

16 a 20 de Outubro de 2011 Campos do Jordão - SP

NANOCOMPÓSITOS POLIPROPILENO/GRAFITE VIA POLIMERIZAÇÃO IN SITU

Marcéo A. Milani¹, Giselda B. Galland¹*, Raul Quijada², Nara R. S. Basso³

1* - Instituto de Química, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre 91570-970, Brazil - griselda@iq.ufrgs.br 2 - CIMAT, Universidade de Chile, Santiago, Casilla 2777, Chile.

3 - Faculdade de Química, PUCRS, Av. Ipiranga 6681, Porto Alegre 90619-900, Brazil.

Esse trabalho apresenta a síntese de nanocompósitos de polipropileno/grafite através de polimerização *in situ*, utilizando catalisador metalocênico e nanolâminas de grafeno. Inicialmente, analisou-se qual entre os catalisadores metalocênicos rac-Et(Ind) $_2$ ZrCl $_2$ ou rac-Me $_2$ Si(Ind) $_2$ ZrCl $_2$ produz polipropileno com propriedades mecânicas mais relevantes. Em seguida, partiu-se para as reações de polimerização *in situ* para obtenção dos nanocompósitos. Os materiais poliméricos produzidos foram caracterizados por DRX, DSC, GPC e DMTA.

Palavras-chave: polipropileno, nanocompósitos, grafite, metalocenos.

Polypropylene/Graphite nanocomposites by in situ polymerization.

This work presents the synthesis of nanocomposites of polypropylene/graphite by *in situ* polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts *rac*-Et(Ind)₂ZrCl₂ or *rac*-Me₂Si(Ind)₂ZrCl₂ produces polypropylene with mechanical properties more relevant. Then it were performed the *in situ* polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA.

Keywords: polypropylene, nanocomposites, graphite, metallocene.

Introdução

O polipropileno isotático apresenta boas propriedades térmicas, mecânicas e físicas quando utilizado na temperatura ambiente. Devido ao seu baixo custo e sua fácil processabilidade, além de ser perfeitamente reciclável, ele é um dos polímeros mais usados comercialmente no mundo [1]. Porém, a sua faixa de aplicabilidade e as suas propriedades poderiam ser aumentadas quando combinado com outros materiais, na forma de nanocompósito [2].

A preparação de nanocompósitos tem sido realizada principalmente pela mistura do polímero no estado fundido com a nanocarga [3,4]. Esse procedimento tem a grande desvantagem da tendência à aglomeração da nanocarga, dificultando sua dispersão. Recentemente, a polimerização *in situ*, isto é, a polimerização do monômero junto com a nanocarga no reator, está mostrando resultados promissores com respeito à melhora da dispersão da nanopartícula na matriz polimérica [5]. A polimerização *in situ* de poliolefinas é ainda mais atraente quando se utilizam catalisadores metalocênicos, pelo fato que esses possuem propriedades catalíticas únicas, tais como: alta atividade, controle da massa molecular e de sua polidispersão, além de perfeito controle da microestrutura do polímero, não observáveis em sistemas catalíticos tradicionais [6].

O interesse em nanocompósitos de polímero/grafite ocorre devido às propriedades do grafite: excelente condutor, ação lubrificante e anti-estática, resistência química, retardante de chamas, propriedades de barreira, além de ser ambientalmente amigável e de baixo custo. As nanolâminas de grafeno podem ser obtidas por tratamento de ultra-som, obtendo-se lâminas com espessura na faixa de 100 a 400 nm [7]. A cointercalação de monômeros na grafite, seguida de uma polimerização (polimerização *in situ*) resultará em compósitos intercalados de polímero/grafite [8].

Assim, o presente projeto está relacionado com o desenvolvimento de uma metodologia que permita a síntese de nanocompósitos de polipropileno com nanolâminas de grafeno, por meio da polimerização *in situ* utilizando sistemas catalíticos baseados em complexos metalocênicos.

