] Cohen, W. W. “Fast Effective Rule Induction”. In: International Conference on Machine

Learning, 1995, pp. 115–123.

165

[51] Connolly, J.-F.; Granger, E.; Sabourin, R. “Comparing Dynamic PSO Algorithms for Adapting

Classifier Ensembles in Video-based Face Recognition”. In: Workshop on Computational

Intelligence in Biometrics and Identity Management, 2011, pp. 1–8.

[52] Connolly, J.-F.; Granger, E.; Sabourin, R. “Evolution of Heterogeneous Ensembles through

Dynamic Particle Swarm Optimization for Video-based Face Recognition”, Pattern Recognition,

vol. 45–7, July 2012, pp. 2460–2477.

[53] Connolly, J.-F.; Granger, E.; Sabourin, R. “Dynamic Multi-objective Evolution of Classifier

Ensembles for Video Face Recognition”, Applied So� Computing, vol. 13–6, June 2013, pp.

3149–3166.

[54] Cordón, O.; Trawiski, K. “A Novel Framework to Design Fuzzy Rule-based Ensembles using

Diversity Induction and Evolutionary Algorithms-based Classifier Selection and Fusion”. In:

International Work-Conference on Artificial Neural Networks, 2013, pp. 36–58.

[55] Cruz, R. M.; Sabourin, R.; Cavalcanti, G. D. “Dynamic Classifier Selection: Recent Advances and

Perspectives”, Information Fusion, vol. 41, May 2018, pp. 195–216.

[56] Das, A. K.; Das, S.; Ghosh, A. “Ensemble Feature Selection using Bi-objective Genetic

Algorithm”, Knowledge-Based Systems, vol. 123, May 2017, pp. 116–127.

[57] Davidsen, S. A.; Padmavathamma, M. “Multi-modal Evolutionary Ensemble Classification

in Medical Diagnosis Problems”. In: International Conference on Advances in Computing,

Communications and Informatics, 2015, pp. 1366–1370.

[58] de Lima, T. P.; Ludermir, T. B. “Ensembles of Evolutionary Extreme Learning Machines through

Differential Evolution and Fitness Sharing”. In: International Joint Conference on Neural

Networks, 2014, pp. 2677–2682.

[59] De Lima, T. P. F.; Ludermir, T. B. “Optimizing Dynamic Ensemble Selection Procedure by

Evolutionary Extreme Learning Machines and a Noise Reduction Filter”. In: International

Conference on Tools with Artificial Intelligence, 2013, pp. 546–552.

[60] de Lima, T. P. F.; Sergio, A. T.; Ludermir, T. B. “Improving Classifiers and Regions of Competence

in Dynamic Ensemble Selection”. In: Brazilian Conference on Intelligent Systems, 2014, pp.

13–18.

[61] de Oliveira Batista, J.; Rodrigues, R. B.; Varejão, F. M. “Soft Computing Classifier Ensemble for

Fault Diagnosis”. In: International Symposium on Industrial Electronics, 2017, pp. 1348–1353.

[62] de Sa, A. G.; Pinto, W. J. G.; Oliveira, L. O. V.; Pappa, G. L. “RECIPE: a Grammar-based

Framework for Automatically Evolving Classification Pipelines”. In: European Conference on

Genetic Programming, 2017, pp. 246–261.

166

[63] De Stefano, C.; Cioppa, A. D.; Marcelli, A. “Evolutionary Approaches for Pooling Classifier

Ensembles: Performance Evaluation”. In: International Conference of Soft Computing and

Pattern Recognition, 2013, pp. 309–314.

[64] De Stefano, C.; Folino, G.; Fontanella, F.; Di Freca, A. S. “Using Bayesian Networks for Selecting

Classifiers in GP Ensembles”, Information Sciences, vol. 258, February 2014, pp. 200–216.

[65] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. “A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6–2, April 2002, pp.

182–197.

[66] Debie, E.; Shafi, K.; Lokan, C.; Merrick, K. “Performance Analysis of Rough set Ensemble

of Learning Classifier Systems with Differential Evolution based rule Discovery”, Evolutionary

Intelligence, vol. 6–2, October 2013, pp. 109–126.

[67] Debie, E.; Shafi, K.; Merrick, K.; Lokan, C. “On Taxonomy and Evaluation of Feature

Selection-Based Learning Classifier System Ensemble Approaches for Data Mining Problems”,

Computational Intelligence, vol. 33–3, July 2016, pp. 554–578.

[68] Debie, E. S.; Shafi, K.; Lokan, C. “REUCS-CRG: Reduct based Ensemble of Supervised Classifier

System with Combinatorial Rule Generation for Data Mining”. In: Conference on Genetic and

Evolutionary Computation, 2013, pp. 1251–1258.

[69] Dehuri, S.; Jagadev, A. K.; Cho, S.-B. “Epileptic Seizure Identification from

Electroencephalography signal using DE-RBFNs Ensemble”, Procedia Computer Science, vol. 23,

November 2013, pp. 84–95.

[70] Demšar, J. “Statistical comparisons of classifiers over multiple data sets”, Journal of Machine

Learning Research, vol. 7, June 2006, pp. 1–30.

[71] Dietterich, T. G. “Ensemble Methods in Machine Learning”. In: International Workshop on

Multiple Classifier Systems, 2000, pp. 1–15.

[72] Dos Santos, E. M.; Oliveira, L. S.; Sabourin, R.; Maupin, P. “Overfitting in the Selection of

Classifier Ensembles: a Comparative study Between PSO and GA”. In: Conference on Genetic

and Evolutionary Computation, 2008, pp. 1423–1424.

[73] Dos Santos, E. M.; Sabourin, R.; Maupin, P. “Pareto Analysis for the Selection of Classifier

Ensembles”. In: Conference on Genetic and Evolutionary Computation, 2008, pp. 681–688.

[74] Duell, P.; Fermin, I.; Yao, X. “Speciation Techniques in Evolved Ensembles with Negative

Correlation Learning”. In: Congress on Evolutionary Computation, 2006, pp. 3317–3321.

[75] Dufourq, E.; Pillay, N. “Hybridizing Evolutionary Algorithms for Creating Classifier Ensembles”.

In: World Congress on Nature and Biologically Inspired Computing, 2014, pp. 84–90.

167

[76] e Silva, E. J. d. R.; Ludermir, T. B.; Almeida, L. M. “Clustering and Selection using Grouping

Genetic Algorithms for Blockmodeling to construct Neural Network Ensembles”. In:

International Conference on Tools with Artificial Intelligence, 2013, pp. 420–425.

[77] Eberhart, R.; Kennedy, J. “A new Optimizer Using Particle Swarm Theory”. In: International

Symposium on Micro Machine and Human Science, 1995, pp. 39–43.

[78] Escalante, H. J.; Acosta-Mendoza, N.; Morales-Reyes, A.; Gago-Alonso, A. “Genetic Programming

of Heterogeneous Ensembles for Classification”. In: Iberoamerican Congress on Pattern

Recognition, 2013, pp. 9–16.

[79] Escovedo, T.; da Cruz, A.; Vellasco, M.; Koshiyama, A. “NEVE: A Neuro-evolutionary Ensemble

for Adaptive Learning”. In: International Conference on Artificial Intelligence Applications and

Innovations, 2013, pp. 636–645.

