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“It is not the strongest of the species that sur-
vive, but the one most responsive to change.”
(Charles Robert Darwin)
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AN EFFECTIVE METHOD TO OPTIMIZE DOCKING-BASED VIRTUAL
SCREENING IN A CLUSTERED FULLY-FLEXIBLE RECEPTOR MODEL

DEPLOYED ON CLOUD PLATFORMS

ABSTRACT

The use of conformations obtained from molecular dynamics trajectories in the
molecular docking experiments is the most accurate approach to simulate the behavior of
receptors and ligands in molecular environments. However, such simulations are compu-
tationally expensive and their execution may become an infeasible task due to the large
number of structural information, typically considered to represent the explicit flexibility of
receptors. In addition, the computational demand increases when Fully-Flexible Receptor
(FFR) models are routinely applied for screening of large compounds libraries. This study
presents a novel method to optimize docking-based virtual screening of FFR models by re-
ducing the size of FFR models at docking runtime, and scaling docking workflow invocations
out onto virtual machines from cloud platforms. For this purpose, we developed e-FReDock,
a cloud-based scientific workflow that assists in faster high-throughput docking simulations
of flexible receptors and ligands. e-FReDock is based on a free-parameter selective method
to perform ensemble docking experiments with multiple ligands from a clustered FFR model.
The e-FReDock input data was generated by applying six clustering methods for partitioning
conformations with different features in their substrate-binding cavities, aiming at identify-
ing groups of snapshots with favorable interactions for specific ligands at docking runtime.
Experimental results show the high quality Reduced Fully-Flexible Receptor (RFFR) mod-
els achieved by e-FReDock in two distinct sets of analyses. The first analysis shows that
e-FReDock is able to preserve the quality of the FFR model between 84.00% and 94.00%,
while its dimensionality reduces on average 49.68%. The second analysis reports that re-
sulting RFFR models are able to reach better docking results than those obtained from the
rigid version of the FFR model in 97.00% of the ligands tested.

Keywords: Scientific Workflow, Cloud Computing, Clustering of MD Trajectories, Molecular
Docking Simulations, Fully-Flexible Receptor Model.





UM MÉTODO EFETIVO PARA OTIMIZAR A TRIAGEM VIRTUAL
BASEADA EM DOCAGEM DE UM MODELO DE RECEPTOR

TOTALMENTE FLEXÍVEL AGRUPADO UTILIZANDO COMPUTAÇÃO EM
NUVEM

RESUMO

O uso de conformações obtidas por trajetórias da dinâmica molecular nos experi-
mentos de docagem molecular é a abordagem mais precisa para simular o comportamento
de receptores e ligantes em ambientes moleculares. Entretanto, tais simulações exigem
alto custo computacional e a sua completa execução pode se tornar uma tarefa imprati-
cável devido ao vasto número de informações estruturais consideradas para representar
a explícita flexibilidade de receptores. Além disso, o problema é ainda mais desafiante
quando deseja-se utilizar modelos de receptores totalmente flexíveis (Fully-Flexible Recep-
tor - FFR) para realizar a triagem virtual em bibliotecas de ligantes. Este estudo apresenta
um método inovador para otimizar a triagem virtual baseada em docagem molecular de mo-
delos FFR por meio da redução do número de experimentos de docagem e, da invocação
escalar de workflows de docagem para máquinas virtuais de plataformas em nuvem. Para
esse propósito, o workflow científico basedo em nuvem, chamado e-FReDock, foi desen-
volvido para acelerar as simulações da docagem molecular em larga escala. e-FReDock é
baseado em um método seletivo sem paramêtros para executar experimentos de docagem
ensemble com múltiplos ligantes. Como dados de entrada do e-FReDock, aplicou-se seis
métodos de agrupamento para particionar conformações com diferentes características es-
truturais no sítio de ligação da cavidade do substrato do receptor, visando identificar grupos
de conformações favoráveis a interagir com específicos ligantes durante os experimentos
de docagem. Os resultados mostram o elevado nível de qualidade obtido pelos modelos
de receptores totalmente flexíveis reduzidos (Reduced Fully-Flexible Receptor - RFFR) ao
final dos experimentos em dois conjuntos de análises. O primeiro mostra que e-FReDock é
capaz de preservar a qualidade do modelo FFR entre 84,00% e 94,00%, enquanto a sua di-
mensionalidade reduz em uma média de 49,68%. O segundo relata que os modelos RFFR
resultantes são capazes de melhorar os resultados de docagem molecular em 97,00% dos
ligantes testados quando comparados com a versão rígida do modelo FFR.

Palavras-Chave: Workflow Científico, Computação em Nuvem, Agrupamento de Trajetó-
rias da Dinâmica Molecular, Docagem Molecular, Modelo de Receptor Totalmente Fle-
xível.





LIST OF FIGURES

Figure 2.1 – Illustration of molecular docking process . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.2 – Representation of an ensemble docking procedure by using an MD
receptor conformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.3 – 3D structure of InhA-NADH complex (PDB ID: 1ENY) . . . . . . . . . . . . 36

Figure 2.4 – Types of workflow structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.5 – Hierarchy of cloud service models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.6 – Cloud layer architecture representation and its service models. . . . . . 45

Figure 3.1 – Existing residues in the InhA crystal structure substrate-binding cav-
ity (PDB ID: 1BVR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.2 – Binding cavity pairwise RMSD distance analyses from the 20ns InhA
MD trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.3 – 3D structure representation of the 20 ligands used to perform the
ensemble docking experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.4 – Comparative performance of partitional clustering methodos for Pro-
tein RMSD, Cavity RMSD and Cavity Attributes data sets. . . . . . . . . . . . . . . 61

Figure 3.5 – Comparative performance of hierarchical clustering methodos for
Protein RMSD, Cavity RMSD and Cavity Attributes data sets. . . . . . . . . . . . . 66

Figure 3.6 – Mean variance of the RMSD values in the partitional clustering metho-
dos for Protein RMSD, Cavity RMSD and Cavity Attributes data sets. . . . . . . 67

Figure 3.7 – Mean variance of the RMSD values in the hierarchical clustering
methodos for Protein RMSD, Cavity RMSD and Cavity Attributes data sets. . 68

Figure 4.1 – Model of P-SaMI data pattern operation . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.2 – Strategic method workflow to perform selective ensemble docking
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.3 – Representation of the experiment and batch metrics computation. . . 76

Figure 4.4 – Comparative level of homogeneity between batches and their clus-
ters for sequential and random snapshots selection. . . . . . . . . . . . . . . . . . . . 79

Figure 4.5 – Performance analyses of the empirical experiments applying differ-
ent parametrizations for the batch analysis function . . . . . . . . . . . . . . . . . . . 81

Figure 4.6 – Performance analyses of the empirical experiments applying differ-
ent parametrizations for the cluster analysis function . . . . . . . . . . . . . . . . . . . 82

Figure 5.1 – e-Science Central Cloud Platform Architecture . . . . . . . . . . . . . . . . . . 89

Figure 5.2 – Conceptual architecture of e-FReDock scientific workflow. . . . . . . . . 92



Figure 5.3 – Database model designed for e-FReDock scientific workflow. . . . . . . 96

Figure 5.4 – Create Experiment sub-workflows designed on the e-SC platform. . . 99

Figure 5.5 – Experiment and LGA input parameters of the NewExperiment block
used to create new experiments on e-FReDock. . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.6 – AutoGrid and AutoDock input parameters of the NewExperiment
block used to create new experiments on e-FReDock. . . . . . . . . . . . . . . . . . 102

Figure 5.7 – Selective Ensemble Docking sub-workflow designed on the e-SC
platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 6.1 – Azure blob storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 6.2 – Comparing the overall processing time of Dv2-2 Azure instances with
different number of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6.3 – Comparing the overall processing cost of Dv2-2 Azure instances with
different number of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.4 – Comparing the efficiency of Dv2-2 Azure instances with different
number of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.5 – Scalabity of e-SC for e-FReDock on Azure D2 v2 virtual machines. . 115

Figure 6.6 – Comparison between the RMSD values obtained by the FFR model
and the resulting RFFR models for six InhA’s known ligands. . . . . . . . . . . . . 122



LIST OF TABLES

Table 3.1 – An excerpt of Cavity Attributes data set specification. . . . . . . . . . . . . . 56

Table 3.2 – Statistical assessments from the optimal solution for each clustering
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 6.1 – Types of Azure Dv2-series instances used to assess e-FReDock per-
formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 6.2 – Types of virtual machine flavors from CIC private cloud. . . . . . . . . . . . 116

Table 6.3 – Comparative performance of Large CIC cloud VMs according to the
number of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Table 6.4 – Set of settings employed to execute e-FReDock on Scenario I and II. 118

Table 6.5 – Accuracy assessments in the e-FReDock scientific workflow for 17
different ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table 6.6 – Docking experiment analyses from the RFFR models produced by
e-FReDock and the 1ENY crystal structure with 14 PDB’s ligands and 89
ZINC’s compounds for Scenario I and II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 6.7 – Cost specification spent to run e-FReDock on Azure cloud platform . . 126





LIST OF ALGORITHMS

Algorithm 4.1 – Batch analysis function for setting priority to the batches of snap-
shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Algorithm 4.2 – Cluster analysis function for setting priority to the batches of snap-
shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Algorithm 5.1 – Algorithm designed to control workflow invocations via e-SC API. 105





LIST OF ACRONYMS AND ABBREVIATIONS

3-D – Three-Dimensional

API – Application Program Interface

CIC – Cloud Innovation Centre

DAG – Directed Acyclic Graph

DCG – Directed Cyclic Graph

e-SC – e-Science Central

E-R – Entity-Relational

FEB – Free Energy of Binding

FFR – Fully-Flexible Receptor

FReMI – Flexible Receptor Middleware

HPC – High Performance Computing

IaaS – Infrastructure-as-a-Sevice

INH – Isoniazid

InhA – 2-trans-enoil-ACP (CoA) reductase (E.C.1.3.1.9) from Mycobacterium tu-
berculosis

MD – Molecular Dynamics

MPI – Message Passing Interface

LGA – Lamarckian Genetic Algorithm

P-SaMI – Self-adaptive Multiple Instances Pattern

PaaS – Platform-as-a-Service

PDB – Protein Data Bank

OS – Operating System

QoS – Quality of Service

RDD – Rational Drug Design

RFFR – Reduced Fully-Flexible Receptor

RMSD – Root Means Square Deviation

SaaS – Software-as-a-Service

SLA – Service Level Agreement

SWfMS – Scientific Workflow Management Systems

SQD – Sum of the Quartile Differences

TB – Tuberculosis

THT – Trans-2-Hexadecenoyl-(N-Acetyl-Cysteamine)-Thioester



TCL – Triclosan

VM – Virtual Machine

wFReDoW – Web Flexible Receptor Docking Workflow



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.1 Health and Socio-Economic Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.1 Specific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 The Rational Drug Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Molecular Docking Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Molecular Docking Approaches Accounting for Receptor Flexibility . . . . . . . . . . 32

2.4 Docking-Based Virtual Screening of MD Receptor Conformations . . . . . . . . . . . 34

2.4.1 The FFR Model: InhA from Mycobacterium tuberculosis . . . . . . . . . . . . . . 35

2.5 Scientific Workflows for Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Phases of the Scientific Workflow Life Cycle . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.3 Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 CLUSTERING THE 20 NS InhA MOLECULAR DYNAMICS TRAJECTORY . . . . . . 49

3.1 Clustering Algorithms Applied for Partitioning the MD Trajectory . . . . . . . . . . . . 50

3.2 Data Sets for Clustering the MD Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Approach for Validating Data Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Comparative Analyses in the Partitioning Solutions . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Selecting the Optimal Clustering Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Chapter Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 THE METHOD TO OPTIMIZE DOCKING-BASED VIRTUAL SCREENING IN FFR
MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Self-adaptive Multiple Instance (P-SaMI) Data Pattern for Scientific Workflows . 69



4.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Approach Developed to Perform Selective Ensemble Docking Experiments . . . 73

4.4 Evaluating Empirical Experiments to Select a Suitable Parametrization for the
Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 e-FReDock: A CLOUD-BASED SCIENTIFIC WORKFLOW TO OPTIMIZE INTEN-
SIVE MOLECULAR DOCKING SIMULATIONS OF FFR MODELS . . . . . . . . . . . . . 87

5.1 Workflow Enactment System: e-Science Central . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 MongoDB NoSQL Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 e-FReDock Conceptual Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 AutoDock4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 MongoDB Storage Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2.1 Clustering Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2.2 Experiment Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2.3 Docking Parameters: Atom_Type and Docking_Conf Collections . 97

5.3.2.4 Batch and Batch_History Collections . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2.5 Docking Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Create Experiment Sub-Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.4 Selective Ensemble Docking Sub-Workflow . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.5 The e-SC API Component for Handling Selective Ensemble Docking
Sub-Workflow Invocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 EXPERIMENTAL RESULTS OF e-FReDock ON CLOUD PLATFORMS . . . . . . . . . 109

6.1 Cloud Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Microsoft Azure Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2 CIC Private Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 e-FReDock Performance Analyses on Cloud Virtual Machines . . . . . . . . . . . . . 111

6.2.1 Azure Virtual Machines Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.2 CIC Private Cloud Virtual Machines Performance . . . . . . . . . . . . . . . . . . . 116

6.3 The Set of Ligands Used to Screen against the FFR model . . . . . . . . . . . . . . . . 117

6.4 e-FReDock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Evaluating e-FReDock Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5.1 Comparing the Accuracy of e-FReDock Results based on the entire FFR
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



6.5.2 Comparing the Accuracy of e-FReDock Results based on 1ENY Crystal
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 High Performance Environments to Optimize Molecular Docking Simulations . . 127

7.2 Approaches to Reduce the Ensemble of MD Conformations . . . . . . . . . . . . . . . 128

7.3 Methods to Reduce the Molecular Docking Simulations of FFR Models . . . . . . . 129

8 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

APPENDIX A – Results of the Empirical Experiments using Different Method’s
Parametrization for the Batch Analysis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

APPENDIX B – Results of the Empirical Experiments using Different Method’s
Parametrization for the Cluster Analysis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

APPENDIX C – e-FReDock Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161





27

1. INTRODUCTION

Demand for pharmaceutical industry in marketing newer and more efficient drugs
has steadily grown with the first rough draft of human genome sequence in 2001 [GAG11].
Nevertheless, the development of new drugs is a very lengthy and time-consuming process.
It also requires substantial investments in technology resources, such as computational
power to store, manage, execute, and analyze simulations on protein-ligand interactions
[MMM09, PMD+10]. Thus, new computational methods are needed to aid time reduction
and to accurately investigate chemical and biological behaviors of ligands and receptors
during the Rational Drug Design (RDD) process [Kun92, Kap08].