Experimental

Obtenção das nanolâminas de grafeno [7]

A grafite utilizada nesse trabalho é Sigma Aldrich (332461). Primeiramente, realizou-se a intercalação da grafite, para isso, a grafite em flocos foi tratada com uma solução 4:1 de H₂SO₄ e HNO₃ durante 24 horas. Após filtrar a solução e secá-la em estufa a 100°C por 3 horas, realizou-se a expansão da grafite em um forno na temperatura de 1000 °C durante 30 segundos. Por último, com o objetivo de dispersar as nanolâminas, a grafite expandida foi imersa em solução alcoólica 70% e colocada em um Ultra-som durante 8 horas, ao término, o sólido foi filtrado e seco em uma estufa a 100°C durante 24 horas.

Polimerização in situ

As polimerizações foram realizadas em um reator PARR com capacidade de 100 mL, conectado a um agitador mecânico e um sistema de aquecimento. O tolueno foi utilizado como solvente e metilaluminoxano (MAO) como cocatalisador. As nanolâminas de grafite, após os tratamentos, contêm grupos –OH e –COOH que desativam o catalisador metalocênico. Por isso, antes das nanolâminas serem adicionadas ao reator, foi realizado um tratamento com MAO para que esses grupos ficassem inativos. A grafite foi deixada em contato com 15% (p/p) de MAO em agitação durante 30 minutos em tolueno. Só então, as nanolâminas de grafite foram adicionadas ao reator como carga utilizando percentuais variáveis. Ao final da reação, adicionou-se solução de etanol acidificado. O polímero resultante foi filtrado, lavado com água e etanol, e seco até peso constante.

Resultados e Discussão

Otimização dos parâmetros reacionais

Primeiramente escolheu-se qual o catalisador seria utilizado, para isso tomaram-se dois catalisadores do tipo metalocênicos que contenham ponte entres os ligantes indenil, isso garante um

maior percentual de seqüências isotáticas, caracterizando a formação de polímeros com alto grau de isotaticidade [9]. Os catalisadores utilizados foram rac-Et(Ind)₂ZrCl₂ (I) e rac-Me₂Si(Ind)₂ZrCl₂ (II), ambos associados ao co-catalisador MAO. Focou-se principalmente no peso molecular (M_w) obtido através de GPC, temperatura de fusão cristalina (T_m) obtida pelo DSC e taticidade, determinada a partir da análise de RMN-¹³C, visando as metilas que aparecem na região de 22,0 a 19,0 ppm, indicando as configurações meso (m) e racêmicas (r) [10].

Tabela 1. Resultado das reações com os catalisadores I e II.

Catalisador	$T_m(^{\circ}C)$	χ _c (%)	M _w (g/mol)	Taticidade m (mol %)
rac-Et(Ind) ₂ ZrCl ₂ (I)	105	22	13200	84,7
rac-Me ₂ Si(Ind) ₂ ZrCl ₂ (II)	126	39	23800	92,2

Condições reacionais: P= 3 bar, T= 70° C, [Zr]= 2 µmol, Al/Zr= 1500, t= 30 min. V_{tol} = 40 mL. χ_c = grau de cristalinidade, calculado em relação ao calor de fusão de um polipropileno 100 % cristalino (208,58 J/g).

Percebe-se na Tabela 1, que o catalisador II apresentou resultados superiores em todos os parâmetros. Sua T_m foi superior, mostrou-se mais cristalino, apresentou uma taticidade bastante superior e, principalmente, apresentou praticamente o dobro do peso molecular.

Após adotar o catalisador II para realizar as reações de polimerização desse trabalho, resolveu-se fazer um estudo visando verificar como a temperatura reacional interfere nas propriedades finais dos polímeros produzidos.

Tabela 2. Resultado das reações com o catalisador II em diferentes temperaturas reacionais.