[80] Escovedo, T.; da Cruz, A. A.; Koshiyama, A.; Melo, R.; Vellasco, M. “NEVE++: A Neuro-

evolutionary Unlimited Ensemble for Adaptive Learning”. In: International Joint Conference on

Neural Networks, 2014, pp. 3331–3338.

[81] Escovedo, T.; da Cruz, A. V. A.; Vellasco, M.; Koshiyama, A. S. “Using Ensembles for Adaptive

Learning: A Comparative Approach”. In: International Joint Conference on Neural Networks,

2013, pp. 1–7.

[82] Escovedo, T.; da Cruz, A. V. A.; Vellasco, M. M.; Koshiyama, A. S. “Learning Under Concept

Drift Using a Neuro-evolutionary Ensemble”, International Journal of Computational Intelligence

and Applications, vol. 12–4, December 2013, pp. 1340002.

[83] Espejo, P. G.; Ventura, S.; Herrera, F. “A survey on the application of genetic programming

to classification”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 40–2, November 2010, pp. 121–144.

[84] Fatima, I.; Fahim, M.; Lee, Y.-K.; Lee, S. “Classifier Ensemble Optimization for Human

Activity Recognition in Smart Homes”. In: International Conference on Ubiquitous Information

Management and Communication, 2013, pp. 1 – 7.

[85] Fawcett, T. “An introduction to ROC analysis”, Pattern recognition letters, vol. 27–8, June 2006,

pp. 861–874.

[86] Fernández, A.; del Río, S.; Herrera, F. “A First Approach in Evolutionary Fuzzy Systems based

on the Lateral Tuning of the Linguistic Labels for Big Data Classification”. In: International

Conference on Fuzzy Systems, 2016, pp. 1437–1444.

[87] Fernández, J. C.; Cruz-Ramírez, M.; Hervás-Martínez, C. “Sensitivity versus Accuracy in

Ensemble Models of Artificial Neural Networks from Multi-objective Evolutionary Algorithms”,

Neural Computing and Applications, vol. 30–1, December 2016, pp. 289–305.

168

[88] Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. “Do we need hundreds of classifiers

to solve real world classification problems?”, Journal of Machine Learning Research, vol. 15–1,

October 2014, pp. 3133–3181.

[89] Ferri, C.; Hernández-Orallo, J.; Ramírez-Quintana, M. J. “From Ensemble Methods to

Comprehensible Models”. In: International Conference on Discovery Science, 2002, pp.

165–177.

[90] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. “Efficient and

robust automated machine learning”. In: Advances in Neural Information Processing Systems,

2015, pp. 2962–2970.

[91] Folino, G.; Pisani, F. S.; Sabatino, P. “An Incremental Ensemble Evolved by using Genetic

Programming to Efficiently Detect drifts in Cyber Security Datasets”. In: Conference on Genetic

and Evolutionary Computation, 2016, pp. 1103–1110.

[92] Folino, G.; Pizzuti, C.; Spezzano, G. “Improving Cooperative GP Ensemble with Clustering and

Pruning for Pattern Classification”. In: Conference on Genetic and Evolutionary Computation,

2006, pp. 791–798.

[93] Folino, G.; Pizzuti, C.; Spezzano, G. “An Adaptive Distributed Ensemble Approach to

Mine Concept-drifting Data Streams”. In: International Conference on Tools with Artificial

Intelligence, 2007, pp. 183–188.

[94] Folino, G.; Pizzuti, C.; Spezzano, G. “StreamGP: Tracking Evolving GP Ensembles in Distributed

Data Streams using Fractal Dimension”. In: Conference on Genetic and Evolutionary

Computation, 2007, pp. 1751–1751.

[95] Folino, G.; Pizzuti, C.; Spezzano, G. “An Ensemble-based Evolutionary Framework for Coping

with Distributed Intrusion Detection”, Genetic Programming and Evolvable Machines, vol. 11–2,

February 2010, pp. 131–146.

[96] Frank, E.; Witten, I. H. “Generating Accurate Rule Sets Without Global Optimization”. In:

International Conference on Machine Learning, 1998, pp. 144–151.

[97] Freitas, A. A. “A Critical Review of Multi-objective Optimization in Data Mining: A Position

Paper”, ACM SIGKDD Explorations Newsletter, vol. 6–2, December 2004, pp. 77–86.

[98] Freitas, A. A. “Comprehensible Classification Models: A Position Paper”, ACM SIGKDD

Explorations Newsletter, vol. 15–1, June 2014, pp. 1–10.

[99] Freund, Y.; Schapire, R. E. “A Desicion-theoretic Generalization of on-line Learning and an

Application to Boosting”. In: European Conference on Computational Learning Theory, 1995,

pp. 23–37.

169

[100] Freund, Y.; Schapire, R. E. “Experiments with a new Boosting Algorithm”. In: International

Conference on Machine Learning, 1996, pp. 148–156.

[101] Friedman, M. “The use of ranks to avoid the assumption of normality implicit in the analysis of

variance”, Journal of the American Statistical Association, vol. 32–200, May 1937, pp. 675–701.

[102] Fuqiang, D.; Minqing, Z.; Jia, L. “Virus-Evolutionary Genetic Algorithm Based Selective Ensemble

for Steganalysis”. In: International Conference on P2P, Parallel, Grid, Cloud and Internet

Computing, 2014, pp. 553–558.

[103] Fürnkranz, J.; Kliegr, T.; Paulheim, H. “On cognitive preferences and the plausibility of rule-based

models”, Machine Learning, vol. 109–4, December 2020, pp. 853–898.

[104] Galar, M.; Fernández, A.; Barrenechea, E.; Herrera, F. “EUSBoost: Enhancing Ensembles for

Highly Imbalanced Data-sets by Evolutionary Undersampling”, Pattern Recognition, vol. 46–12,

December 2013, pp. 3460–3471.

[105] Galea, M.; Shen, Q.; Levine, J. “Evolutionary Approaches to Fuzzy Modelling for Classification”,

The Knowledge Engineering Review, vol. 19–1, April 2004, pp. 27–59.

[106] Gámez, J. A.; Mateo, J. L.; Puerta, J. M. “EDNA: Estimation of Dependency Networks

Algorithm”. In: International Work-Conference on the Interplay Between Natural and Artificial

Computation, 2007, pp. 427–436.

[107] Gámez, J. A.; Mateo, J. L.; Puerta, J. M. “Improved EDNA (estimation of dependency networks

algorithm) using combining function with bivariate probability distributions”. In: Conference

on Genetic and Evolutionary Computation, 2008, pp. 407–414.

[108] García, S.; Fernández, A.; Luengo, J.; Herrera, F. “Advanced nonparametric tests for multiple

comparisons in the design of experiments in computational intelligence and data mining:

Experimental analysis of power”, Information sciences, vol. 180–10, May 2010, pp. 2044–2064.

[109] Garg, A.; Lam, J. S. L. “Improving Environmental Sustainability by Formulation of Generalized

Power Consumption Models using an Ensemble based Multi-gene Genetic Programming

Approach”, Journal of Cleaner Production, vol. 102, September 2015, pp. 246–263.