RDD is the process that applies multidisciplinary approaches to transform active
biological compounds into suitable drugs [Kap08, MMM09]. Molecular docking simulations
constitute the second step of the RDD. They identify and optimize drug candidates by ana-
lyzing and modeling molecular interactions between ligands or small molecules and target
protein or receptor [Kap08]. Such simulations are performed by a docking software, such as
AutoDock4.2 [MHL+09]. Each docking software has a search algorithm that generates a set
of different binding modes of a protein-ligand complex, and a scoring function that can rank
them, as well as estimating the best binding affinity by computing, among other values, the
Free Energy of Binding (FEB).

Protein flexibility is a key issue in docking programs, and while these are capable of
exploring the flexibility of ligands, the explicit treatment of the flexibility, for both protein and
ligand, during their interactions, remains a challenging task [LBM+09, SRC+13]. This is due
to the large number of degrees of freedom associated to the protein, which cannot be directly
transferred from the docking methods used in the context of ligand flexibility [SRC+13]. Nev-
ertheless, proteins are very versatile, and their flexibility cannot be a priori neglected since
it plays an essential role in their structure and function [FLSM14, BRM15]. Buonfiglio et al.
[BRM15] state that ignoring protein flexibility in docking experiments is indeed a potentially
dangerous practice that most likely would result in false-negative outcomes.

To account for the dynamic behavior of proteins, we make use of an ensemble
of conformations obtained from a Molecular Dynamics (MD) simulation [ABG06, CKS+08].
MD simulation is one of the most affordable and accurate methods for identifying alternative
binding forms of proteins, making possible to understand from fast internal motions to slow
conformational changes [ABG06]. The result of an MD simulation is a series of instant
conformations of the protein along the simulation time scale. These conformations are also
often called snapshots. Throughout this thesis, the term Fully-Flexible Receptor (FFR) model
[MWRNdS11] is used to refer to the ensemble of snapshots that constitutes an MD trajectory.
In this approach, each ligand is docked separately at each conformation of the FFR model
[QDPRNdS14]. The use of FFR model is an appealing approach for improving the realism
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of proteins and ligands into flexible molecular environments [ABG06, EMBS14]. The major
problem in using an ensemble of snapshots during docking experiments is that it becomes
a limiting and costly task as the dimensionality of the FFR model increases. Several studies
have attempted to deal with this virtual high-throughput screening; however, it remains a
challenge in the present day [ABM08, SRC+13, DPFNdSR13, QDPRNdS14, DPQRNdS15,
FLSM14, ADK15, BRM15].

1.1 Problem Statement

There are certain issues associated with the use of multiple receptor MD confor-
mations in routine of docking-based virtual screening. One of the main reasons behind
this difficulty is the required time to perform virtual screening in an FFR model, which can
have hundreds of thousands up to millions of conformations, against a database of small
molecules. There is currently a large number of small molecules that have emerged in
databases such as ZINC [ISM+12], PubChem [WXS+09] and GDB-17 [RvDBR12]. Another
reason is that information provided by multiple protein conformations is often unworkable
and, thus, a proper treatment must be done in order to exploit it effectively [BRM15]. Several
attempts have been made to answer the following question:

How can the computational efficiency and prediction accuracy of molecular docking
simulations, based on FFR models, be balanced to perform practical virtual screening on a
large library of ligands?

Previous studies have reported efforts in strategically selecting a small number of
MD conformations before starting the docking experiments [TSP+14, DPQR+15]. Landon et
al. [LAB+08] represented 90% of the conformational flexibility within ligand-biding site of a
160 ns MD trajectory of the H5N1 into reduced ensembles of 10 apo and 5 holo structures
by using clustering algorithms. A more detailed analysis on finding small ensembles of
representative MD conformations using different clustering algorithms was done by Torda
and van Gunsteren [TvG94] and Shao et al. [STTC07]. To generate groups of representative
MD conformations, they used pairwise Root Means Square Deviation (RMSD), the well-
known measure of similarity for clustering MD trajectories. Our research group has also
performed advances in this field, with a new measure of similarity introduced for clustering
MD trajectories [DPQRNdS15]. We figured out that by making use of pairwise RMSD for all
or part of the MD structures is not the most appropriate gauge to cluster conformations when
the target protein has a plastic active site, since they are heavily influenced by changes that
occur in parts of the structures [DPQRNdS15].

Recently, studies have shown an increased interest in reducing the number of MD
structures during docking experiments [MSR+11, DPFNdSR13, QDPRNdS14, HRFNdS15].
However, it raises another question:
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How to select an accurate representation of the receptor and to generate a Re-
duced Fully-Flexible Receptor (RFFR) model that best complements the shape of a specific
ligand?

Machado et al [MSR+11] presented an approach to answer this question. They de-
veloped FReDoWs, a scientific workflow that automates docking experiments and performs
selective molecular docking simulations by identifying the best FEB, which is achieved from
exhaustive docking experiments between the FFR model and a ligand with similar structure.
Despite the appropriate accuracy showed in their results, FReDoWs may become time-
consuming as the number of dissimilar small molecules and receptor snapshots increase.
Another way to answer the second question is to make use of the web Flexible Recep-
tor Docking Workflow (wFReDoW) [DPFNdSR13]. wFReDoW was created in our research
group and uses worker nodes from the Amazon Elastic Compute Cloud to reduce both the
dimensionality of FFR models and the overall docking execution time by using a strategi-
cally approach to identify promising snapshots. De Paris et al. [DPFNdSR13] reported that
wFReDoW was able to reduce from days to hours the overall time execution, maintaining
over 95% of accuracy in a 3.1 ns MD trajectory of InhA. Nevertheless, wFReDoW has some
limitations such as: (i) its input parameters should have accurate information by the expert
domain on best and worst interaction energies produced by a FFR model and a ligand,
and (ii) its deployment model does not allow to improve performance as the worker nodes
increases since it is based on a Message Parsing Interface (MPI) cluster model.

1.1.1 Health and Socio-Economic Motivations

The FFR model employed in this study was generated from an MD simulation of the
2-trans-enoil-ACP (CoA) reductase (E.C.1.3.1.9) enzyme or InhA-NADH complex from My-
cobacterium tuberculosis [DQB+95]. InhA is part of the fatty acid biosynthesis system type II
(FASII), and plays a role in the synthesis of mycolic acids, which are key components of the
Mycobacterium tuberculosis cell wall. Inhibition of InhA by the drug isoniazid, for instance,
kills the bacteria [DQB+95]. The InhA enzyme is one of the best established and validated
target for the development of anti-tuberculosis (anti-TB) agents [RVS+99, HSN+12]. Tu-
berculosis is a top killer infectious disease that affects people worldwide, particularly those
living in low-and middle-income countries. TB decreases their capacity to work, adds treat-
ment expenses, and exacerbates their poverty. It is estimated that TB alone causes near $
12 billion to disappear from the global economy annually [Org15]. The most effective anti-
TB drugs currently available for the treatment of tuberculosis are isoniazid [VWA+06] and
rifampicin [TIM+93]. Although these drugs have been used since their discovery in 1952,
studies indicate the growth of drug-resistant TB cases in the last decades [Org15]. Accord-
ing to the World Health Organization [Org15], 9.6 million people were diagnosed with the
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disease and 1.5 million died in 2014, and 480,000 people developed multidrug-resistant TB.
In the face of these facts, new anti-TB drugs capable of providing a more efficient treatment
of TB infection, as well as of drug-resistant TB, must be intensely investigated. Therefore,
future research should attempt to find more powerful and selective inhibitors of the InhA
enzyme.

1.2 Thesis Contributions

The main contribution of this thesis is a new and effective method to reduce the time
for docking-based virtual screening of FFR models. This is achieved by discarding groups
of unpromising snapshots for specific ligands, and scale docking experiments out onto cloud
virtual machines. For this purpose, the scientific workflow called e-FReDock was built and
deployed into cloud platforms for performing selective ensemble docking experiments.

As a result, we expect that the method developed will:

• Reduce the dimensionality of FFR models without losing biologically relevant informa-
tion;

• Accelerate ensemble docking experiments by scaling receptor-ligand interactions out
onto cloud Virtual Machines (VMs).

As a consequence, resulting RFFR models obtained by discarding non-promising
snapshots from the original model, can be accurately shaped for a greater number of ligands,
and the total time spent in the ensemble docking experiments can be considerably reduced.

1.2.1 Specific Contributions

The specific contributions of this thesis are:

• A new approach for clustering MD trajectories. We develop and validate a new ap-
proach for clustering MD trajectories using features from the substrate-binding cavity
as similarity function. We show in Chapter 3 a detailed study on different cluster-
ing methods and similarity metrics (e.g. protein RMSD, cavity RMSD and substrate-
binding cavity) for clustering MD trajectories with the aim of identifying an optimal clus-
tering solution to be used as input to e-FReDock.

• A new method for optimizing docking-based virtual screening of FFR models based
on the Self-adaptive Multiple Instances Pattern (P-SaMI) [HRFNdS15]. This method,
which is presented in Chapter 3, uses the clustered FFR model to strategically discard
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groups of unpromising snapshots of specific ligands at docking runtime. The output
is a new RFFR model tailored for each ligand tested. One of the main advantages
of this method is its ability of identifying batches with (un)promising snapshots and
prioritizing them by using a set of metrics computed from docking results of processed
snapshots, rather than using the original midpoint average between the worst and best
FEB values, provided by a domain expert as proposed by [HRFNdS15].

• The e-FReDock cloud-based scientific workflow. This workflow manages data and
service required to evaluate and discard unpromising snapshots at docking runtime.
We show in Chapter 5 that e-FReDock has a set of components to execute docking
experiments of FFR models, scale workflows out onto cloud VMs, and discards snap-
shots based on the best binding free energies for the ligand and snapshots already
processed. This workflow was designed to run molecular docking simulations of FFR
models based on the method proposed in Chapter 4.

• The use of MongoDB database model to store and manage e-FReDock data. We
present in Chapter 5, Section 5.3.2, the Entity-Relational (E-R) based conceptual
model to store control system and input/output docking data.

• The use of public and private cloud platforms to deploy e-FReDock. We present in
Chapter 6, Section 6.2, the performance evaluation of e-FReDock on both, public and
private cloud Virtual Machines (VMs), in order to select the most cost-effective cloud
instance setting.

1.3 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 introduces the major biological and computational concepts necessary for a
better comprehension of this study. It starts with an overview of the molecular dock-
ing experiments in RDD process and the approaches currently used to consider the
explicit flexibility of receptors, focusing on ensemble docking experiments, which is
the approach used in this study. The FFR model used to conduct all experiments in
this thesis is also described in this section. The last two sections describe the basic
aspects of scientific workflows and cloud computing paradigm.

• Chapter 3 describes the methods used for clustering the snapshots of the FFR models
and identifies an optimal solution to be used as input to e-FReDock. It also gives a
comparison of the gains obtained by using the substrate-binding cavity features for
clustering the MD trajectory and metrics of similarities.
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• Chapter 4 specifies the method proposed to reduce the dimensionality of FFR models
and points out a suitable parametrization for performing a set of empirical experiments.

• Chapter 5 presents the conceptual architecture designed for e-FReDock scientific work-
flow. It includes the representation of this architecture and the detailed specification
of every block developed on e-Science Central (e-SC) [HWWC13], the workflow en-
actment system used to design e-FReDock. The ER based conceptual model to store
docking data into NoSQL MongoDB database [Cho13] is also shown.

• Chapter 6 presents the results of this thesis. Two sets of experiments are reported
in this section by using e-FReDock. The first set evaluates the performance of e-
FReDock when it is executed in VMs from private and public cloud platforms. A small
set of snapshots from the FFR model is used for performing molecular docking sim-
ulations with a small ligand to define a baseline cost in using Azure Dv2-series VMs
[AZU16]. The second set of experiments reports the selective ensemble docking ex-
periments performed by the e-FReDock deployed on cloud VMs using a set of 103
ligands, 14 from PDB [BWF+00] and 89 from ZINC [ISM+12] databases. In this set
of experiments, two analyses are presented in order to assess the quality of results
achieved from e-FReDock. First, the best FEB values from the RFFR model and the
FFR model are compared for a set of 16 ligands. Second, the best FEB values ob-
tained from the RFFR models and the rigid version of the FFR model are compared for
all ligands tested.

• Chapter 7 reports related works. These works are associated with the approaches
used to optimize docking-based virtual screening of FFR models.

• Chapter 8 summarizes the conclusions of this study which have led to this thesis.
Additionally, it draws the limitations, gives directions for future works, and describes
published papers.
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2. BACKGROUND

This chapter introduces the major bioinformatics and computational concepts nec-
essary for a better comprehension of this thesis. We starts with an overview of the Rational
Drug Design (RDD) process focusing on molecular docking simulations, which consist the
second step of RDD. After, we describe the most well-known alternative docking approaches
accounting for receptor flexibility, including the approach adopted in this study, the ensemble
docking, and the Fully-Flexible Receptor (FFR) model are the basis for all experiments de-
scribed in this Thesis. This chapter closes presenting the main design options of scientific
workflows and cloud computing used for developing the cloud-based environment, in order
to optimize molecular docking simulations of fully flexible receptors.