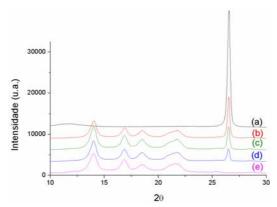
Reação	T (°C)	$T_{m}(^{o}C)$	χ _c (%)	M _w (g/mol)	Taticidade m (mol %)
1	70	126	39	23700	92,2
2	60	134	42	28800	93,0
3	50	138	46	38500	94,9
4	45	141	46	42700	95,6
5	40	144	49	60000	96,9

Condições reacionais: P= 3 bar, [Zr]= 2 µmol, Al/Zr= 1500, t= 30 min. V_{tol}= 40 mL.

A Tabela 2 mostra que quanto menor a temperatura reacional utilizada, maiores são os valores da T_m , χ_c , M_w e taticidade, fato esse, que Rytter e colaboradores [11] já haviam mostrado anteriormente com alguns catalisadores metalocênicos. Dessa forma, optou-se por utilizar a temperatura reacional de 40 °C nas reações dos nanocompósitos.

Caracterização dos nanocompósitos

Na Tabela 3 encontram-se os resultados das reações de polimerização para obtenção de nanocompósitos PP/grafite.


Tabela 3. Resultado das polimerizações PP/grafite in situ.

Reação	Teor de grafite (%)	$T_{m}(^{o}C)$	χ _c (%)	M _w (g/mol)	Taticidade m (mol %)
5	-	144	49	60000	96,9
6	1,0	144	38	71000	97,2
7	1,3	143	40	67100	n.d.
8	2,2	145	41	64100	n.d.
9	5,0	145	41	74300	n.d.

Condições reacionais: P= 3 bar, T= 40° C, [Cat.II]= 2 µmol, Al/Zr= 1500, t= 30 min. V_{tol} = 40 mL.

Os resultados apresentados na Tabela 3 indicam que não ocorreram mudanças significativas quanto às propriedades obtidas para os nanocompósitos, quando comparadas à reação de polimerização homogênea (Reação 5). As análises de RMN foram realizadas para o polipropileno puro e para o nanocompósito contendo 1% de nanolâminas de grafeno, permanecendo dentro do erro experimental. Os nanocompósitos com maiores porcentagens não foram analisados, pois o grafite interfere na análise, necessitando a remoção dessas nanocargas. Todos os polímeros obtidos nesse estudo apresentaram uma polidispersão em torno de 2, valor que é esperado para polímeros produzidos por metalocenos.

Também foi realizada a análise de Raio-X dos polímeros obtidos, a Fig. 1 apresenta os espectros.

Figura 1: Comparação dos espectros de Raio-X entre nanolâminas de grafite (a), PP/grafite 5,0% (b), PP/grafite 2,2% (c), PP/grafite 1,3% (d) e PP puro (e).

Pode-se observar no espectro da Fig.1a um pico relevante em torno de 26,5, característico do plano 002 do grafite. O espectro do PP puro (Fig.1e) apresentou os picos esperados para esse polímero: 14; 16,8; 18,5; 21-21,8 [12]. Nesse espectro, não existe nenhum pico em torno de 26,5, o qual

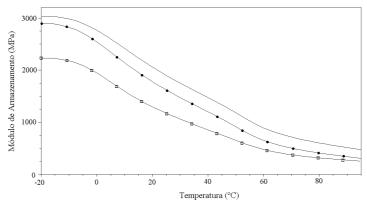

percebe-se nos espectros dos nanocompósitos (Fig.1b, Fig.1c e Fig.1d) referente à grafite. Além disso, conforme esperado, quanto maior a quantidade de nanocarga, maior é a intensidade do pico característico do grafite nos espectros dos nanocompósitos. Essa técnica também permite determinar a distância entre as lâminas que compõem o grafite (d_{002}), além do tamanho do cristal (C) formado por elas, para isso, basta utilizar a Lei de Bragg e a equação de Scherer.

Tabela 4. Parâmetros obtidos para o grafite e nanocompósitos através dos dados de Raio-X.