[110] Gomes, H. M.; Barddal, J. P.; Enembreck, F.; Bifet, A. “A Survey on Ensemble Learning for Data

Stream Classification”, ACM Computing Surveys, vol. 50–2, March 2017, pp. 23.

[111] Goodfellow, I.; Bengio, Y.; Courville, A. “Deep learning”. MIT press, 2016, 800p.

[112] Gu, S.; Jin, Y. “Generating Diverse and Accurate Classifier Ensembles using Multi-objective

Optimization”. In: Symposium on Computational Intelligence in Multi-Criteria Decision-

Making, 2014, pp. 9–15.

170

[113] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H. “The WEKA data

mining software: an update”, ACM SIGKDD explorations newsletter, vol. 11–1, June 2009, pp.

10–18.

[114] Hansen, L. K.; Salamon, P. “Neural Network Ensembles”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 12–10, October 1990, pp. 993–1001.

[115] Haque, M. N.; Noman, M. N.; Berretta, R.; Moscato, P. “Optimising Weights for Heterogeneous

Ensemble of Classifiers with Differential Evolution”. In: Congress on Evolutionary Computation,

2016, pp. 233–240.

[116] Hashem, S. “Optimal Linear Combinations of Neural Networks”, Neural Networks, vol. 10–4,

June 1997, pp. 599–614.

[117] Hauschild, M.; Pelikan, M. “An Introduction and Survey of Estimation of Distribution

Algorithms”, Swarm and Evolutionary Computation, vol. 1–3, September 2011, pp. 111–128.

[118] He, B. D.; De Sa, C. M.; Mitliagkas, I.; Ré, C. “Scan order in Gibbs sampling: Models in which it

matters and bounds on how much”. In: Advances in Neural Information Processing Systems,

2016, pp. 1–9.

[119] Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite, R.; Kadie, C. “Dependency networks

for inference, collaborative filtering, and data visualization”, Journal of Machine Learning

Research, vol. 1, October 2000, pp. 49–75.

[120] Hernández, L. C.; Hernández, A. M.; Cardoso, G. M. C.; Jiménez, Y. M. “Genetic Algorithms

with Diversity Measures to build Classifier Systems”, Investigación Operacional, vol. 36–3,

September 2015, pp. 206–225.

[121] Hodges, J.; Lehmann, E. “Rank Methods for Combination of Independent Experiments in

Analysis of Variance”, The Annals of Mathematical Statistics, vol. 33–2, November 1962, pp.

482–497.

[122] Holland, J. H. “Adaptation in Natural and Artificial Systems: an Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence”. MIT press, 1992, 232p.

[123] Huysmans, J.; Dejaeger, K.; Mues, C.; Vanthienen, J.; Baesens, B. “An empirical evaluation of the

comprehensibility of decision table, tree and rule based predictive models”, Decision Support

Systems, vol. 51–1, April 2011, pp. 141–154.

[124] Ishibuchi, H.; Yamamoto, T. “Evolutionary multiobjective optimization for generating an

ensemble of fuzzy rule-based classifiers”. In: Conference on Genetic and Evolutionary

Computation, 2003, pp. 197–197.

171

[125] Jackowski, K. “Fixed-size Ensemble Classifier System Evolutionarily Adapted to a Recurring

Context with an Unlimited Pool of Classifiers”, Pattern Analysis and Applications, vol. 17–4,

November 2014, pp. 709–724.

[126] Jackowski, K. “Adaptive Splitting and Selection Algorithm for Regression”, New Generation

Computing, vol. 33–4, October 2015, pp. 425–448.

[127] Jackowski, K.; Krawczyk, B.; Woniak, M. “Improved Adaptive Splitting and Selection: The Hybrid

Training Method of a Classifier based on a Feature Space Partitioning”, International Journal of

Neural Systems, vol. 24–3, January 2014, pp. 1430007.

[128] Joardar, S.; Chatterjee, A.; Bandyopadhyay, S.; Maulik, U. “Multi-size Patch based Collaborative

Representation for Palm Dorsa Vein Pattern Recognition by Enhanced Ensemble Learning

with Modified Interactive Artificial Bee Colony Algorithm”, Engineering Applications of Artificial

Intelligence, vol. 60, April 2017, pp. 151–163.

[129] Kaiping, L.; Binglian, C.; Yan, D.; Ying, H. “A Genetic Neural Network Ensemble Prediction

Model based on Locally Linear Embedding for Typhoon Intensity”. In: Conference on Industrial

Electronics and Applications, 2013, pp. 137–142.

[130] Kapp, M. N.; Sabourin, R.; Maupin, P. “Adaptive Incremental Learning with an Ensemble of

Support Vector Machines”. In: International Conference on Pattern Recognition, 2010, pp.

4048–4051.

[131] Kapp, M. N.; Sabourin, R.; Maupin, P. “A Dynamic Optimization Approach for Adaptive

Incremental Learning”, International Journal of Intelligent Systems, vol. 26–11, July 2011, pp.

1101–1124.

[132] Karakati, S.; Heriko, M.; Podgorelec, V. “Weighting and Sampling data for Individual Classifiers

and Bagging with Genetic Algorithms”. In: International Joint Conference on Computational

Intelligence, 2015, pp. 180–187.

[133] Kennedy, J.; Eberhart, R. “Particle swarm optimization”. In: International Conference on Neural

Networks, 1995, pp. 1942–1948.

[134] Khamis, A.; Xu, Y.; Dong, Z. Y.; Zhang, R. “Faster Detection of Microgrid Islanding Events using

an Adaptive Ensemble Classifier”, IEEE Transactions on Smart Grid, vol. 9–3, August 2016, pp.

1889–1899.

[135] Kim, K.-J.; Cho, S.-B. “DNA Gene Expression Classification with Ensemble Classifiers Optimized

by Speciated Genetic Algorithm”, Pattern Recognition and Machine Intelligence, vol. 3776,

December 2005, pp. 649–653.

[136] Kim, K.-J.; Cho, S.-B. “An Evolutionary Algorithm Approach to Optimal Ensemble Classifiers

for DNA Microarray Data Analysis”, IEEE Transactions on Evolutionary Computation, vol. 12–3,

June 2008, pp. 377–388.

172

[137] Kim, K.-J.; Cho, S.-B. “Evolutionary Ensemble of Diverse Artificial Neural Networks using

Speciation”, Neurocomputing, vol. 71–7, March 2008, pp. 1604–1618.

[138] Kim, K.-J.; Cho, S.-B. “Meta-classifiers for High-dimensional, Small Sample Classification for Gene

Expression Analysis”, Pattern Analysis and Applications, vol. 18–3, May 2015, pp. 553–569.

[139] Kim, Y.; Street, W. N.; Menczer, F. “Meta-evolutionary Ensembles”. In: International Joint

Conference on Neural Networks, 2002, pp. 2791–2796.

[140] Kiranyaz, S.; Ince, T.; Zabihi, M.; Ince, D. “Automated Patient-specific Classification of Long-term

Electroencephalography”, Journal of Biomedical Informatics, vol. 49, June 2014, pp. 16–31.

[141] Kittler, J.; Hatef, M.; Duin, R. P.; Matas, J. “On combining classifiers”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 20–3, March 1998, pp. 226–239.