2.1 The Rational Drug Design Process

Rational Drug Design [Kun92] is the technique used to transform biologically ac-
tive compounds into suitable drugs, aiming to prevent and treat diseases. According to
[MMM09], a promising practice to achieve the full benefit of this process is by properly com-
bining the study and application of multidisciplinary approaches, such as computer science,
mathematics, and computational chemistry. RDD is comprised of four steps [Kun92]:

1. Identification of the macromolecule of pharmacological importance or target receptor
(protein, DNA, RNA or others). After identifying the disease and isolating a biological
target, the domain expert performs analyses in the three-dimensional (3D) structure of
the target receptor. The potential binding sites in the target receptor may be detected
by computational analysis.

2. In silico experiments. A set of ligands is selected based on the potential binding sites
found in the target receptor (step1). Such ligands are usually found in databases of
small molecules like ZINC [ISM+12]. In this process, different conformations and ori-
entations assumed by a ligand in order to fit into a receptor binding site are simulated
by a molecular docking software, such as AutoDock [MHL+09].

3. Experimental tests. Ligands that successfully bind to the receptor binding site and are
able to inhibit or enhance the pharmacological activities are synthesized and tested.

4. New drug evaluation. Based on the experimental results, the new drug is manufactured
or the RDD process returns to step 1. In the last case, changes are made in the ligand
search protocol.
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The three important factors in this process are speed, cost, and quality. Kapetanovic
[Kap08] states that computational and experimental techniques have important roles in drug
discovery and development, and represent complementary approaches. Previous studies
have indicated that a careful quality control on the early stages tends to increase the effec-
tiveness of clinical trials [Kap08, PMD+10, SBBW12]. Applying computational techniques in
RDD process helps to minimize time and improve biological testing, while increasing pre-
dictability. Therefore, this study focuses on significantly contributing for improvement of the
most relevant and costly step of the RDD process, the molecular docking simulations.

2.2 Molecular Docking Simulations

Docking techniques predict the correct conformation of a small-molecule ligand
and its receptor by examining and modeling molecular interactions between them [ABG06,
Kap08]. Typically, docking experiments aims to find lead compounds by screening a large
database of small molecules with the intention of identifying favorable receptor-ligand in-
teractions [WWF+04]. Structure-based virtual screening, which aims at prioritizing small-
molecule candidates by their affinity to the binding site based on 3D structures of known
protein targets, is a well-established and widely used technique to perform high-throughput
receptor-ligand docking.

Molecular docking simulations generate hundreds or even thousands possible poses
that a ligand may fit within the protein binding site by using a docking software, such as
AutoDock [MHL+09], DOCK [LBM+09], GOLD [JWG+97] or Surflex-Dock [Jai07]. Over the
past decades, considerable advances in computational power and the fast-growing number
of novel drug candidates placed in libraries of small compounds have steadily increased the
number of docking programs. All docking software generate and evaluate different ligands
poses based on two basic methods: a search algorithm and a scoring function. The search
algorithm explores the degrees of freedom of a protein-ligand complex by generating satis-
factory enough samples of binding affinity predictions. The scoring function estimates the
energy binding for a given binding mode in order to identify accurately the best receptor-
ligand conformation [SRC+13, GdMD14]. The Free Energy of Binding (FEB) is a commonly-
used measure in scoring function. It estimates the energy for both the bound and unbound
receptor-ligand states from a force field that allows incorporation of intermolecular energies
[MHL+09]. The Root Mean Square Deviation (RMSD) is also a metric used to evaluate dock-
ing results. RMSD indicates the level of pose correctness between a docking result and a
molecule’s previously recorded conformation [KDFB04]. This metric calculates the average
distance between atoms of the docked ligand and the reference ligand, which is determined
from a crystallographic structure or by domain expert assessments. An promising receptor-
ligand interaction is usually identified when the docking software predicts the most negative
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FEB values (kcal/mol) and an RMSD value (Å) close to zero if a reference ligand is used.
Figure 2.1 illustrates the best TCL400 ligand pose after a molecular docking simulation and
its reference ligand, extracted from the crystal structure of the InhA-NADH complex from
Mycobacterium tuberculosis (PDB: 1P45) [KMA+03].

Figure 2.1 – Example of molecular docking process. The fragment of the protein binding site
of the InhA structure (PDB:1P45) is depicted using a surface representation and atom type
colors (carbon and hydrogen: light gray; nitrogen: blue; oxygen: red; sulfur: yellow). TCL
ligand (TCL400) in its crystallographic reference and final docking positions are represented
by sticks in orange and blue, respectively. Figure produced with PyMol package software
[DeL16].

Despite having different purposes and requirements, most docking methods are ca-
pable of considering the flexibility of ligands accurately [JWG+97, Jai07, MHL+09, LBM+09].
However, the well-known drawback of docking programs is their lack of sensitivity to recog-
nize slight conformational and structural changes in the target protein. The incorporation of
protein flexibility in docking-based virtual screening is still a daunting task [ABM08, SRC+13,
FLSM14, ADK15, BRM15]. The major challenge behind this difficulty is the high number of
conformation changes that have to be considered to represent the explicit plasticity or flexi-
bility during the ligands and receptors interactions [TK03, ABG06, Won08]. To obtain more
realistic binding energies for full target flexibility, docking programs should accurately pre-
dict essential modes of backbone motion and improves scoring to enhance selectiveness
[BZ10].

Buonfiglio et al. [BRM15] suggest that ignoring protein flexibility in virtual screening
is indeed a potentially dangerous practice that most likely would result in false-negative
outcomes as the protein conformation required for binding is missing. Conversely, the wide
number of information required to account for at least part of the protein flexibility is a limiting
factor due to computational cost, which increases as the level of accuracy rises.
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2.3 Molecular Docking Approaches Accounting for Receptor Flexibility

According to Cozzini et al. [CKS+08], proteins are inherently flexible systems and
have an intrinsic ability to undergo functionally relevant conformation transitions under native
state conditions on a wide range of scales, both in time and space. A number of different
approaches, with their advantages and disadvantages, are currently been applied by various
authors to treat the partial or total flexibility of receptor during docking procedures. Some
approaches are classified by Teodoro et al. [TK03] into five main categories: soft docking
[FRTA02], side-chain flexibility [Lea94], molecular relaxation [ACBI09], collective degrees of
freedom [Gar92, ZS99] and ensemble docking [CKS+08, TA08].

Soft docking is an implicit way to consider partial protein flexibility, where the lig-
and "penetrates" the protein surface to identify small and centralized changes that occur
in flexible environment. Although speed and low cost are the main advantages, it is also
considered the simplest method as the changes in protein conformation are minimal and,
therefore, the level of false positives is increased [ABG06, ADK15].

The side-chain flexibility approach addresses conformational changes by selecting
residues that are within the protein active site during the docking experiment or after, by
considering the final ligand pose [ABG06]. This approach keeps the protein backbone fixed
and explores side chain variations in the active site of the protein, based on a rotamer library.
The rotamer library contains discrete predetermined conformations of the ligand and side
chains that help the docking algorithm to predict low-energy conformations [Lea94]. This
approach is useful when the structural and functional information of the receptor is known
in advance. However, it may produce worse results than using a single structure due to the
restricted flexibility between the ligand and protein side chains [ADK15].

Molecular relaxation process explores the flexibility of both ligand and receptor,
by relaxing the protein backbone and side chain atoms nearby, using a rigid-body docking
[HZ10]. Its first procedure is to place the ligand orientations/conformations in the rigid-body
docking, and afterward the energy minimization of the formed protein-ligand complexes is
done by using Monte Carlo methods or MD [HZ10, ADK15]. The advantage of the molec-
ular relation is the capacity of finding novel conformations due to the inclusion of backbone
flexibility and side-chain changes [HZ10]. However, the computational cost required by the
scoring function to avoid improper backbone torsions and side chain atoms is considered
one of the main limiting task to the relaxation process.

The collective degrees of freedom approach employs different methods to consider
the full protein flexibility, such as the normal modes for the receptor analysis [ZS99] and
the principal component analysis [Gar92]. Overall, these techniques support the hypothesis
that rather using the original dimensional representation of the protein-ligand complex, a new
lower-dimensional representation of this complex is generated by considering only the most
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significant modes of the protein’s motion [TK03, ADK15]. The main advantages are low
computational cost and high level of flexibility considered in the receptor-ligand complex.
However, collective degrees of freedom approach have a well-known lack of accuracy in the
results, as it attempts to account for moves identified during motion modes instead of native
degrees of freedom of the protein [TK03].

The ensemble docking approach is the method used for docking a set of ligands
into all MD conformations of the receptor [CKS+08]. An ensemble contains a collection
of related but diverse crystal structures, obtained from experimental techniques, such as
X-ray crystallography [BM05] and nuclear magnetic resonance spectroscopy [DC07]. Alter-
natively, it can be produced through MD simulations [ABG06, NBIM11], Monte Carlo sim-
ulations [RTA12] and normal mode analysis [SMP+10]. The employment of many receptor
structures or snapshots derived from MD simulations is a well-establish method for repre-
senting the natural moves of atoms in molecular systems based on structural and physical
aspects of biological macromolecules [CKS+08, NBIM11]. Ensemble docking is currently
one of the best methods applied to achieve a broad range of all possible receptor confor-
mations due to its level of exactness to recognize dynamic behaviors of proteins at different
time-scales [ABG06]. Such precision is of fundamental importance to detect internal moves,
conformational changes and even the correct folding of many proteins, which would be im-
possible to identify through experimental techniques [KM02, CKS+08]. However, the main
drawback of this approach is the computational power required to deal with the size of the
ensemble, which holds above 104 MD conformations in order to better explore the binding
process [KOB+12].

Despite the pros and cons of each docking method accounting for protein flexibility,
ensemble docking, particularly employing MD simulations, is considered the most appro-
priate and accessible method to produce a significant amount of protein conformations at
reasonable cost [ABG06, NBIM11, KOB+12]. Korb et al. [KMC11] developed the Ensemble
Performance Index (EPI) to evaluate the quality of the ensemble structures in eight different
targets, concluding that some targets outperformed, and others improved the average of
the rigid-protein docking results. Similarly, Nichols et al. [NBIM11] demonstrated great im-
provements of MD receptor conformations in virtual screening results compared with X-ray
structures. Even though these studies show clear advantages, they highlight the need for
developing ensemble selection protocols in order to select better MD structures. This may
prevent performing a large number of poorly-docking conformations over a variety of ligands,
saving considerable time in the RDD process.
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2.4 Docking-Based Virtual Screening of MD Receptor Conformations

According to Alonso et al. [ABG06], an ensemble of receptor conformations in-
creases the chances of finding a receptor in its right conformational state to accommodate
a particular ligand. This study models the explicit flexibility of a receptor by using an ensem-
ble of conformations or snapshots derived from its MD simulation. An ensemble of different
protein structures is generated according to the measure of nuclear relation rate, which may
vary from fastest (< ns) until lowest internal moves (µs to ms), by using an MD software,
such as AMBER 12 [CDCI+16] or GROMACS 4 [HKVDSL08].

As mentioned in section 2.3 , molecular docking simulations of MD receptor confor-
mations is one of the most affordable and accurate methods to identify better conformational
space of a protein-ligand complex. However, performing molecular docking simulations of
the entire ensemble based on practical virtual screening of large libraries of small molecules,
such as ZINC [ISM+12], PubChem [WXS+09] and DrugBank [KLJ+11], may become a com-
putationally prohibitive task [ABM08, ADK15]. In these experiments, unlike traditional rigid-
protein docking which considers only one protein structure [EB14, KBT+14], a molecular
docking simulation is performed and analyzed for each MD receptor conformation against
a set of different ligands [LPSM03]. In most practical cases, an ensemble of MD receptor
structures can vary from hundreds to thousands or millions of conformations. Figure 2.2
illustrates a docking procedure of an ensemble of receptor structures generated from an MD
trajectory, which is hereby referred to as Fully-Flexible Receptor (FFR) model [MWRNdS11].

Molecular Dynamics (MD)
FFR Models

1 ps _____

50 ps ______

100 ps __________

150 ps _______________

200 ps _____________________

…

20,000 ps ______________________

Molecular Docking

+            =

Protein                      Ligands           Receptor + Ligand

(Snapshot)             

Figure 2.2 – Representation of an ensemble docking procedure by using an MD receptor
conformation. The structures in the rectangle are the FFR model, representing the different
conformational states of the protein generated from a 20 ns MD trajectory [Gar09]. The
projection on the right hand illustrates the docking experiments performed for each snapshot
against different ligands. Adapted from [QDPRNdS14].
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To exemplify the complexity of the problem, let us estimate the time taken to perform
a complete molecular docking simulation between the FFR model shown in Figure 2.2, which
holds 20,000 snapshots and a small molecule, triclosan ligand (TCL from PDB ID: 2B35)
[STB+06] with 2 rotational bonds. If the time taken to execute 25 runs of LGA and 300,000
energy evaluations between one snapshots of the FFR model and the TCL ligand, in a i7
CPU with 12 GB RAM, is approximately 1 minute, it is expected that the overall time needed
to sequentially execute the whole FFR model will be approximately 15 days. This time
becomes even larger when the same model is used to screen libraries of small molecules. In
such circumstances, it is paramount to seek for new and promising computational techniques
able to enhance the docking performance and simplify the dimensionality of FFR models
without losing the quality of the resulting models. Hence, it is expected to produce new
Reduced Fully-Flexible Receptor (RFFR) models [DPFNdSR13] tailored for specific ligands
by reducing or eliminating unnecessary biological information from the original FFR model
and different ligands during docking experiments.