Reação	Teor de Grafite (%)	2θ (°)	d ₀₀₂ (nm)	C (nm)
Grafite	-	26,53	0,3356	32,87
7	1,3	26,48	0,3358	35,92
8	2,2	26,49	0,3360	37,87
9	5,0	26,51	0,3362	38,33

Os resultados da Tabela 4 indicam que não está ocorrendo uma mudança significativa entre o tamanho do cristal e a distância entre as camadas do grafite durante a polimerização, com isso, acredita-se que não está havendo um esfoliamento do grafite, tem-se apenas nanocompósitos intercalados.

A técnica de DMTA nos permite observar o módulo de armazenamento dos polímeros, parâmetro esse que indica a rigidez de um polímero sob condições de solicitação dinâmica. As amostras foram analisadas em modo único cantilever a uma freqüência de 1 Hz e um nível de deformação de 0,1 %.

Figura 2: Comparação dos módulos de armazenamento: PP/grafite 5%(-), PP/grafite 1,3%(•) e PP puro(□).

Através da Fig. 2 podemos notar dois fatores relevantes quanto ao módulo de armazenamento: primeiro, que ele é maior para os nanocompósitos, e, segundo, que entre os nanocompósitos foi maior para aquele que contém a maior quantidade de grafite.

A temperatura de transição vítrea foi obtida através do máximo da curva da $Tan\delta$. Percebe-se na Tabela 5 que a rigidez que a grafite confere aos nanocompósitos acarreta em um aumento da T_g .

Esse tipo de transição indica em que temperatura as moléculas do polímero deixam de ser completamente estáticas, então, uma vez que aumenta-se a rigidez dos compostos, espera-se que ele se comporte por mais tempo como vidro, sendo assim, apresentará uma maior $T_{\rm g}$.

Tabela 5. Comparação das temperaturas de transições vítreas (T_g) entre os polímeros obtidos.

Reação	Teor de grafite (%)	T_g (o C)
5	-	5
6	1,3	6
8	5,0	10

Conclusões

Através do procedimento de polimerização *in situ* foi possível sintetizar nanocompósitos de PP/grafite. Os resultados de T_m , χ_c , M_w e taticidade demonstram que as nanocargas não interferiram negativamente nessas propriedades. Os espectros de Raio-X apresentam nos nanocompósitos o pico referente ao grafite, e, através do DMTA percebeu-se que as cargas melhoraram o módulo de armazenamento dos nanocompósitos, assim como, também aumentaram a T_g .

Agradecimentos

A CAPES e ao CNPq pelo auxílio financeiro.

Referências Bibliográficas

- 1. V. Busico; *Macromolecules* 2004, *37*, 9722.
- 2. S. Pavlidou; C.D. Papaspyrides; *Progress in Polymer Science* 2008, 33, 1119.
- 3. K. Kalaitzidou; H. Fukushima; L.T. Drzal; Composites: Part A 2007, 38, 1675.
- 4. F.M. Uhl; C.A. Wolkie; *Polym. Degradation and Stability* 2002, 76, 111.
- 5. G. Zheng; J. Wu; W. Wang; C. Pan; Carbon 2004, 42, 2839.
- 6. G.G. Hlatky in *Metallocene-based Polyolefins*; J. Scheirs; W. Kaminsky, Ed.; Wiley: West Sussex, UK, 2000; Vol. 1, p 201-218.
- 7. G. Chen; W. Weng; D. Wu; C. Wu; European Polymer Journal 2003, 39, 2329.
- 8. Y.X. Pan; Z.Z. Yu; Y.C. Ou; G.H. Hu; J. Polym Sci: Part B: Polym. Phys. 2000, 38, 1626.
- 9. J. Guevara; R. Quijada; P. Saavedra; H. Palza; G.B. Galland; Bol.Soc. Chil. Quím. 2002, 47, 81.
- 10. H.N. Cheng; G.H. Lee; *Polymer Bulletin* 1985, 13, 549.
- 11. E. Rytter; T.S. Wester; H. Johnsen; P. Kittilsen; *Macromol. Chem. Phis.* 1998, 199 (9), 1989.
- 12. T. G. Gopakumar; D.J.Y.S. Page; Polymer Engennering Science 2004, 44 (6), 1162.