[142] Ko, A. H.-R.; Sabourin, R.; Britto Jr, A. d. S. “Evolving Ensemble of Classifiers in Random

Subspace”. In: Conference on Genetic and Evolutionary Computation, 2006, pp. 1473–1480.

[143] Kohavi, R. “The Power of Decision Tables”. In: European Conference on Machine Learning, 1995,

pp. 174–189.

[144] Kordik, P.; Cerny, J.; Fryda, T. “Discovering Predictive Ensembles for Transfer Learning and Meta-

learning”, Machine Learning, vol. 107, December 2018, pp. 177–207.

[145] Kotsiantis, S. B. “Bagging and Boosting Variants for Handling Classifications Problems: A

Survey”, The Knowledge Engineering Review, vol. 29–1, August 2014, pp. 78–100.

[146] Krawczyk, B.; Galar, M.; Jele, Ł.; Herrera, F. “Evolutionary Undersampling Boosting for

Imbalanced Classification of Breast Cancer Malignancy”, Applied So� Computing, vol. 38,

January 2016, pp. 714–726.

[147] Krawczyk, B.; Minku, L. L.; Gama, J.; Stefanowski, J.; Woniak, M. “Ensemble Learning for Data

Stream Analysis: A Survey”, Information Fusion, vol. 37, September 2017, pp. 132–156.

[148] Krawczyk, B.; Schaefer, G. “Breast Thermogram Analysis using Classifier Ensembles and Image

Symmetry Features”, IEEE Systems Journal, vol. 8–3, October 2014, pp. 921–928.

[149] Krawczyk, B.; Schaefer, G.; Woniak, M. “A Cost-sensitive Ensemble Classifier for Breast

Cancer Classification”. In: International Symposium on Applied Computational Intelligence and

Informatics, 2013, pp. 427–430.

[150] Krawczyk, B.; Schaefer, G.; Woniak, M. “A hybrid Cost-sensitive Ensemble for Imbalanced Breast

Thermogram Classification”, Artificial Intelligence in Medicine, vol. 65–3, November 2015, pp.

219–227.

[151] Krawczyk, B.; Woniak, M. “Evolutionary Cost-sensitive Ensemble for Malware Detection”. In:

SOCO/CISIS/ICEUTE, 2014, pp. 433–442.

173

[152] Krawczyk, B.; Woniak, M.; Schaefer, G. “Cost-sensitive Decision Tree Ensembles for Effective

Imbalanced Classification”, Applied So� Computing, vol. 14, January 2014, pp. 554–562.

[153] Krithikaa, M.; Mallipeddi, R. “Differential Evolution with an Ensemble of Low-quality Surrogates

for Expensive Optimization Problems”. In: Congress on Evolutionary Computation, 2016, pp.

78–85.

[154] Krogh, A.; Vedelsby, J. “Neural Network Ensembles, Cross Validation, and Active Learning”,

Advances in Neural Information Processing Systems, vol. 7, January 1995, pp. 231–238.

[155] Kumar, G.; Kumar, K. “Design of an Evolutionary Approach for Intrusion Detection”, The Scientific

World Journal, vol. 2013, November 2013, pp. 1–14.

[156] Kuncheva, L. I. “Combining pattern classifiers: methods and algorithms”. John Wiley & Sons,

2004, 361p.

[157] Kuncheva, L. I.; Whitaker, C. J. “Measures of Diversity in Classifier Ensembles and their

Relationship with the Ensemble Accuracy”, Machine learning, vol. 51–2, May 2003, pp. 181–

207.

[158] Lacy, S. E.; Lones, M. A.; Smith, S. L. “A Comparison of Evolved Linear and Non-linear Ensemble

Vote Aggregators”. In: Congress on Evolutionary Computation, 2015, pp. 758–763.

[159] Lacy, S. E.; Lones, M. A.; Smith, S. L. “Forming Classifier Ensembles with Multimodal

Evolutionary Algorithms”. In: Congress on Evolutionary Computation, 2015, pp. 723–729.

[160] Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek, W.; Müller, K.-R. “Unmasking

Clever Hans predictors and assessing what machines really learn”, Nature Communications,

vol. 10–1, March 2019, pp. 1096.

[161] Larcher, C.; Barbosa, H. “Auto-CVE: a coevolutionary approach to evolve ensembles in

automated machine learning”. In: Genetic and Evolutionary Computation Conference, 2019,

pp. 392–400.

[162] Larcher, C. H.; Barbosa, H. J. “Evaluating Models with Dynamic Sampling Holdout”. In:

International Conference on the Applications of Evolutionary Computation, 2021, pp. 729–

744.

[163] Larrañaga, P.; Lozano, J. A. “Estimation of Distribution Algorithms: A new Tool for Evolutionary

Computation”. Springer, 2001, 382p.

[164] Lévesque, J.-C.; Durand, A.; Gagné, C.; Sabourin, R. “Multi-objective Evolutionary Optimization

for Generating Ensembles of Classifiers in the ROC Space”. In: Conference on Genetic and

Evolutionary Computation, 2012, pp. 879–886.

174

[165] Lichman, M. “UCI Machine Learning Repository”. Source: http://archive.ics.uci.edu/ml, March

28, 2017.

[166] Liew, W. S.; Loo, C. K.; Obo, T. “Optimizing FELM ensembles using GA-BIC”. In: Joint World

Congress of International Fuzzy Systems Association and International Conference on Soft

Computing and Intelligent Systems, 2017, pp. 1–6.

[167] Lima, T. P.; Ludermir, T. B. “Differential Evolution and Meta-learning for Dynamic Ensemble of

Neural Network Classifiers”. In: International Joint Conference on Neural Networks, 2015, pp.

1–5.

[168] Link, W. A.; Eaton, M. J. “On thinning of chains in MCMC”, Methods in Ecology and Evolution,

vol. 3–1, June 2012, pp. 112–115.

[169] Liu, K.; Tong, M.; Xie, S.; Zeng, Z. “Fusing Decision Trees based on Genetic Programming for

Classification of Microarray Datasets”. In: International Conference on Intelligent Computing,

2014, pp. 126–134.

[170] Liu, K.-H.; Huang, D.-S.; Zhang, J. “Microarray Data Prediction by Evolutionary Classifier

Ensemble System”. In: Congress on Evolutionary Computation, 2007, pp. 634–637.

[171] Liu, K.-H.; Li, B.; Zhang, J.; Du, J.-X. “Ensemble Component Selection for Improving ICA based

Microarray Data Prediction Models”, Pattern Recognition, vol. 42–7, July 2009, pp. 1274–1283.

[172] Liu, K.-H.; Tong, M.; Xie, S.-T.; Yee Ng, V. T. “Genetic Programming based Ensemble System for

Microarray Data Classification”, Computational and Mathematical Methods in Medicine, vol. 2015,

February 2015, pp. 1–11.

[173] Liu, N.; Cao, J.; Lin, Z.; Pek, P. P.; Koh, Z. X.; Ong, M. E. H. “Evolutionary Voting-based Extreme

Learning Machines”, Mathematical Problems in Engineering, vol. 2014, August 2014, pp. 1–7.

[174] Liu, Y.; Chen, W.; Hu, J.; Zheng, X.; Shi, Y. “Ensemble of Surrogates with an Evolutionary Multi-

agent System”. In: International Conference on Computer Supported Cooperative Work in

Design, 2017, pp. 521–525.