2.4.1 The FFR Model: InhA from Mycobacterium tuberculosis

The FFR model employed in this study was generated from the crystal structure of
the InhA-NADH complex from Mycobacterium tuberculosis (PDB ID: 1ENY) [DQB+95]. The
structure contains the InhA enzyme with 269 amino acids residues, the NADH coenzyme,
and 41 crystal water molecules. Figure 2.3 illustrates the 3D structure of the InhA enzyme
backbone with NADH bound in the active site. The volume over the NADH, delimited by
loops A, B, and the substrate-binding loop, is the substrate-binding cavity. The MD simulation
was generated with the SANDER module from Amber9 suite of programs [CDCI+16] using
the ff99SB force field [HAO+06] by Gargano [Gar09]. Data were saved at every 1 ps over
the 20 ns simulation, yielding a total of 20,000 instantaneous receptor conformations. These
20,000 MD conformations constitutes the set of snapshots that form the FFR model of InhA,
which is used to conduct all docking experiments performed in this thesis. Further details on
the MD simulations preparation and execution can be found in [Gar09].

2.5 Scientific Workflows for Science

A workflow is a well-defined pattern or systematic organization of activities de-
signed to perform certain transformations on data [Tal13]. According to Workflow Manage-
ment Coalition [Hol95], it is the automation of a business process, in whole or in part, during
which documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules. Even though this definition was originally created to
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Figure 2.3 – 3D structure of the InhA-NADH complex (PDB ID: 1ENY). Ribbons representa-
tion of subunit C: α-helices in magenta, β-sheet in yellow and loops in gray. Stick represen-
tation of the NADH coenzyme (cyan) fitted in the protein binding site. Image generated with
PyMol [DeL16].

define business workflows, it is also used to define scientific workflows. The term scientific
workflow has been later assigned to scientists laboratories in order to manipulate large-scale
and complex e-science research procedures. In this scenario, the repetitive cycle of moving
data to worker nodes for analysis or simulation, launching the computations and managing
the output results are automated by a Scientific Workflow Management Systems (SWfMS)
[DGST09]. SWfMS are used to facilitate, expedite and streamline the management of high-
throughput scientific experiments. Currently, some SWfMS are used intensively in the fields
of biology, astronomy and computational engineering (Taverna [OAF+04], Kepler [ABJ+04],
Pegasus [DSS+05], e-Science Central [HWWC13], SciCumulus [DOOBM10] and others).

A scientific workflow is the assembly of complex sets of tasks or activities linked by
a data flow with the intention of providing a service or generating a result [DGST09, Tal13].
Workflow tasks can be combined in a range of different scenarios which are defined taking
into account the definition of control and data flow dependencies among tasks. To obtain an
expected result, an execution sequence or orchestration of these tasks, which may contain
one or more inputs, is defined to provide a workflow template. Moreover, a workflow template
is capable of generating undetermined number of workflow instances to solve a number
of problems. An important benefit of workflows is that, once defined, they can be stored
and retrieved for modifications and re-executed in different scenarios by local computing
resources or distributed environments [Tal13, LPVM15].

Aalst et al. [vDATHKB03] present a set of 20 workflow patterns. This study helps
users to address the needs of a specific flow of execution control, such as loops, join, merge,
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parallel split, synchronization, multi-choice and other variations. Most of the scientific work-
flows are represented as Direct Acyclic Graph (DAG) (Figure 2.4(a)) and Direct Cyclic Graph
(DCG) (Figure 2.4(b)), which can be performed as sequence, choice, or parallelism control
patterns. The main difference is that the DCG-based workflow includes the iteration pattern
control, also known as loop or cycle, and allows the workflow tasks to be repeated with a
whiledo construct [YB05, LPVM15]. While DAG-based workflow is currently available in all
SWfMSs, the DCG representation is supported by a smaller number of SWfMSs, such as
Swift [ZHC+07], Kepler [ABJ+04], Triana [TSWH07] and Askalon [FPD+07].

(a) (b)

B C D

F

A

E

B C D

F

A

E

Figure 2.4 – Types of workflow structures. In (a) the DAG and in (b) the DCG, where the loop
is represented by the edge from task E to A. Boxes represent tasks to be executed, while
edges represent dependencies among tasks and arrows the data flow.

2.5.1 Phases of the Scientific Workflow Life Cycle

According to Deelman et al. [DGST09], the goal of SWfMSs is to provide a spe-
cialized programming environment to simplify the development effort required by scientists
to orchestrate a computational science experiment. It is important to consider the four main
phases of the workflow life cycle when developing scientific workflows using a SWfMS: com-
position, mapping, execution, and provenance [GSK+11, DGST09]. This life cycle involves
the definition of the stage transitions for the workflow template from creation to completion.
Although scientific workflows use the same classification areas initially purposed for busi-
ness workflow, some modifications have been performed in the life cycle aspects to reflect
the needs of scientist in developing simulations and experiments. The different life cycle con-
cepts of conventional and scientific workflows were compared by Görlach et al. [GSK+11].
They state that scientific workflows centralize the life cycle counterpart only on the scientist,
whereas business workflows are modeled by specialists that undertake the acknowledg-
ment of specific life cycle parts. For instance, an IT specialist deploys the workflow, a client
or employee enacts it and a business analyst analyses the outputs.
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In another major study, Deelman et al. [DGST09] proposed a generalized taxon-
omy based on a feature set of various SWfMSs for supporting scientists and developers to
make an appropriate decision about the suitability of scientific workflows. To generate the
feature set, they also present a detailed assessment of the following four main phases of the
scientific workflow life cycle [DGST09]:

1. Composition: in this phase an abstraction of the workflow is defined by the functionality
of each task, their dependencies and data flow, taking into account the experiment
requirements. The workflow specification is usually developed in either textual, and
graphical workflow editing or mechanism-based semantic models.

2. Mapping: it is the transformation of the abstract composition to a concrete workflow or
workflow instance, which consists of generating an executable workflow based on input
data and concrete codes for the workflow activities. Moreover, the mapping by which a
workflow or sub-workflow is invoked to be executed on an engine is also specified. This
mapping is performed by the user, who directly selects the appropriate resources, and
by the workflow system. In the latter case, users are able to specify local computing re-
sources or a High Performance Computing (HPC) environment to execute the workflow
instances. Besides, the resources are predefined by the user and the SWfMS usually
chooses the location/resource where the workflow will be executed [HWWC13].

3. Execution: this phase is designed to define how the workflow will be executed, choos-
ing the execution engine or enactment subsystem. SWfMS uses one or more work-
flow execution models to illustrate the different scenarios currently available. In some
cases, only one system is responsible for scheduling, recovering, and reporting the
set of programs submitted, such as DAGMan (Directed Acyclic Graph Manager) for
Pegasus[DSS+05] and Condor [LLM88]. Alternatively, a set of services can be applied
on a SWfMS, where each system has its own features, such as (a) REST API to build
workflow instances directly on the cloud platform [HWWC13]; (b) models of computa-
tion from Kepler to execute workflow in different ways depending on which workflow
director [ABJ+04]; and (c) using a service develop tool to support a number of different
programming languages [HWWC13]. The tolerance fault is also specified in this phase
with the intention of saving a state of execution and resuming after a failure.

4. Provenance: this phase defines how the workflow’s operations will be analyzed by
the domain specialist during or after the workflow execution. A variety of information
is recorded at workflow runtime, including environments variables, process monitor-
ing information, system environment information, tasks runtime, the hosts where tasks
were executed, among others [LAB+09]. SWfMS also provides output data visualiza-
tion, workflow evolution, and reproducibility. A more detailed review on provenance for
scientific workflows can be found in [SPG05, DF08].
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The process of running a scientific workflow generally takes long time to complete.
As described in Section 2.4, a typical molecular docking simulation between 20,000 snap-
shots of the FFR model and a single ligand takes approximately 15 days, which may vary
according to the ligand structure. Moreover, it becomes larger when a set of different lig-
ands from libraries of small molecules is used. One of the most widely SWfMS execution
models used today to speed up the scientific experiments is distributing the workflow execu-
tions on local parallel computers and HPC environments, such as Grids [YB05], computing
clusters or Cloud computing [HWWC13]. In this process, one or more workflow instances
are executed in parallel on an engine, which provides mechanisms to cope with workflow
template, input data and instance adaptations at runtime. An SWfMS is able to invoke a
number of workflow instances and orchestrate them on a set of engines that are located
in HPC environments with the intention of distributing several concurrent activity executions
and enhancing the computing time performance of scientific experiments [OBDO+14].

One of the most attractive HPC environment for scaling up scientific workflow in-
stances is Cloud computing. Clouds are being widely used as a platform to traditional Grid
and Cluster environments, since clouds provide a flexible on demand computing infrastruc-
ture for running large-scale scientific applications on parallel or distributed virtual machines
[HMF+08]. Previous studies have been demonstrated the performance improvements by
scaling a considerable number of worker cloud nodes to run scientific workflows of drug dis-
covery experiments [CHWW13, OBDO+14]. Next section provides an explanation on cloud
computing and its main platforms.

2.6 Cloud Computing

Cloud computing is a new and promising paradigm that has recently emerged to
provide on-demand services over the Internet [BYV+09, ZCB10]. It is a well-established
computing technology to make the resource provisioning ease and to provide scalability for
performing large-scale experiments [ZCB10, KFJ14]. In a cloud computing environment,
a number of services, such as applications, hardware and software, can be leased and
released by users, which in turn pay for the computing resources allocated and used.

Currently, there is no consensus on one-size-fits-all cloud computing definition
[VRMCL08]. Drawing on an extensive range of sources, the authors set out the different
fields in which the cloud services are provisioned, taking into account how the facilities are
delivered over the Internet by cloud providers, such as Amazon [AMA16], Microsoft Azure
[AZU16], and Google [GOO16]. In this study, some well-known cloud computing definitions
created to characterize different fields are outlined below.

According to NIST (National Institute of Standards and Technology) [MG11], cloud
computing is a model for enabling on-demand network access to a shared pool of config-
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urable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction.

Buyya et al. [BYV+09] stated that a cloud is a type of parallel and distributed
system consisting of a collection of interconnected and virtualized computers that are dy-
namically provisioned and presented as one or more unified computing resource(s) based
on service-level agreements established through negotiation between the service provider
and consumers.

A systematic literature review of cloud computing concepts was reported by Va-
quero et al. [VRMCL08]. Although they compared the relationships and distinctions between
grid and cloud approaches, their focus was on highlighting the major features of clouds
that differ them from grids, based on a set of 22 definitions extracted from previous works.
The authors concluded that virtualization and usability are the most important properties of
clouds due to the ease of resource access. It means that resources can be configured as
many times as necessary to adjust to a variable load (scale) in which Quality of Service
(QoS) are ensured by the cloud providers through customized Service Level Agreement
(SLA).

Once again, there is no consensus on the most suitable definition for cloud comput-
ing. However, some aspects converge to the same goal, such as cloud providers generally
offer accessibility and support for scaling a large number of virtual machines (VMs) and a
quick upload and download of resources to every location at anytime [AFG+10]. Moreover,
the aforementioned authors also highlight the following basic benefits:

• Reduced cost: the wide range of web-based services are large enough to provide het-
erogeneous resources on a pay as you go basis, which previously required tremendous
hardware and software investments and professional skills [AFG+10].

• Flexibility: the model allows users to dynamically scale hardware and software without
concerns on limited resources, given that the storage capacity offered by cloud vendors
is virtually endless.

• Easy access and level of abstraction: the processes of up and down load of resources
happen in an entirely transparent manner, where technical configuration and deploy-
ment details are not viewed by the user.

The services provided by public cloud are sold as Utility Computing [ZCB10]. Utility
computing is a computing business model in which the provider operates and manages its
computing infrastructure and resources. Despite having other conceptions on grids and clus-
ters, utility computing evolved its services to address public cloud infrastructure [BYV+09].
Hence, public clouds are available on a pay as you go basis through a utility computing ser-
vice, which, among other aspects, ensure an extensive capacity of storage and computing
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resources available on demand, fault tolerance control, image and data backups and the
ability to pay for use of computational resources when you need them [AFG+10].

Different cloud computing aspects can be found in the literature, such as features
[ZCB10, MG11], service and deployment models [MG11], architecture [ZCB10], technology
[ZCB10], performance [BYV+09] and others. This section focuses on the essential features,
the most commonly used web service models and the four well-known deployment models
specified by the NIST [MG11]. Moreover, it presents the four layers of cloud computing
architecture depicted by Zhang et al. [ZCB10], as well as their design principles.

2.6.1 Features

Essential features characterize the cloud computing model and distinguish the re-
cent model from other computational paradigms (e.g. cluster and grids). NIST [MG11] points
out the following five essential features for cloud computing:

1. On-demand self-service: a user is able to rent unilaterally computing resources needed,
avoiding human interaction with the provider. This means that hardware and software
resources can be dynamically assigned and reassigned according to the execution
demand in a transparent manner.

2. Resource pooling: cloud vendors own a pool of different virtual and physical resources,
such as storage, processing, memory, and network bandwidth, which are located in
different sites. The pool is available to serve multiple consumers who specify the re-
source location at a high level of abstraction, normally country, region or data center,
and the provider undertakes the knowledge over the exact location to assign the re-
quested resource. The resources are visualized in a common pool, from which com-
puter hardware are shared amongst the users and applications can be switched from
one physical resource to another [KFJ14].

3. Rapid elasticity: the resource available can be released when no longer useful and of-
ten appear to be unlimited, thereby rewarding conservation to rapidly assign resources
when, where and in any quantity needed.

4. Measured service: the resource usage can be monitored and controlled by metering
capability, which is a detailed report for both provider and users to monitor the amount
and value of used service based on a short-term charge (e.g., VMs are charged by
hour and storage per day). Besides the metering capability, the SLA is also used
to monitor resource usage. SLA provides information about the level of availability,
usability, performance or other service attributes, such as penalties that are set when
a level is broken to ensure the QoS offered by the provider. In this agreement service,
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customers need to understand their responsibilities and those of the provider, before
using a cloud service.

5. Broad network access: resources can be accessed over the network through a stan-
dard mechanism that enables thin1 and thick2 client platforms to be used in more de-
vices (such as mobile phones, tablets, laptops and workstations). There are some
software available by the provider to be locally installed and others are accessed using
browsers, which provide the same work conditions and environment used in a local
machine.

2.6.2 Service Models

According to Armbrust et al. [AFG+10], cloud computing refers to both the applica-
tions delivered as services over the Internet and the hardware and systems software in the
data centers that provide those services. Cloud computing consists of 20 different oriented
services, which are classified into three major groups:

Software as a Service (SaaS). The purchases of services are made through a
service provider, which controls and manages the underlying cloud infrastructure, including
networking, services, operational systems, storage and other features inherent to the appli-
cation. Applications are accessible over the Internet, typically via a web browser. The two
main advantages of SaaS are low cost since the providers are responsible for deploying and
executing the applications, as well as purchasing the software license. Examples of SaaS
providers are Google Docs, Gmail and IBM SmartCloud [Sma16].

Platform as a Service (PaaS). PaaS provides the development environment for
users to create their application by programming languages, libraries and other tools sup-
ported as a service. The platform may contain databases and middleware for the devel-
opment tools of the application. Even though the services are managed and controlled by
providers, users control the application deployed and hosted in the programming infrastruc-
ture. Microsoft Azure [AZU16] and Google App engine [GOO16] are examples of PaaS
vendors.

Infrastructure as a Service (IaaS). IaaS makes accessible the provisioning of hard-
ware, servers, network, storage and other resources to build on-demand environments. IaaS
is also characterized by giving support to PaaS and SaaS, on which users can use the in-
stalled application or deploy their environment, such as operational system, database man-
agement system, services and so on. The virtualization software, which makes possible to
run multiple operating systems and multiples applications on the same server at the same

1Thin client is a browser based application and most of the processing is done on the server side.
2Thick client stores local files and applications to perform most of the processing on the client side while it

is still connected to the server.
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time, is an integral part of this model. Some examples of this service model include Microsoft
Azure [AZU16], Amazon web services [AMA16] and GoGrid [GoG16].

Although most of providers support all these service models, the users have to
select only one due to particular characteristics of the on-demand services above described
and illustrated in Figure 2.5. The consumer can decide which model contains the resources
need to deploy and execute its applications taking into account the level of services provided
by the suppliers. For instance, end users can execute applications on SaaS, developers
can create their systems on PaaS, and IT professionals can build their application on IaaS
platforms (Figure 2.5).
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Figure 2.5 – Hierarchy of cloud service models. The level of services designated to users
and providers are characterized by rectangles and clouds, respectively. The user profile
changes as the level of supported service varies in the different models.

2.6.3 Deployment Models

Deployment models are used by SaaS, PaaS and Iaas providers, allowing to define
the type of access and the availability of environments according to the level of service
needed. This means that the access to resources, which are determined by consumers, can
be controlled according to a business process and type of information. The deployment of
cloud computing helps the users to select the model that is suitable to their requirements. It
consists of the following four models [MG11]:

1. Private cloud: this model is provisioned for exclusive use by a private organization, and
its services are not available to the general public [AFG+10]. This model provides a
high level of control, since the privacy and security rules can be dictated by a specific
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client, which can also decide if the infrastructure will be hosted on-premises or at a
third-party location. The main drawback of this model is that it requires high invest-
ment from the organization, which needs deploying, managing and maintaining its own
infrastructure.

2. Community cloud: it is used by related communities (companies or users) that belong
to a specific group with similar computing apprehensions (e.g., mission, security re-
quirements, policy, and compliance considerations). The infrastructure can be hosted
locally or remotely and it is managed by some company from the community, by a third
party, or a combination of these.

3. Public cloud: the services of this model are leased and release for open use by the
general public. Users are unable to access the physical location of the infrastructure
and cloud providers provision services and infrastructure to different clients. Moreover,
users have less control and visibility over services, since public clouds are shared and
service providers are encouraged to provide a standardized offer to reduce costs. The
main technical difference between public and private clouds is that cloud providers
offer more levels of security that can be assigned to various services.

4. Hybrid cloud: this model is characterized by the composition of two or more distinct
cloud infrastructures, where private, community and public clouds can be combined to
unique entities. Its main advantage is the possibility of explicitly providing the porta-
bility of data and applications through a standard technology for combining different
deployment models.

The deployment models may be run independently or as an integrated system,
depending on the business policy assigned to the resources used and the cloud providers.

2.6.4 Architecture

The cloud computing architecture usually varies according to the application used.
According to Zhang et al. [ZCB10], the cloud computing architecture is based on a layer
model in order to solve the problem of planning a customized cloud architecture better for
each application by combining similar services into an equivalent level of abstraction. The
four different layers classified by [ZCB10] are hardware, infrastructure, platform and applica-
tion. Figure 2.6 depicts these four layers adopted to strategically classify the different levels
of service abstraction.

The hardware layer is responsible for manipulating the cloud physical resources, in-
cluding servers, routers, switches, power and cooling systems. It consists of a large number
of servers (also known as data centers) and their peripheral devices, organized in racks and
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Figure 2.6 – Cloud layer architecture representation and its service models. Hardware and
Infrastructure make up the lowest levels of the layers, which consist of data centers, clusters,
desktops, and, other hardware resources. Adapted from [ZCB10].

interconnected through switches, routers or other resources. The typical issues addressed
by this layer are fault tolerance, traffic management, power and cooler.

The infrastructure layer is also known as layer of virtualization. The storage and
computing resources are virtually created in this layer by partitioning computer hardware
using virtualization technologies, such as XenServer [XEN16], KVM [KVM16]. These tech-
nologies offer a number of attractive features for this component, including scalability, in
which a number of computing power are dynamically assigned to obtain high levels of su-
percomputing performance [KFJ14].

The platform layer consists of operational systems and framework applications. It
is responsible for minimizing the burden of deploying applications straightforwardly into the
virtual machines. For example, Microsoft Azure [AZU16] and Google App Engine [GOO16]
operate on this layer to provide API support to deploy storage, database, and other typical
business web applications.

The application layer is at the highest level of the hierarchy and comprises the real
cloud applications for final users. The main advantage of this layer is the low level of efforts
by users since the scalability, availability, performance associated with QoS and other cloud
features are undertaken by all the other layers.

One of the main advantages of this architectural modularity is the support to a wide
range of application requirements, which in turn contribute to the QoS technical improve-
ments and the reduction of the overload time designed for maintenance and management.
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Another advantage of this architecture is the loose coupling whereby the computational re-
sources from a layer can be added and replaced in a flexible and scalar manner without
affecting other layers [ZCB10].

2.7 General Remarks

In this chapter, the essential concepts on RDD process were presented. A special
emphasis was given to the molecular docking procedure of flexible receptor, which holds
paramount importance for a better understanding of this thesis. As previously stated by
Kuntz [Kun92], molecular docking simulation is the most important step in the RDD process,
since it identifies, synthesizes and tests lead compounds in order to choose those that will
be manufactured. A more accurate method to mimic the natural behavior of receptor and
ligands in biological environments is to consider their explicit flexibility during the molecular
docking experiments. In this context, Alonso et al. [ABG06], Amaro et al. [AL10] and
Teodoro et al. [TK03] provide in-depth analyses of the constant structural changes that occur
when protein and ligand flexibility are taken into account during the interaction process to
find a favorable binding conformation. Alonso et al. [ABG06] indicates that protein flexibility
increases the efficiency of molecular docking simulations compared with a rigid treatment of
the protein, probably due to lower energy barriers when the ligand is allowed to explore a
flexible binding site.

An ensemble of different receptor conformations generated from MD simulations is
the approach adopted in this study. This approach was selected due to the lack of precision
of existing docking methods in considering partially or totally the flexibility of proteins. Usu-
ally, scoring functions neglect the conformation changes of binding partners [TA08, BZ10].
Towards this end, a docking experiment is performed for each receptor conformation and
ligand and its resulting poses are evaluated [ABM08, AL10]. However, as discussed in this
section, the computational cost increases as the number of MD conformations from the FFR
model raises [TK03, AL10].

There have been many efforts to reduce time spent in molecular docking simu-
lations of FFR models by combining various computational techniques. For instance, the
use of clustering algorithms to reduce ensembles of MD conformations into a manage-
able size while the critical structural information from the original MD trajectory is preserved
[STTC07, LAB+08, BQDPB15, DPQRNdS15, DPQR+15]. Another example is the develop-
ment of innovative solutions by using HPC environments to speed up docking experiments
or by analyzing docking outputs to strategically select reduced ensembles of the promising
MD conformations for specific ligands [MSR+11, DPFNdSR13, QDPRNdS14]. Furthermore,
Hübler et al. [HRFNdS15] proposed a data-flow pattern to identify the best MD confor-
mations during the docking experiments by using a clustering of snapshots generated by
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Machado [Mac11]. De Paris et al. [DPFNdSR13] and Quevedo et al. [QDPRNdS14] assess
the performance gains achieved by incorporating this pattern in docking experiments of FFR
models.

Chapter 5 presents the clustering methods commonly used for partitioning ensem-
bles of MD conformations where a detailed study of these methods generates the cluster-
ing of snapshots used as input to the environment purposed in this study. The remaining
computational techniques are reported throughout this Thesis since they comprise the ad-
vancements performed from the start to the end of this study, and therefore provides a
deeper knowledge of the methodology applied to develop the scientific workflow that opti-
mizes molecular docking simulations of FFR models.

SWfMS is the most widely-used system to handle biology experiments. It provides
a variety of capabilities to manipulate data dependencies and perform activities (program or
services invocations) into local computing resources or HPC environments [MDO+15]. To
address the computationally intensive and the long time taken for performing large-scale sci-
entific experiments, the execution of scientific workflows is moving to a multisite environment
[LPVM15]. In this scenario, SWfMSs are able to accommodate input/output data in differ-
ent sites at runtime and send workflow invocations to be directly executed into resources
distributed in different infrastructures (e.g. grid or cloud). Recently, Liu et al. [LPVM15]
provide in-depth analysis of the data-intensive scientific workflow management in a multisite
cloud and they concluded that a lot of improvements is necessary for terms of performance
capability since the most familiar SWfMSs are suitable for single static computation and
storage resources in grid environments. Despite the capability lacks presented by Liu et. al.
[LPVM15], which address specific issues based on a set of 8 SWfMS, a number of stud-
ies has revealed the performance gains when large-scale scientific experiments are running
using cloud-based workflow enactment systems [CHWW13, OBDO+14].

For the reasons described above, the cloud-based environment proposed to opti-
mize the docking-based virtual screening of FFR models is developed by using a SWfMS and
a set of VMs from a cloud environment. Next section reports the several attempts performed
by the research community regarding the challenges in extracting the most biologically rele-
vant information when the dimensionality of FFR models is simplified or reduced.
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3. CLUSTERING THE 20 NS InhA MOLECULAR DYNAMICS
TRAJECTORY

Clustering algorithms applied to results of MD simulations is the most appropri-
ate data mining technique to partition structural ensembles into groups of structures which
share similar conformational features [HW79, STTC07, PCN11]. In this approach, every MD
conformation is divided into several groups by using a measure of (dis)similarity. MD confor-
mations within a group are, according to some criterion, similar to each other and dissimilar
from the conformations of other groups [HW79].

A number of methods has been applied in many studies to cluster molecular dy-
namics trajectories. For instance, partitioning data sets into structurally homogeneous sub-
sets for modeling [Li06, PCN11], picking representative chemical structures from individual
clusters [LAB+08, DLS+05, CL09], and optimizing virtual screening results [DPFNdSR13,
QDPRNdS14]. A more detailed analysis on clustering MD trajectories was done by Torda
and van Gunsteren [TvG94] and Shao et al. [STTC07]. Torda and van Gunsteren [TvG94]
created the distance measure Dab for clustering an MD trajectory with 2,000 structures. By
comparing hierarchical divisive algorithm and single linkage, they concluded that the divisive
algorithm outperforms results when a trajectory configuration is evenly distributed across the
conformational space. Shao et al. [STTC07] compared eleven different clustering algorithms
to assess the performance and differences between such algorithms based on the pairwise
RMSD distance. Shao and co-authors used the clustering metrics to find an adequate num-
ber of clusters in ensembles of structures taken from a "sieved clustering". In their approach,
a subset of the data is clustered and the remaining data are added to existing clusters in or-
der to handle very large data sets more efficiently.

Preliminary work on clustering MD trajectories for a selective docking protocol was
undertaken by Machado et al. [Mac11]. In their study, the snapshots from a 3.1 ns InhA MD
trajectory were clustered based on the number of interactions that each snapshot and ligand
performs into the region of two different small molecules: the substrate analog (THT), and
the THT together with the NADH coenzyme. According to Machado [Mac11], these small
molecules were selected because THT substrate-binding position defines a cleft where InhA
competitive inhibitors are expected to bind, and THT + NADH coenzyme binding region
comprises the largest binding pocket of the InhA active site. The resulting clustering was
originally created to be used as an input for the P-SaMI data pattern [Hüb10, DPFNdSR13].
However, Quevedo et al. [QDPRNdS14] stated that this clustering becomes very specific for
ligands with a similar structure to the ones used to generate the clusters, since the number of
interactions was taken from an exhaustive molecular docking simulation between the entire
MD trajectory and a specific ligand.
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To address this problem, we concentrate our efforts on identifying small and lo-
calized changes that are expected to have a major influence on the interactions between
flexible receptors and different ligands. Instead of focusing on traditional pairwise distances
between MD conformations, such as RMSD [STTC07, LAB+08] and Dab [TvG94], we pro-
posed a method that groups similar behavior in the substrate-binding cavity of every MD
conformation by extracting its structural properties.

This study presents two main contributions. First, it provides a detailed comparison
of six clustering algorithms applied to three different data sets generated from the same
MD trajectory. These six methods are: k-means, k-medoid, Complete linkage, UPGMA,
WPGMA and Ward’s. Each data set contains information from the 20 ns MD trajectory of
the InhA-NADH complex, one regarding features from its substrate-binding cavity, while the
other two are composed of well-known measures of similarity for clustering MD trajectories.
Subsequently, this study identifies ensembles of representative MD conformations from the
best clustering solutions. The optimal solution is selected based on dispersion measures
of estimated FEB, which were extracted after executing docking experiments between the
FFR model and 20 different ligands. We also investigated the variance of the RMSD values
from the clustering generated to asses the level of similarity in the docking final poses from
snapshots within the same group.