[175] Lones, M. A.; Smith, S. L.; Alty, J. E.; Lacy, S. E.; Possin, K. L.; Jamieson, D. S.; Tyrrell,

A. M. “Evolving Classifiers to Recognize the Movement Characteristics of Parkinson’s Disease

Patients”, IEEE Transactions on Evolutionary Computation, vol. 18–4, August 2014, pp. 559–576.

[176] Lundberg, S. M.; Lee, S.-I. “A Unified Approach to Interpreting Model Predictions”. In: Advances

in Neural Information Processing Systems 30, Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.;

Fergus, R.; Vishwanathan, S.; Garnett, R. (Editors), Curran Associates, Inc., 2017, pp. 4765–

4774.

[177] Ma, N.; Fujita, H.; Zhai, Y.; Wang, S. “Ensembles of Fuzzy Cognitive Map Classifiers Based on

Quantum Computation”, Acta Polytechnica Hungarica, vol. 12–4, 2015, pp. 7–26.

http://archive.ics.uci.edu/ml

175

[178] Mabu, S.; Obayashi, M.; Kuremoto, T. “Ensemble Learning of Rule-based Evolutionary Algorithm

using Multi Layer Perceptron for Stock Trading Models”. In: Joint International Conference on

Soft Computing and Intelligent Systems and International Symposium on Advanced Intelligent

Systems, 2014, pp. 624–629.

[179] Mabu, S.; Obayashi, M.; Kuremoto, T. “Ensemble Learning of Rule-based Evolutionary Algorithm

using Multi-layer Perceptron for Supporting Decisions in Stock Trading Problems”, Applied So�

Computing, vol. 36, November 2015, pp. 357–367.

[180] Mauša, G.; Grbac, T. G. “Co-evolutionary Multi-population Genetic Programming for

Classification in Software Defect Prediction: An Empirical Case Study”, Applied So� Computing,

vol. 55, June 2017, pp. 331–351.

[181] Mehdiyev, N.; Krumeich, J.; Werth, D.; Loos, P. “Sensor Event Mining with Hybrid Ensemble

Learning and Evolutionary Feature Subset Selection Model”. In: International Conference on

Big Data, 2015, pp. 2159–2168.

[182] Mendes-Moreira, J.; Soares, C.; Jorge, A. M.; Sousa, J. F. D. “Ensemble Approaches for Regression:

A Survey”, ACM Computing Surveys, vol. 45–1, November 2012, pp. 10:1–10:40.

[183] Mezura-Montes, E.; Reyes-Sierra, M.; Coello, C. “Multi-objective Optimization Using Differential

Evolution: A Survey of the State-of-the-art”. In: Advances in Differential Evolution, Chakraborty,

U. K. (Editor), Springer, 2008, pp. 173–196.

[184] Milliken, M.; Bi, Y.; Galway, L.; Hawe, G. “Multi-objective Optimization of Base Classifiers

in StackingC by NSGA-II for Intrusion Detection”. In: Symposium Series on Computational

Intelligence, 2016, pp. 1–8.

[185] Nemenyi, P. B. “Distribution-free multiple comparisons.” Princeton University, 1963, 24p.

[186] Neoh, S. C.; Zhang, L.; Mistry, K.; Hossain, M. A.; Lim, C. P.; Aslam, N.; Kinghorn, P. “Intelligent

Facial Emotion Recognition using a Layered Encoding Cascade Optimization Model”, Applied

So� Computing, vol. 34, September 2015, pp. 72–93.

[187] Nguyen, V.; Epps, J.; Bailey, J. “Information theoretic measures for clusterings comparison: is

a correction for chance necessary?” In: International Conference on Machine Learning, 2009,

pp. 1073–1080.

[188] Obo, T.; Kubota, N.; Loo, C. K. “Evolutionary Ensemble Learning of Fuzzy Randomized Neural

Network for Posture Recognition”. In: World Automation Congress, 2016, pp. 1–6.

[189] Oehmcke, S.; Heinermann, J.; Kramer, O. “Analysis of Diversity Methods for Evolutionary Multi-

objective Ensemble Classifiers”. In: European Conference on the Applications of Evolutionary

Computation, 2015, pp. 567–578.

176

[190] Ojha, V. K.; Abraham, A.; Snášel, V. “Ensemble of Heterogeneous Flexible Neural Trees using

Multiobjective Genetic Programming”, Applied So� Computing, vol. 52, March 2017, pp. 909–

924.

[191] Ojha, V. K.; Jackowski, K.; Abraham, A.; Snášel, V. “Feature Selection and Ensemble of

Regression Models for Predicting the Protein Macromolecule Dissolution Profile”. In: World

Congress on Nature and Biologically Inspired Computing, 2014, pp. 121–126.

[192] Ojha, V. K.; Jackowski, K.; Abraham, A.; Snášel, V. “Dimensionality Reduction, and Function

Approximation of Poly (Lactic-co-glycolic acid) Micro-and Nanoparticle Dissolution Rate”,

International Journal of Nanomedicine, vol. 10, February 2015, pp. 1119.

[193] Olson, R. S.; Bartley, N.; Urbanowicz, R. J.; Moore, J. H. “Evaluation of a Tree-based Pipeline

Optimization Tool for Automating Data Science”. In: Conference on Genetic and Evolutionary

Computation, 2016, pp. 485–492.

[194] Olson, R. S.; Urbanowicz, R. J.; Andrews, P. C.; Lavender, N. A.; Kidd, L. C.; Moore, J. H.

“Automating biomedical data science through tree-based pipeline optimization”. In: European

Conference on the Applications of Evolutionary Computation, 2016, pp. 123–137.

[195] Olvera-López, J. A.; Carrasco-Ochoa, J. A.; Martínez-Trinidad, J.; Kittler, J. “A Review of Instance

Selection Methods”, Artificial Intelligence Review, vol. 34–2, May 2010, pp. 133–143.

[196] Onan, A.; Korukolu, S.; Bulut, H. “A Multiobjective Weighted Voting Ensemble Classifier based

on Differential Evolution Algorithm for Text Sentiment Classification”, Expert Systems with

Applications, vol. 62, November 2016, pp. 1–16.

[197] Opitz, D.; Maclin, R. “Popular Ensemble Methods: An Empirical Study”, Journal of Artificial

Intelligence Research, vol. 11, August 1999, pp. 169–198.

[198] Opitz, D. W. “Feature Selection for Ensembles”. In: National Conference on Artificial

Intelligence/Innovative Applications of Artificial Intelligence Conference, 1999, pp. 384.

[199] Oza, N. C.; Tumer, K. “Classifier Ensembles: Select Real-world Applications”, Information Fusion,

vol. 9–1, January 2008, pp. 4–20.

[200] Pagano, C.; Granger, E.; Sabourin, R.; Gorodnichy, D. O. “Detector Ensembles for Face

Recognition in Video Surveillance”. In: International Joint Conference on Neural Networks,

2012, pp. 1–8.

[201] Parhizkar, E.; Abadi, M. “BeeOWA: A Novel Approach based on ABC Algorithm and Induced

OWA operators for Constructing One-class Classifier Ensembles”, Neurocomputing, vol. 166,

October 2015, pp. 367–381.