In this study, the best selected partition is used as input to the cloud-based en-
vironment. Thus, if a receptor conformation belongs to a cluster that interacts favorably
with a specific ligand, one could assume that other conformations within the same cluster
will behave similarly. Otherwise, the conformations belonging to this cluster are considered
unpromising, and consequently may be discarded to reduce the number of docking experi-
ments on the FFR model [DPQR+15]. As a result, we expect to generate an RFFR model
for each ligand by discarding groups of snapshots that have low or no binding affinity.

3.1 Clustering Algorithms Applied for Partitioning the MD Trajectory

A number of clustering algorithms have been used during this study with the inten-
tion of examining different ways to identify patterns among the snapshots that make up the
FFR model based on their level of similarity. The InhA MD trajectory was clustered using
algorithms implemented in R Programming Language [Tea12]. k-means [M+67], k-medoids
[KR90], and agglomerative hierarchical [KR90] methods and their variations were used to
identify patterns among the snapshots that make up an FFR model based on their level
of similarity. k-means and k-medoids belong to the set of partitioning clustering methods,
which divide a set of data objects into non-overlapping subsets with spherical shape such
that each data object is in exactly one subset [TSK13, HKP11].
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k-means is a well-known clustering algorithm that locally optimizes the average
squared distance of points from their nearest cluster center (centroid). It randomly generates
k centroids and refines them throughout several iterations, where it computes the distance
of every point to the k centroids in order to determine the cluster memberships [M+67]. To
create clusters more compact and separated, the k-means algorithm minimizes the sum of
squared errors between all objects p of a given cluster Ch and its centroid ch for all clusters
k according to the following equation:

Means =
k∑

h=1

∑
pεCh

dist(p, ch)
2 (3.1)

In contrast to k-means, whose centroid almost never correspond to an object, k-
medoids uses PAM (Partitioning Around Medoids) algorithm for clustering data sets based
on central objects. This algorithm generates a set of representative objects or medoids to
determine whether a non-representative object is a good replacement for a current medoid
[HKP11]. While k-means technique uses the sum of the squared error function to measure
the within-cluster variation, k-medoids algorithms apply an absolute error criterion. In this
method, the objects (n) are grouped into k clusters by minimizing the sum of the dissim-
ilarities between each object and its corresponding representative. Then, the sum of the
absolute error for all objects p in the data set is defined as:

Medoids =
k∑

h=1

∑
pεCh

dist(p, oh) (3.2)

where oh is the representative object of Ch. As the k-medoids method calculates
the distance between objects to obtain the mean values of the cluster, it is less sensitive to
outliers than k-means. The complexity of k-medoids is squared to the number of instances,
since a distance matrix is used to calculate the representative object. Compared to k-means
algorithm, its main drawback is the high computational cost. While PAM takes O(k(n −
k)2) to compute each iteration, k-means runs in O(nkh), where the number of clusters (k)
and the number of iterations (h) are usually less than the number of objects (n). In such
circumstances, k-means is relatively more scalable and efficient in processing large data
sets. k-medoids also uses CLARA (Clustering LARge Applications) algorithm to address
large data sets [KR90]. CLARA generates multiple random samples from the entire data
set and uses the PAM algorithm to compute k-medoids on these samples. Therefore, the
complexity of computing CLARA is O(ks2 + k(n − k)), where s is the size of the sample.
In this method, a representative sample contains medoids that approximate the medoids of
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the original data set. Partitioning clustering methods use k random cluster centers or seeds
to start partitioning the data set. In this study, we performed multiple runs with different
initial centers and representative objects in order to have consistency between k-means and
k-medoids runs.

Unlike partitioning clustering, hierarchical clustering methods aim to group data
into levels such as in a dendrogram or “tree” of clusters [HKP11]. It has two basic ap-
proaches known as agglomerative and divisive. The agglomerative hierarchical clustering,
which uses the bottom-up strategy, starts with each object as an individual cluster and inter-
actively merges the closest pair of clusters until all the objects are in a single cluster or the
maximum number of clusters is reached. The divisive hierarchical clustering, which uses the
top-down strategy, starts with all objects in the same cluster and splits a cluster into smaller
clusters in each iteration until each object becomes a singleton cluster or a termination con-
dition holds [HKP11, TSK13]. In this study, we use only the agglomerative algorithms since
the divisive method does not handle efficiently large data sets due to its computational costs.
The limiting factor of the divisive method is that there are 2n−1 − 1 possible ways to partition
a set of n objects into two subsets.

To measure the proximity between two points in two different clusters, agglomera-
tive algorithms widely use the methods known as single linkage, complete linkage, median,
centroid, group average and Ward’s. All these methods were applied in this study for cluster-
ing data sets using the AGNES (AGlomerative NESting) method [KR90]. However, analyzing
the resulting partitions, we noted that single linkage, median and centroid methods showed
singleton clusters, high sensibility to outliers and, in some cases, a cluster with more than
50.00% of all objects into a single large cluster. For this reason, we decided to analyze only
the partitions from Complete, Unweighted Pair Group Method using Arithmetic averages
(UPGMA), Weighted Pair Group Method using Arithmetic averages (WPGMA) and Ward’s.

The complete linkage version of hierarchical clustering tends to minimize the in-
crease in diameter of the clusters at each iteration by determining the proximity of two clus-
ters (Ci, Cj) as the maximum distance based on the following equation:

Complete(Ci, Cj) = max
xεCi,yεCj

dist{|x− y|} (3.3)

where |x− y| is the distance between two objects or points x and y.

In UPGMA and WPGMA, which are group average agglomerative methods, the
distance between two clusters is defined as the average pairwise proximity among all pairs
of points or objects in different clusters [KR90]. The difference between these methods is
the weight given to the points in different clusters to measure the pairwise proximity. While
UPGMA takes into account the number of points in each cluster making a linkage between
groups, WPGMA treats all clusters equally making a linkage within groups, defined as:
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UPGMA(Ci, Cj) =
1

ninj

∑
xεCi

∑
yεCj

dist|x− y| (3.4)

WPGMA(Ci, Cj) =
1

2

∑
xεCi

∑
yεCj

dist|x− y| (3.5)

where ni and nj are the number of objects from cluster Ci and Cj, respectively, and
|x− y| is the distance between two objects or points x and y.

The Ward’s method, also called the minimum variance method, aims to merge
pairs of clusters with minimum variance. As the k-means algorithm, this method calculates
the squared error to merge two clusters. The “merging cost”, which is evaluated when two
clusters are merged, is defined as:

Ward =
k∑

h=1

∑
xiεCh

p∑
j=1

dist(xij − xhj)2 (3.6)

with the cluster mean xhj = 1
nh

∑
xi∈Ch

xij, where xij denotes the value for the ith individual
in the j-cluster, k is the total number of clusters at each stage, and nj is the number of
individuals in the jth cluster.

Clustering of MD conformations is especially useful for molecular docking simula-
tions since it provides clusters of similar receptor structures. The main contribution of this
study is on investigating the partitions generated by different clustering methods and iden-
tifying the one which provides the optimal solution. An optimal solution is a clustering that
contains high similarity among MD conformations placed in the same group (cohesion), and
high dissimilarity from the conformations of other groups (scattered) [HW79]. The best clus-
tering of snapshots solution will be used as an input to the docking-based virtual screening
method purposed in this study.

3.2 Data Sets for Clustering the MD Trajectory

To investigate the best measure of similarity, the quality of partitions was compared
by using our new set of cavity attributes and two traditional data sets used for clustering
MD trajectories. The specification from the MD trajectory used to generate the data sets is
described in Section 2.4.1. Hence, we generated the following data sets:

1. Protein RMSD. The pairwise RMSD distance between the first and every MD structure,
considering all structure residues as applied by [ZS04, LZ06, STTC07].
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2. Cavity RMSD. This data set contains the RMSD distance between the first and ev-
ery MD’s structure, considering the residues that enclose the substrate-binding cav-
ity of the InhA-NADH complex and the C16 substrate analog (PDB ID: 1BVR) en-
zyme [RVS+99]. Application examples of this measure of similarity are in [LAB+08,
LWW+08].

3. Cavity Attributes. The data set proposed in this study, built by using a set of features
extracted from the substrate-binding cavity of each conformation generated by the MD
trajectory. A detailed explanation on how each attribute was obtained is given in this
section.

It is expect that the partitions generated will be able to group MD conformations
with similar features within their binding site by using the Cavity Attributes data set. This
approach allows to cover small and local protein movements, in order to further improve the
selection of suitable ligand-protein interactions. The structural features extracted from each
MD conformation are:

1. the volume of the substrate cavity (in Å3);

2. the number of heavy atoms of the 1BVR structure [RVS+99] that are present in the
substrate-binding cavity; and

3. the pairwise RMSD distance relative from the first to the current snapshot (in Å).

Pairwise RMSD distances were evaluated by using the differences among back-
bone atoms from the first structure against each MD conformation, using the following equa-
tion:

RMSDrt,rref =

√√√√ 1

n

n∑
i=1

|rt,i − rref,i|2 (3.7)

where rt,i and rref,i are the positions of equivalent atoms in the conformation at time
t(rt) along the MD simulations and the reference structure (rref ), respectively. The RMSD
was calculated using the ptraj module from AmberTools14 [CDCI+16].

The 1BVR enzyme was chosen to compute the features that composes the data set
for clustering the MD trajectory because it contains the THT ligand [RVS+99], the substrate
analog in which its region encloses the InhA substrate-binding cavity. CASTp [BNL03] is
the web tool used to identifies and calculates the two firsts structural features extracted
from the InhA substrate-binding cavity. It is used to identify the solvent accessible surface
area and the volume of the substrate cavity. A heuristic function was created to identify the
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substrate cavity on an ensemble of conformations generated by the MD simulation. This
function is based on the number of heavy atoms present in the substrate-binding cavity of
the 1BVR structure. The substrate cavity and the largest number of atoms were identified
by considering the residues that enclose the substrate analog to the 1BVR crystallographic
structure [RVS+99]. Thus, we computed the volume and the number of heavy atoms for
each MD conformation considering the number of heavy atoms of the 1BVR structure that
are present in the substrate-binding cavity of each MD conformation. Figure 3.1 illustrates
the 1BVR substrate cavity and the residues that enclose it.

Figure 3.1 – Existing residues in the InhA crystal structure substrate-binding cavity (PDB ID:
1BVR). The 1BVR substrate-binding cavity is represented by molecular surface on the left
side. The projection displays all residues from the binding pocket in stick representation.
Residues and the substrate-binding cavity are colored by atom types [DPQRNdS15].

The volume of the substrate-binding cavity was chosen as one of attributes from
Cavity Attributes data set since it varies considerably along the MD simulation. This is
evidenced by analyzing the substrate-binding cavity volumes generated by CASTp, which
ranged from 45.4 Å3 to 2,852.9 Å3 for the entire 20 ns MD simulation trajectory.

While volume encloses the substrate-binding cavity based on the solvent accessi-
ble surface area, the heavy atoms recognize the substrate-binding cavity dimension to fit a
ligand based on a weight system. The weight system gives different scores for each residue
considering geometric properties. Specifically, an MD conformation substrate-binding cavity
placed on the NADH coenzyme will receive more weight than other residues, since it shapes
the base of the target cavity and, therefore, increases the chances of finding a receptor in the
right conformational state to accommodate a particular ligand [ABG06]. Thus, we decided
to assign weight 1 for atoms whose residues determine the substrate analog in the crystal
structure, and 3 for atoms whose residues surround the NADH nicotinamide ring. Table 3.1
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exemplifies the features extracted from the substrate-binding cavity of each MD conforma-
tion, where a score is given for each residue. The maximum number of heavy atoms that a
residue can have is indicated in the table header.

Table 3.1 – An excerpt of Cavity Attributes data set specification.
RMSD

(Å)
Volume

(Å3)
GLY96

(4 atoms)
PHE97

(4 atoms)
MET98

(8 atoms)
MET103

(8 atoms)
PHE149

(11 atoms)
TYR158

(12 atoms)
MET161

(8 atoms)
LYS165

(9 atoms)
MET199

(8 atoms)
NADH

(9 atoms)
0.39 779.80 2 4 2 2 1 2 2 0 4 6
0.39 821.30 2 4 3 2 3 3 2 0 4 6

... ... ... ... ... ... ... ... ... ... ... ...
1.34 1385.20 3 7 4 2 3 8 3 6 3 5
1.44 1249.50 3 7 4 2 2 5 4 4 1 6

Attributes are shown in Table 3.1 in their original format. To improve accuracy of
clustering methods, we normalized these attributes using the interval [0,1] and generated
a CSV format file. In addition, we removed the first 500 MD conformations from the FFR
model, due to significant variations in the temperature that occurs during the equilibrium
state of MD simulations. In this state, To achieve stability of simulations conditions, a number
of properties are monitored, such as structure, pressure, energy and temperature. After the
initial state, MD properties may be investigated by keeping the system in a steady non-
equilibrium state. Figure 3.2 depicts the irregular RMSD changes in the equilibrium state
from the binding cavity of the 20 ns InhA MD trajectory. The RMSD variation of our MD
trajectory is stabilized between 1.0 Å and 1.8 Å, reaching a plateau around 1.4 ± 0.1 Å.

Figure 3.2 – Binding cavity pairwise RMSD distance analyses from the 20ns InhA MD tra-
jectory. The black vertical line encloses the non-equilibrate state of the MD trajectory at 500
ps. The average RMSD variation is 1.37 ±0.14 Å.