177

[202] Parhizkar, E.; Abadi, M. “OC-WAD: A One-class Classifier Ensemble Approach for Anomaly

Detection in Web Traffic”. In: Iranian Conference on Electrical Engineering, 2015, pp. 631–

636.

[203] Park, C.; Cho, S.-B. “Evolutionary Computation for Optimal Ensemble Classifier in Lymphoma

Cancer Classification”, Foundations of Intelligent Systems, vol. 2871, October 2003, pp. 521–

530.

[204] Park, C.; Cho, S.-B. “Evolutionary Ensemble Classifier for Lymphoma and Colon Cancer

Classification”. In: Congress on Evolutionary Computation, 2003, pp. 2378–2385.

[205] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;

Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.. “Scikit-learn: Machine Learning in Python”,

Journal of Machine Learning Research, vol. 12, October 2011, pp. 2825–2830.

[206] Peimankar, A.; Weddell, S. J.; Jalal, T.; Lapthorn, A. C. “Ensemble Classifier Selection using

Multi-objective PSO for Fault Diagnosis of Power Transformers”. In: Congress on Evolutionary

Computation, 2016, pp. 3622–3629.

[207] Peimankar, A.; Weddell, S. J.; Jalal, T.; Lapthorn, A. C. “Evolutionary Multi-Objective Fault

Diagnosis of Power Transformers”, Swarm and Evolutionary Computation, vol. 36, October 2017,

pp. 62–75.

[208] Pelikan, M.; Sastry, K.; Goldberg, D. E. “Multiobjective hBOA, clustering, and scalability”. In:

Conference on Genetic and Evolutionary Computation, 2005, pp. 663–670.

[209] Piltaver, R.; Luštrek, M.; Gams, M.; Martini-Ipši, S. “What makes classification trees

comprehensible?”, Expert Systems with Applications, vol. 62, November 2016, pp. 333–346.

[210] Pourtaheri, Z. K.; Zahiri, S. H. “Ensemble Classifiers with Improved Overfitting”. In: Conference

on Swarm Intelligence and Evolutionary Computation, 2016, pp. 93–97.

[211] Priyam, A.; Abhijeeta, G.; Rathee, A.; Srivastava, S. “Comparative analysis of decision tree

classification algorithms”, International Journal of Current Engineering and Technology, vol. 3–2,

June 2013, pp. 334–337.

[212] Probst, P.; Wright, M. N.; Boulesteix, A.-L. “Hyperparameters and tuning strategies for

random forest”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9–3,

January 2019, pp. e1301.

[213] Quinlan, J. R. “C4.5: programs for machine learning”. Morgan Kaufmann Publishers, 1993,

301p.

[214] Rahman, A.; Verma, B. “Cluster Based Ensemble Classifier Generation by Joint Optimization

of Accuracy and Diversity”, International Journal of Computational Intelligence and Applications,

vol. 12–4, December 2013, pp. 1340003.

178

[215] Rahman, A.; Verma, B. “Cluster Oriented Ensemble Classifiers using Multi-objective

Evolutionary Algorithm”. In: International Joint Conference on Neural Networks, 2013, pp.

1–6.

[216] Rahman, A.; Verma, B. “Ensemble Classifier Generation using Non-uniform Layered Clustering

and Genetic Algorithm”, Knowledge-Based Systems, vol. 43, May 2013, pp. 30–42.

[217] Rapakoulia, T.; Theofilatos, K.; Kleftogiannis, D.; Likothanasis, S.; Tsakalidis, A.; Mavroudi,

S. “EnsembleGASVR: a Novel Ensemble Method for Classifying Missense Single Nucleotide

Polymorphisms”, Bioinformatics, vol. 30–16, August 2014, pp. 2324–2333.

[218] Redel-Macías, M. D.; Fernández-Navarro, F.; Gutiérrez, P. A.; Cubero-Atienza, A. J.; Hervás-

Martínez, C. “Ensembles of Evolutionary Product Unit or RBF Neural Networks for the

Identification of Sound for Pass-by Noise Test in Vehicles”, Neurocomputing, vol. 109, June 2013,

pp. 56–65.

[219] Ribeiro, M. T.; Singh, S.; Guestrin, C. “Why should I trust you? Explaining the predictions of any

classifier”. In: International Conference on Knowledge Discovery and Data Mining, 2016, pp.

1135–1144.

[220] Rish, I. “An empirical study of the naive Bayes classifier”. In: Workshop on Empirical Methods

in Artificial Intelligence, 2001, pp. 41–46.

[221] Rodríguez-Fdez, I.; Canosa, A.; Mucientes, M.; Bugarín, A. “STAC: a web platform for the

comparison of algorithms using statistical tests”. In: International Conference on Fuzzy

Systems, 2015, pp. 1–8.

[222] Roebber, P. J. “Adaptive Evolutionary Programming”, Monthly Weather Review, vol. 143–5,

May 2015, pp. 1497–1505.

[223] Rokach, L. “Ensemble-based Classifiers”, Artificial Intelligence Review, vol. 33–1, November 2010,

pp. 1–39.

[224] Rosales-Pérez, A.; García, S.; Gonzalez, J. A.; Coello, C. A. C.; Herrera, F. “An Evolutionary

Multi-Objective Model and Instance Selection for Support Vector Machines with Pareto-based

Ensembles”, IEEE Transactions on Evolutionary Computation, vol. 21–6, March 2017, pp. 863–

877.

[225] Rosales-Pérez, A.; Gonzalez, J. A.; Coello, C. A. C.; Escalante, H. J.; Reyes-Garcia, C. A. “Multi-

objective Model Type Selection”, Neurocomputing, vol. 146, December 2014, pp. 83–94.

[226] Ross, B. C. “Mutual information between discrete and continuous data sets”, PloS One, vol. 9–2,

February 2014, pp. 1–5.

[227] Rudin, C. “Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead”, Nature Machine Intelligence, vol. 1–5, May 2019, pp. 206–215.

179

[228] Sagi, O.; Rokach, L. “Ensemble Learning: A Survey”, Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, vol. 8–4, January 2018.

[229] Saha, S.; Mitra, S.; Yadav, R. K. “A Multiobjective based Automatic Framework for Classifying

Cancer-microRNA Biomarkers”, Gene Reports, vol. 4, September 2016, pp. 91–103.

[230] Saleh, R.; Farsi, H.; Zahiri, S. H. “Ensemble Classification of PolSAR Data using Multi-

objective Heuristic Combination Rule”. In: Conference on Swarm Intelligence and Evolutionary

Computation, 2016, pp. 88–92.

[231] Santu, S. K. K.; Rahman, M. M.; Islam, M. M.; Murase, K. “Towards better Generalization in

Pittsburgh Learning Classifier Systems”. In: Congress on Evolutionary Computation, 2014, pp.

1666–1673.

[232] Schaefer, G. “Evolutionary Optimisation of Classifiers and Classifier Ensembles for Cost-

sensitive Pattern Recognition”. In: International Symposium on Applied Computational

Intelligence and Informatics, 2013, pp. 343–346.

[233] Schapire, R. E. “A Brief Introduction to Boosting”. In: International Joint Conference on Artificial

Intelligence, 1999, pp. 1401–1406.