3.3 Approach for Validating Data Partitions

The performance gain among clustering solutions generated for each algorithm and
the three different data sets were evaluated by comparing the docking results obtained by
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performing ensemble docking experiments between the FFR model and 20 different ligands.
The quality of partitions were assessed computing the first, second and third quartile values
of medoids for each clustering solution. Quartile values have the power to indicate central
tendency and dispersion of the data points inside a data set, being also resistant to outliers.
As we seek to group MD conformations with high similarity in their substrate-binding cavities,
the binding mode conformations of different drug candidates to the enzyme under study
were investigated. In this regard, 20 compounds experimentally tested (Figure 3.3) were
used in docking experiments against the FFR model to predict their lowest energy bound
conformation (i.e. pose). This set of ligands was extracted from 20 InhA crystal structures
available on Protein Data Bank (PDB) [BWF+00].

The set of ligands used in this study was chosen because the overall topology
RMSD of their complexes is significantly different. According to Pauli et al. [PdSR+13],
the binding cavity volumes of the 36 InhA crystal structures available on PDB ranges from
1,597.3 Å3 to 3,046.7 Å3 for the whole cavity (NADH + substrate-binding cavity). This range
represents the different sizes and structures of the ligands that are bound in such structures,
being a good sample to dock in the MD trajectory, since its binding cavity volume ranges
from 419.4 Å3 to 2,032.8 Å3 (InhA-NAD complex).

To obtain the best clustering solution, the dispersion of resulting partitions was eval-
uated based on predicted FEB values extracted from the ensemble docking experiments.
Dispersion corresponds to the first, second and third quartile values, which were calculated
to compare the level of convergence between the resulting partitions and the MD’s full tra-
jectory. This assessment consists of three steps:

1. Generate a set of representative objects for every partition by selecting the medoid of
each cluster;

2. Compute the sum of each quartile of all ligands for every partition based on predicted
FEB values; and;

3. Compute the Sum of the Quartile Differences (SQD) based on the results from step 2.

SQD is the metric proposed in this study to select the optimal solution among the
partitions generated from the six different clustering methods. This metric intends to find
an ensemble in which the FEB dispersion between medoids and the MD’s full trajectory is
similar based on the following equations:

SQD =

q∑
j=1

|(xj − yj)| (3.8)
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Figure 3.3 – 3D structure representation of the 20 ligands used to perform the en-
semble docking experiments. The ligands are identified by PDB ID and coloured by
atom type (carbon and hydrogen: light grey; nitrogen: blue; oxygen: red; chloro:
green; phosphorus: orange; sulphur: yellow). The dashed circle depicts the rotat-
able bounds selected by AutoDock Tools 1.5.6. Ligand abbreviations: TCL: triclosan;
GEQ: 5-[4-(9H-fluoren-9-YL)piperain-1-yl]carbonyl-1H-indole; 4PI: N-4-methylbenzoyl-4-
benzylpiperidine; 5PP: 5-pentyl-2-phenoxyphenol; 8PS: 5-octyl-2-phenoxyphenol; TCU:
5-hexyl-2- (2-methylphenoxy)phenol; 566: (3S)-1-cyclohexyl-5-oxo-N-phenylpyrrolidine-3-
carboxamide; 665: (3S)-N-(3-bromophenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide;
641: (3S)-1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide; 744:
(3S)-N-(5-chloro-2-methylphenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide; 468:
(3S)-N-(3-chloro-2-methylphenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide; 8PC:
2-(2,4-dichlorophenoxy)-5-(pyridin-2-ylmethyl)phenol; JPJ: 2-(2,4-dichlorophenoxy)-
5-(2-phenylethyl)phenol; JPM: 5-benzyl-2-(2,4-dichlorophenoxy)phenol; JPL: 5-
(cyclohexylmehyl)-2-(2,4-dichlorophenoxy)phenol; PTH-NAD Prothionamide + NADH
coenzyme; INH-NAD Isoniazid + NADH coenzyme [DPQRNdS15].

xj =
1

nj

∑
xiεQj

xij (3.9)
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yj =
1

nj

∑
xiεQj

yij (3.10)

where q identifies the first, second and third quartiles, xij and yij denote the FEB
value for the ith ligand in the jth quartile for the ensemble of medoids and the MD’s full
trajectory, respectively. The lower the SQD value, the higher the similarity of dispersion to
the MD’s full trajectory.

According to Jain and Dubes [JD88], there is no perfect clustering algorithm that
assures the best solutions for all data sets. The exploratory analysis and understanding on
data sets are important decisions for selection of the strategy (such as number of clusters,
prototype and clustering method) to be adopted [JD88]. In this study, we analyzed parti-
tions from three different data sets and six clustering methods. Even though we are using
predicted FEB values to select the optimal solution, we believe that our methodology may
provide an effective strategy for improving clustering MD trajectory approaches, and conse-
quently, optimizing the total elapsed time taken to perform ensemble docking experiments.
Further, we expect that the ensemble of medoids will also be able to label a fairly good level
of distinct binding modes from the FFR model for accommodating different ligands. This is
more likely with clustering solutions generated from the Cavity Attributes data set.

3.4 Comparative Analyses in the Partitioning Solutions

Our hypothesis is that the methodology used for clustering the MD trajectory can ef-
fectively group conformations with high similarity in their binding cavity. Specifically, we seek
to reduce the computational time of using a very large MD trajectory, i.e. more than thou-
sands of conformations, to perform ensemble docking in thousands or millions of ligands.
One way to address this issue is to discard groups of MD conformations that are inadequate
to bind productively with a given ligand during docking experiments. Thus, we concentrate
our efforts on using clustering methods and evaluating their results to validate the working
hypothesis. Our main contribution is on investigating different clustering methods to find the
best strategy for clustering MD trajectories. Towards this end, six different methods were
first employed, and subsequently, every clustering solution was analyzed based on the dis-
tribution of FEB values between ensembles of representative conformations (medoids) and
the MD’s full trajectory.

Clustering was performed on the 20 ns InhA MD trajectory using three different
data sets as a measure of similarity and a series of independent runs varying the cluster
numbers from 10 to 200. We started the clustering analyses from 10 clusters since low
k values showed poor level of scatter and, consequently, it would be unable to reflect all
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possible movements from an MD trajectory of 20,000 conformations. The initial maximum
cluster variation was 1,000. However, the total time to run molecular docking simulations
increases as the quantity of clusters rises, since a sample of snapshots should be processed
for each cluster for quality evaluation. Furthermore, good levels of accuracy were evidenced
for different clustering methods when the number of clusters was equal or less than 200.

To select the optimal clustering solution, the dispersion among partitions generated
from 10 to 200 clusters was analyzed by assessing the SQD values (equation 3.8). Figures
3.4 and 3.5 show SQD variations for the three data sets as a function of the cluster count
for each clustering method. Comparing the two graphs, it can be seen that SQD values
of partitioning-based clustering algorithms (Figure 3.4) constantly oscillated throughout the
number of clusters for the three data sets. This is due to the fact that partitioning methods
have difficulty on detecting natural clusters, i.e. when clusters have non-spherical shapes
or widely different sizes or densities [HKP11]. Usually, the measures of similarity used for
clustering MD trajectories have low dispersion. For instance, the RMSD normalized values
varied from 0.41 to 0.95 for cavity, and from 0.58 to 0.99 for protein, having a maximum
amplitude of 0.54.

Unlike partitional-based clustering methods, hierarchical algorithms outperformed
the partitioning of all data sets. As can be seen in the graphs from Figure (3.5), SQD values
varied constantly in the beginning, but after a certain number of clusters, they reached a peak
and remained steady. Best hierarchical solutions were selected after SQD values reached
more stable behaviors. In this analysis, Cavity Attributes data set showed best SQD values
for every hierarchical method.

Regarding hierarchical clustering performance, Figure 3.5 shows that the lowest
SQD values were reached by the Ward’s method for all data sets. This method also outper-
formed the affinity with the MD’s full trajectory for the Protein RMSD data set, which in turn
showed the worst solutions on other hierarchical methods. Jain and Dubes [JD88] identifies
Ward’s as the better method for clustering functional data, particularly those with periodic
tendencies, but the clusters tend to be spherical due to the equally distance computed for
all cluster object. This is because the sum of squares criterion tends to merge small clusters
given the same amount of splits. Regarding k-means algorithm, Ward’s method also was
able to reach a similarity dispersion, but it was unable to reach the similar central tendency
undertaken for the entire ensemble of MD conformations.

The hierarchical clustering solutions reflected the main advantages from hierar-
chical agglomerative methods, i.e. these methods are more versatile and embed flexibility
regarding seeking a proper level of granularity. Comparing the performance from cluster-
ing methods, Figure 3.5 shows that UPGMA, WPGMA and Complete are good methods for
clustering data sets with target cavity features, while Ward’s methods can be considered a
good solution for every type of data set. However, the ability of Ward’s of grouping objects
that are as homogeneous as possible ended in partitions with central tendencies. Further,
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Figure 3.4 – Comparative performance of partitional clustering methods for Protein RMSD,
Cavity RMSD and Cavity Attributes data set. SQD variations as a function of number of
clusters for, k-means and k-medoid methods in graphs (a) and (b), respectively. Black points
identify the optimal partitioning solution for each method [DPQRNdS15].

the high cohesion in the clusters generated from UPGMA and WPGMA methods were un-
able to reach low SQD values and number of clusters. Complete method looks for maximum
distance to merge a new object in a cluster, and therefore, it becomes more susceptible to
noise and outliers.

We also analyzed the partitioning solutions by using docking final poses, i.e. the
RMSD values which were extracted from docking experiments performed between the 20 ns
InhA MD trajectory and 20 ligands experimentally tested. In this regard, the mean variance
for each clustering solution and the cumulative mean variance by ligand were computed
to investigate the average changes in the RMSD values over the clustering produced for
each method, and for each data set 1. Figures 3.6 and 3.7 depicts the variation in the RMSD
values for the clustering methods used. The line graphs compares the mean of accumulated
RMSD variances in three different data sets namely, Cavity Attributes, Cavity RMSD and
Protein RMSD, within 190 clustering solutions.

1Cluster with only one snapshot received weight one.
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Comparing the RMSD values from partitional clustering methods, Figure 3.6 shows
the minimal level of variance in clusters generated from Cavity Attributes data set for both,
k -means and k -medoid algorithms. Further, it can be seen a considerable difference in the
means of RMSD accumulated variance between the Cavity Attributes data set and the other
two data sets, particularly for k-means algorithm where the mean of RMSD accumulated
variance decreases as the number of clusters increases. These findings suggest that Cavity
Attributes data set is the best similarity function when partitional clustering methods are used
to group snapshots with high level of similarity in their docking final poses.

As can be seen from the Figure 3.7, hierarchical methods presented means of the
RMSD accumulated variance higher than clustering solutions from k-means algorithms for
all data sets. The lowest RMSD variances are reached by Complete and Ward’s methods for
Cavity Attributes data set. Even though UPGMA and WPGMA methods reported the lowest
RMSD variances for Protein RMSD data set, it can be seen from graphs in Figure 3.7 that
Complete and Ward’s methods were able to reach the lowest means of RMSD accumulated
variance for Cavity Attributes data set. In summary, these results show that Cavity Attributes
data set is also the best similarity function for clustering MD trajectory when Complete and
Ward’s hierarchical methods are used.

It is somewhat surprising that the mean of the RMSD accumulated variance from
Cavity RMSD and Protein RMSD data sets remained relatively unchanged in all clustering
solutions produced by the methods used. In contrast, Cavity Attributes data set reported
smaller RMSD variances and notable differences with the other two data sets for all clus-
tering methods used. This means that the data set proposed in this study has the ability to
detect small and localized docking pose changes, which, otherwise, are not possible when
Protein RMSD and Cavity RMSD data sets are used.

The complexity of clustering algorithms is strongly related to the number n of data
objects and the number k of clusters [WKQ+08]. From all experiments performed in this
study, CLARA (k-medoid algorithm for large data sets) was the algorithm that required the
longest execution time. The time noticeably increased due to the size the of sample, which
proportionally grew as the number of clusters rose. This is due to the own nature of k-
medoid which is more robust to noise and outliers. The complexity to compute and select
a new medoid from representative objects by PAM algorithm is O(k(n − k)2). Algorithms
from hierarchical agglomerative methods are expensive in their computational and storage
requirements [TSK13]. Agglomerative methods compute the proximity matrix that needs
O(n2) time to store and keep track of the clusters. The total time required for these algorithms
is O(n2logn) where logn is the additional complexity of keeping data in a sorted list. In
contrast to the hierarchical algorithms, which have the quadratic asymptotic running time
with respect to the number of objects, k-means produces a number of partitions for every k
in a linear time complexity for any aspect of the problem size [WKQ+08]. The complexity of k-
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means algorithm is O(nkh), where the number of clusters (k) and the number of interactions
(h) are usually less than the number of objects (n).

3.5 Selecting the Optimal Clustering Solution

To identify the optimal clustering solution, we investigated the dispersion within
the clusters based on FEB values and the mean of the RMSD accumulated variance from
20 known ligands of the InhA enzyme. These values were investigated since the existing
clustering validity criteria, such as Davies-Bouldin (DB) [DB79], gap statistic [TWH01] and
Dunn’s [HBV02] indexes, showed to be ineffective as the number of clusters rose for every
data set. The optimal clustering solution used as input for the method proposed in this
study was selected by examining two different metrics: (i) the level of similarity between
the MD’s full trajectory and the optimal solution of each clustering method, and; (ii) the
level of similarity in the snapshots within the clusters based on docking poses. For that, we
first calculated the variance, average and standard deviation for the MD trajectory and the
optimal set of medoids for the six clustering methods. After identifying the optimal clustering
solution based on the SQD values, we analyzed the RMSD variance to identify if the selected
solution has clusters composed of snapshots with some similarity in their docking final poses.
Table 3.2 summarizes all clustering solutions with the lowest SQD values of each clustering
method along with the corresponding number of clusters.