[234] Schuman, C. D.; Birdwell, J. D.; Dean, M. E. “Spatiotemporal Classification using Neuroscience-

inspired Dynamic Architectures”, Procedia Computer Science, vol. 41, November 2014, pp. 89–

97.

[235] Shunmugapriya, P.; Kanmani, S. “Optimization of Stacking Ensemble Configurations through

Artificial Bee Colony Algorithm”, Swarm and Evolutionary Computation, vol. 12, October 2013,

pp. 24–32.

[236] Sikdar, U. K.; Ekbal, A.; Saha, S. “Differential Evolution based Feature Selection and Classifier

Ensemble for Named Entity Recognition”. In: International Conference on Computational

Linguistics, 2012, pp. 2475–2490.

[237] Sikdar, U. K.; Ekbal, A.; Saha, S. “Differential Evolution based Mention Detection for Anaphora

Resolution”. In: India Conference, 2013, pp. 1–6.

[238] Sikdar, U. K.; Ekbal, A.; Saha, S. “Differential Evolution based Multiobjective Optimization

for Biomedical Entity Extraction”. In: International Conference on Advances in Computing,

Communications and Informatics, 2014, pp. 1039–1044.

[239] Sikdar, U. K.; Ekbal, A.; Saha, S. “Entity Extraction in Biochemical Text using Multiobjective

Optimization”, Computación y Sistemas, vol. 18–3, February 2014, pp. 591–602.

[240] Sikdar, U. K.; Ekbal, A.; Saha, S. “MODE: Multiobjective Differential Evolution for Feature

Selection and Classifier Ensemble”, So� Computing, vol. 19–12, January 2015, pp. 3529–3549.

180

[241] Sikdar, U. K.; Ekbal, A.; Saha, S. “A Generalized Framework for Anaphora Resolution in Indian

Languages”, Knowledge-Based Systems, vol. 109, October 2016, pp. 147–159.

[242] Singh, I.; Sanwal, K.; Praveen, S. “Breast Cancer Detection using two-fold Genetic Evolution of

Neural Network Ensembles”. In: International Conference on Data Science and Engineering,

2016, pp. 1–6.

[243] Stefano, C. D.; Fontanella, F.; Folino, G.; Freca, A. “A Bayesian approach for Combining

Ensembles of GP Classifiers”. In: International Workshop on Multiple Classifier Systems, 2011,

pp. 26–35.

[244] Storn, R.; Price, K. “Differential Evolution – A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces”, Journal of Global Optimization, vol. 11–4,

December 1997, pp. 341–359.

[245] Su, J.; Vargas, D. V.; Sakurai, K. “One pixel attack for fooling deep neural networks”, IEEE

Transactions on Evolutionary Computation, vol. 23–5, October 2019, pp. 828–841.

[246] Tabassum, N.; Ahmed, T. “A Theoretical Study on Classifier Ensemble Methods and its

Applications”. In: International Conference on Computing for Sustainable Global Development,

2016, pp. 374–378.

[247] Tan, C. J.; Lim, C. P.; Cheah, Y.-N. “A Multi-objective Evolutionary Algorithm-based Ensemble

Optimizer for Feature Selection and Classification with Neural Network Models”,

Neurocomputing, vol. 125, February 2014, pp. 217–228.

[248] Tang, H. L.; Goh, J.; Peto, T.; Ling, B. W.-K.; Al Turk, L. I.; Hu, Y.; Wang, S.; Saleh, G. M.

“The Reading of Components of Diabetic Retinopathy: An Evolutionary approach for Filtering

normal Digital Fundus Imaging in Screening and Population based Studies”, PloS One, vol. 8–7,

July 2013, pp. e66730.

[249] Thornton, C.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K. “Auto-WEKA: Combined selection and

hyperparameter optimization of classification algorithms”. In: International Conference on

Knowledge Discovery and Data Mining, 2013, pp. 847–855.

[250] Tian, J.; Feng, N. “Adaptive Generalized Ensemble Construction with Feature Selection and

its Application in Recommendation”, International Journal of Computational Intelligence Systems,

vol. 7–sup2, July 2014, pp. 35–43.

[251] Trawinski, K.; Cordón, O.; Quirin, A. “Embedding Evolutionary Multiobjective Optimization

into Fuzzy Linguistic Combination method for Fuzzy Rule-based Classifier Ensembles”. In:

International Conference on Fuzzy Systems, 2014, pp. 1968–1975.

[252] Trawiski, K.; Cordón, O.; Quirin, A.; Sánchez, L. “Multiobjective Genetic Classifier Selection

for Random Oracles Fuzzy Rule-based Classifier Ensembles: How Beneficial is the Additional

Diversity?”, Knowledge-Based Systems, vol. 54, December 2013, pp. 3–21.

181

[253] Trivedi, S. K.; Dey, S. “A Study of Ensemble based Evolutionary Classifiers for Detecting

Unsolicited Emails”. In: Conference on Research in Adaptive and Convergent Systems, 2014,

pp. 46–51.

[254] Tsakonas, A. “An analysis of Accuracy-diversity Trade-off for Hybrid Combined System with

Multiobjective Predictor Selection”, Applied Intelligence, vol. 40–4, January 2014, pp. 710–723.

[255] Tsakonas, A.; Gabrys, B. “A Fuzzy Evolutionary Framework for Combining Ensembles”, Applied

So� Computing, vol. 13–4, April 2013, pp. 1800–1812.

[256] Vaiciukynas, E.; Verikas, A.; Gelzinis, A.; Bacauskiene, M.; Kons, Z.; Satt, A.; Hoory, R. “Fusion

of Voice Signal Information for Detection of Mild Laryngeal Pathology”, Applied So� Computing,

vol. 18, May 2014, pp. 91–103.

[257] Van Assche, A.; Blockeel, H. “Seeing the forest through the trees: Learning a comprehensible

model from an ensemble”. In: European Conference on Machine Learning, 2007, pp. 418–429.

[258] Van Rijn, J. N.; Hutter, F. “Hyperparameter importance across datasets”. In: International

Conference on Knowledge Discovery & Data Mining, 2018, pp. 2367–2376.

[259] Veeramachaneni, K.; Derby, O.; Sherry, D.; O’Reilly, U.-M. “Learning Regression Ensembles with

Genetic Programming at Scale”. In: Conference on Genetic and Evolutionary Computation,

2013, pp. 1117–1124.

[260] Vega-Pons, S.; Ruiz-Shulcloper, J. “A survey of Clustering Ensemble Algorithms”, International

Journal of Pattern Recognition and Artificial Intelligence, vol. 25–3, May 2011, pp. 337–372.

[261] Vluymans, S.; Triguero, I.; Cornelis, C.; Saeys, Y. “EPRENNID: An Evolutionary Prototype

Reduction based Ensemble for Nearest Neighbor Classification of Imbalanced Data”,

Neurocomputing, vol. 216, December 2016, pp. 596–610.

[262] Vukobratovi, B.; Struharik, R. “Hardware Acceleration of Nonincremental Algorithms for the

Induction of Decision Trees”. In: Telecommunication Forum, 2017, pp. 1–8.

[263] Wang, D.; Alhamdoosh, M. “Evolutionary Extreme Learning Machine Ensembles with Size

Control”, Neurocomputing, vol. 102, February 2013, pp. 98–110.

[264] Wen, Y.-W.; Ting, C.-K. “Learning Ensemble of Decision Trees through Multifactorial Genetic

Programming”. In: Congress on Evolutionary Computation, 2016, pp. 5293–5300.

[265] Wilcoxon, F. “Individual comparisons by ranking methods”. In: Breakthroughs in Statistics, Kotz,

S.; Johnson, N. L. (Editors), Springer, 1992, pp. 196–202.

[266] Winkler, S.; Schaller, S.; Dorfer, V.; Affenzeller, M.; Petz, G.; Karpowicz, M. “Data-based

Prediction of Sentiments using Heterogeneous Model Ensembles”, So� Computing, vol. 19–12,

July 2015, pp. 3401–3412.

182

[267] Wolpert, D. H. “Stacked Generalization”, Neural Networks, vol. 5–2, July 1992, pp. 241–259.

[268] Wolpert, D. H.; Macready, W. G. “No Free Lunch Theorems for Optimization”, IEEE Transactions

on Evolutionary Computation, vol. 1–1, April 1997, pp. 67–82.

[269] Woon, W. L.; Kramer, O. “Enhanced SVR Ensembles for Wind Power Prediction”. In:

International Joint Conference on Neural Networks, 2016, pp. 2743–2748.

[270] Wozniak, M. “Evolutionary Approach to Produce Classifier Ensemble based on Weighted

Voting”. In: World Congress on Nature and Biologically Inspired Computing, 2009, pp. 648–

653.

[271] Xavier-Júnior, J. a. C.; Freitas, A. A.; Feitosa-Neto, A.; Ludermir, T. B. “A Novel Evolutionary

Algorithm for Automated Machine Learning Focusing on Classifier Ensembles”. In: Brazilian

Conference on Intelligent Systems, 2018, pp. 1–6.

[272] Xavier-Júnior, J. a. C.; Freitas, A. A.; Feitosa-Neto, A.; Ludermir, T. B. “A Novel Evolutionary

Algorithm for Automated Machine Learning Focusing on Classifier Ensembles”. In: Brazilian

Conference on Intelligent Systems, 2018, pp. 1–6.

[273] Xu, H.; Caramanis, C.; Mannor, S. “Sparse Algorithms are not Stable: A no-free-lunch Theorem”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34–1, January 2012, pp. 187–

193.

[274] Yao, X.; Islam, M. M. “Evolving Artificial Neural Network Ensembles”, IEEE Computational

Intelligence Magazine, vol. 3–1, February 2008, pp. 31–42.

[275] Yildirim, I. “Bayesian inference: Gibbs sampling”, Technical Report, Department of Brain and

Cognitive Sciences, University of Rochester, Rochester, USA, 2012, 6p.

[276] Zagorecki, A. “Feature Selection for Naive Bayesian Network Ensemble using Evolutionary

Algorithms”. In: Federated Conference on Computer Science and Information Systems, 2014,

pp. 381–385.

[277] Zangari, M.; Santana, R.; Mendiburu, A.; Pozo, A. T. R. “Not all PBILs are the same: Unveiling

the different learning mechanisms of PBIL variants”, Applied So� Computing, vol. 53, April 2017,

pp. 88–96.

[278] Zhang, L.; Mistry, K.; Neoh, S. C.; Lim, C. P. “Intelligent Facial Emotion Recognition using Moth-

firefly Optimization”, Knowledge-Based Systems, vol. 111, November 2016, pp. 248–267.

[279] Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. “A Combined Model based on CEEMDAN

and Modified Flower Pollination Algorithm for Wind Speed Forecasting”, Energy Conversion and

Management, vol. 136, March 2017, pp. 439–451.

183

[280] Zhang, Y.; Liu, B.; Cai, J.; Zhang, S. “Ensemble Weighted Extreme Learning Machine

for Imbalanced Data Classification based on Differential Evolution”, Neural Computing and

Applications, vol. 28–1, May 2017, pp. 259–267.

[281] Zhang, Y.; Liu, B.; Yang, F. “Differential Evolution Based Selective Ensemble of Extreme Learning

Machine”. In: Trustcom/BigDataSE/ISPA, 2016, pp. 1327–1333.

[282] Zhang, Y.; Zhang, H.; Cai, J.; Yang, B. “A Weighted Voting Classifier based on Differential

Evolution”, Abstract and Applied Analysis, vol. 2014–1, May 2014, pp. 1–6.

184

	Introduction
	Objectives
	Thesis' Contributions
	Thesis' Outline

	Background
	Traditional non-Evolutionary Ensemble Learning Methods
	Boosting
	Bagging
	Stacking
	Random Forests

	Evolutionary Algorithms
	The Four Color Theorem
	Genetic Algorithms
	Genetic Programming
	Particle Swarm Optimization
	Differential Evolution
	Estimation of Distribution Algorithms

	Interpretability
	White-box models
	Black-box models
	Evaluating Interpretability

	Auto-Machine Learning
	Formal Definition
	Addressing the CASH problem

	Summary

	Ensemble Learning with Evolutionary Algorithms
	Methodology
	Taxonomy
	The Generation Stage of Ensemble Learning
	Instance Selection
	Attribute selection
	Model optimization

	The Selection Stage of Ensemble Learning
	Static selection
	Dynamic selection

	The Integration Stage of Ensemble Learning
	Linear models
	Expression trees
	Genetic Fuzzy Systems
	Induced Ordered Weighted Averaging (IOWA)
	Error Correcting Output Codes (ECOC)
	Neural Networks
	Evolutionary Algorithms for selecting meta-combiners

	Fitness functions
	Effectiveness, Diversity, Complexity and Efficiency
	Single vs. Multi-Objective Optimization

	Types of Evolutionary Algorithms
	Types of Base Learners
	Application Domains
	Summary of Findings

	EEL: Estimation of Distribution Algorithms for Ensemble Learning
	Proposed Method
	Fitness Computation
	Updating the Probabilistic Graphical Model
	Complexity Analysis

	Experimental Setup
	Baseline Algorithms
	Datasets

	Experimental Results
	Execution Analysis

	Discussion and Final Remarks

	PUMA: Probabilistic Univariate Estimation of Distribution Algorithm for Ensemble Learning
	Proposed Method
	Individuals
	Fitness evaluation
	PUMA's Probabilistic Graphical Model
	Early-Stopping and Termination
	Complexity Analysis

	Experimental setup
	Datasets
	Modifications to PUMA
	Baseline Algorithms and Hyper-parameter optimization
	Hardware specifications and source code

	Experimental results
	Fair Analysis on Interpretability

	Discussion and Final Remarks

	EDNEL: Estimation of Dependency Networks for Ensemble Learning
	Proposed Method
	Individuals
	Probabilistic Graphical Model
	Sampling individuals
	Fitness evaluation
	Population selection and Elitism
	Updating the GM's structure
	Updating the GM's probabilities
	Early Stop, termination, and validation set

	Experiments
	Nested Cross-validation experimental setup
	Nested Cross-validation experimental results
	Holdout experimental setup
	Holdout experimental results

	Discussion and Final Remarks

	Conclusions
	Limitations
	Future work

	References