Table 3.2 – Statistical assessments from the optimal solution for each clustering method.
Clustering Method Data Set k cluster SQD Average Std. Dev. Variance
k-means Protein RMSD 19 0.01 -6.61 ±0.70 0.54
k-medoid Protein RMSD 66 0.01 -6.63 ±0.70 0.55
UPGMA Cavity Attribute 133 0.04 -6.58 ±0.72 0.56
WPGMA Cavity Attribute 84 0.03 -6.90 ±0.73 0.58
Complete Cavity Attribute 48 0.01 -6.59 ±0.69 0.51
Ward’s Cavity Attribute 95 0.01 -6.60 ±0.68 0.51
- MD trajectory 20,000 0.00 -6.58 ±0.72 0.57

As can be seen in Table 3.2, UPGMA and WPGMA methods showed the highest
SQD values, i.e. low similarity of dispersion between the clustering solutions and the MD’s
full trajectory. This low level of similarity can also be evidenced in the graphs (a) and (b) from
Figure 3.7 where UPGMA and WPGMA methods presents the highest mean of the RMSD
accumulated variance in all data sets and number of clusters tested. One reason for this
low accuracy was the existence of many singletons, i.e. clusters with a single object. For
cluster analysis, singleton clusters are likely to be outliers and their medoids may not be
representative, which in turn means a higher SQD. According to Han [HKP11], one way to
solve this problem is to discover outliers and eliminate them beforehand. However, there are
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some clustering applications for which outliers should not be removed, as in the clustering
solution employed in this study. The removal of objects will affect the quality of RFFR models
since a single snapshot that shows poor interactions with a specific ligand may produce
favorable interactions with another set of different ligands.

It can be seen from the data in Table 3.2 that Complete, Ward’s, k-means and k-
medoid methods presented the lowest SQD values. Because of these same SQL values, we
decided to compare the FEB averages between medoids from these methods and all MD
conformations, aiming at clustering solutions with FEB average close to the MD trajectory.
Therefore, Complete and Ward’s are methods that presented FEB average values closer to
the MD trajectory, i.e. -6.59 for Complete and -6.60 for Ward’s against -6.58 from the MD
trajectory. As the difference between average and standard deviation from these methods
were minimal, we decided to select the experiment with the lowest number of clusters. We
also believe that due to the farthest neighbor method, the clustering solutions were com-
posed by medoids belonging to compact clusters of approximately equal diameters. Hence,
the partitioning with 48 clusters from Complete method was the optimal solution selected for
the MD trajectory in study.

Besides identifying clustering solutions with high binding affinity in the snapshots
within the groups, we also analyzed the level of similarity in docking final poses based on the
RMSD accumulated variance assessments. These results are in accord with the SQD values
indicating that the optimal clustering solutions selected for both Complete and Ward’s meth-
ods also contains low RMSD variances in the clustering generated. It can be seem from
graphs (c) and (d) in Figure 3.7 that the lowest RMSD variances were reached when the
number of cluster is higher than 40 and 95, for Complete and Ward’s method, respectively.
Although Ward’s method reached means of RMSD accumulated variances lower than Com-
plete method in the clustering generated for the Cavity Attributes data set (0.50 for Ward’s
against 0.51 for Complete), we decided to select the optimal clustering solution based on
SQD values. This is due to the method proposed in this study, which identifies groups of
(un)promising snapshots by assessing the binding affinity (FEB values) at docking runtime.

3.6 Chapter Remarks

Several studies explore the relative accuracy of various clustering algorithms in
extracting the right number of clusters from generated data [KR90, JD88]. According to
Hartigan et al. [HW79], it is impracticable to point out the best clustering method since dif-
ferent approaches are right for different purposes. Chen and Lonardi [CL09] state that the
most popular method for clustering MD conformations is agglomerative hierarchical, since
its linkage method is able to use the attributes for describing chemical structures. More
specifically, linkage is the only method able to calculate the dissimilarities between two clus-
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ters of chemical structures using Euclidean distance. Alternatively, Shao et al. [STTC07]
found that UPGMA, k-means, and SOM outperformed COBWEB, Bayesian, and other hier-
archical clustering methods by using the pairwise RMSD distance as a measure of similarity.
Although our analyses also show hierarchical agglomerative methods as the best choices
for all data sets, k-means and k-medoids algorithms demonstrated to be the least advis-
able choice for all data sets. Each study has particularities regarding data generation and
identification of the best clustering algorithm. Indeed, an appropriate solution depends on
a given analysis or application scenario, so data collection, data representation, and cluster
interpretation are crucial for selecting a suitable strategy [JD88, WKQ+08].

The purpose of this investigation was to assess the quality in clustering solutions
presented by six different clustering methods and three measures of similarities (Protein
RMSD, Cavity RMSD and Cavity Attributes) for partitioning MD trajectories. Docking ex-
periments on the FFR model were performed for 20 different ligands with the intention of
validating the proposed methodology. In addition to investigating RMSD-based clustering,
we also provided a novel measure of similarity. It is based on the following feature from the
substrate-binding cavity: pairwise RMSD, volume and number of heavy atoms. We demon-
strated that the use of binding cavity properties for clustering MD trajectory was able to
generate clusters of snapshots similar to the MD’s full trajectory (Figures 3.4 and 3.5), as
well as grouping snapshots with high affinity in their docking final poses (Figures 3.6 and
3.7). It is noteworthy that this novel approach for clustering MD trajectories may be used for
any structure. The major limitation is the high dependency on the prior knowledge on the
target cavity for the protein under study.

The novel set of features used in this study revealed to be a promising solution to
identify relevant conformational changes that occur into the substrate-binding cavity along
an MD simulation trajectory. We expect that the clustering selected will also contribute to
reduce the high computational cost required for performing docking-based virtual screening
experiments. The high level of binding cavity similarity within a cluster is a decisive factor
for ensuring the accuracy of resulting RFFR models. Next section presents the method pro-
posed to evaluate and rank the different interaction modes between receptor conformations
and ligand at docking runtime.
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Figure 3.5 – Comparative performance of hierarchical clustering methods for Protein RMSD,
Cavity RMSD and Cavity Attributes data sets. SQD variations as a function of number of
clusters for, UPGMA, WPGMA, Complete and Ward’s methods in graphs (a), (b), (c) and
(d), respectively. Black points identify the optimal hierarchical solution for each method
[DPQRNdS15].
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(a)

(b)

Figure 3.6 – Mean variance of the RMSD values in the partitional clustering methodos for
Protein RMSD, Cavity RMSD and Cavity Attributes data sets. The mean of the RMSD ac-
cumulated variance as a function of number of clusters for k-means and k-medoid methods
are in graphs (a) and (b), respectively. Each data set is represented by a color, where blue
is the Cavity Attributes, green is the Cavity RMSD, and orange is the Protein RMSD.
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(a)

(b)

(c)

(d)

Figure 3.7 – Mean variance of the RMSD values in the hierarchical clustering methods for
Protein RMSD, Cavity RMSD and Cavity Attributes data sets. The mean of the RMSD accu-
mulated variance as a function of number of clusters for, UPGMA, WPGMA, Complete and
Ward’s methods, are in graphs (a), (b), (c) and (d), respectively.
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4. THE METHOD TO OPTIMIZE DOCKING-BASED VIRTUAL
SCREENING IN FFR MODELS

This chapter presents the method developed to reduce the overall time spent in
molecular docking simulations of FFR models by discarding groups of unpromising snap-
shots, using the clustering of snapshots described in the previous chapter. Amaro et al.
[AL10] assert that applying new computational techniques to reduce the entire MD ensemble
without losing critical structural information is a promising alternative for making the practice
of performing virtual screening experiments on MD trajectories computationally tractable.
Similarly, Antunes et al. [ADK15] suggest that to predict an ensemble of top-ranked alter-
native binding modes instead of only one best structure is a promise strategic to reflect a
more realistic exploration of the binding event in the flexibility of the protein-ligand complex.
In this regard, we propose a novel method to reduce the dimensionality of FFR models by
discarding snapshots belonging to groups that present poor quality in the docking results
for a particular ligand. The quality of snapshot groups is determined by evaluating the FEB
values from the snapshots processed. A new RFFR model is generated for each ligand by
the end of each experiment.

The chapter starts by describing the Pattern Self-adaptive Multiple Instances (P-
SaMI), whose is the basis to the method proposed. Following, we present the proposed
method and its procedure to perform selective ensemble docking experiments. This chapter
ends with a set of empirical tests to support the prediction of the top-ranked alternative
binding modes accounting for FFR models.

4.1 Self-adaptive Multiple Instance (P-SaMI) Data Pattern for Scientific Workflows

P-SaMI is the data pattern formalism for scientific workflows developed by Hübler
[Hüb10, HRFNdS15]. It identifies (un)promising conformations in different groups of snap-
shot and determines whether a specific group can be discarded during a docking experi-
ment. The main objective of P-SaMI is to eliminate the exhaustive execution of molecular
docking simulations of FFR models, keeping a fairly good level of accuracy in the resulting
models (the RFFR models). P-SaMI procedures split clusters of snapshots into batches be-
fore starting the experiment and, while receptor conformations are progressively submitted
to docking executions in a computing resource, the batches of (un)promising snapshots are
identified. Figure 4.1 illustrates this model.

As shown in Figure 4.1, P-SaMI investigates FFR-ligand docking results and de-
cides dynamically whether to take action based on a quality criterion. The quality criterion
defines a priority and a status per batch. These parameters are assigned after the per-
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Batch 1: 1995037252012
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Batch 2: 5465456211101

Figure 4.1 – Model of P-SaMI data pattern operation. The clustering of snapshots is split
into batches before starting the docking experiments on an HPC environment. The docking
results (FEB values) and the quality criterion dictate the priority and status of the batches.
Adapted from [DPFNdSR13].

centage of snapshots have been docked, from which the best FEB values are extracted. A
set of parameters should be configured before staring the experiments to ensure the proper
P-SaMI operation. The four P-SaMI parameters are:

• Sample size: the percentage of snapshots from a group to be added in a batch.

• Start analyses: the minimal percentage of snapshots required by P-SaMI to start the
analysis of the batches.

• FEB maximum value: the worst FEB value of a ligand to its flexible receptor.

• FEB minimum value: the best FEB value of a ligand to its flexible receptor.

The last two parameters are determined by the domain expert, who has the knowl-
edge about receptor-ligand interactions needed to provide such information. P-SaMI uses
the midpoint average between the worst and best FEB values to assess the quality of a
batch and assign a priority. An active batch varies its priorities on a scale of 1 to 3 (1 mean-
ing low-priority and 3 high-priority), whereas priority 0 indicates a discarded batch.

Priority indicates how promising the snapshots are belonging to a batch and dic-
tates whether a snapshot should be sent into a job queue or not. For instance, if batch
B11 contains snapshots with bad interaction with the ligand L1, it receives low priority, fewer
slots in the job queue, and, eventually, B11 can be discarded before the end of the whole
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execution. Conversely, if a substantial amount of conformations from B21 presents favorable
interaction with that same ligand L1, it is assumed that B21 contains promising snapshots,
being credited with a high priority on the job queue.

Quevedo et al. [QDPRNdS14] introduce the first experimental application of P-
SaMI in a larger FFR model (a 20 ns MD trajectory). They proposed to perform a represen-
tative selection of docking poses using clustering methods to significantly reduce the high
number of MD conformations in the resulting RFFR models. The set of representative poses
was generated by clustering RMSD values, which were extracted from the crystallographic
reference poses of the ligands, using k-means algorithm. The major benefit of this selec-
tion of representative poses is to reduce or eliminate the demanding task of domain experts
to manually select promising snapshots. However, due to the measure of similarity used
for clustering the docking poses, this representative selection has two noticeable limitations.
First, it should be applied only when the crystallographic structure is known in advance, since
the RMSD values were extracted based on a referential ligand position. Second, RMSD
docking results may be imprecise for FFR models because conformational changes from a
given snapshot may be different from another. The reference ligand is generally placed in
the first conformation of the FFR model. The constant conformational changes between 500
ps and 20,000 ps can be evidenced in Figure 3.2.

In addition to selecting a significant quantity of false positives, P-SaMI also de-
mands previous knowledge on the receptor-ligand complex. This means that pre-defined
parameters are used to prioritize groups of promising snapshots. According to Hübler
[HRFNdS15], the average between the best and worst FEB is the value used to identify
groups of promising snapshots. Best and worst FEB values are usually determined by the
expert domain. However, the accurate designation of these values is not a trivial task. The
two limitations are: (i) the domain expert does not know the expected fitting of all set of
ligands; (ii) the use of a single MD conformation to discover potential ligand poses, which
is the most usual technique, is unable to represent all alternative flexible parts of the FFR
model.

Cozzini et al. [CKS+08] state that it is not known in advance which conforma-
tions the target flexible structure will adopt in response to the binding of a particular lig-
and. To obtain a more realistic worst and best FEB values for two ligands, Quevedo et al.
[QDPRNdS14] performed docking experiments into a sample of 1% from the 20,000 snap-
shots of the FFR model. This is a suitable technique to reveal the representative behavior
that a ligand may assume in the entire FFR model. A clear disadvantage of this manually
pre-processing step is the required time, which increases considerably as the number of
ligands rises. Such scenario occurs when one intends to perform virtual screening in large
libraries of small molecules, where for each ligand a total of 200 docking experiments for
the FFR model under study should be executed and analyzed. Furthermore, this quantity of
docking experiments may be even greater if the FFR model dimensionality increases.
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To address the above limitations, we proposed a method capable of:

1. predicting the behavior of FFR models and ligands automatically, and;

2. determining a criterion to assess the quality of groups based on a sample of docking
results.

4.2 Input Parameters

The input parameters for the method proposed are based on the P-SaMI data pat-
tern model. A set of specifications is determined to prepare groups of snapshots and control
the docking experiments. The original P-SaMI model operation remained unchanged, but
some parameters were modified with the intention of improving quality and reducing the time
consumed by ensemble docking experiments. The set of P-SaMI specifications consists of
eight input parameters, five for preparing snapshots and three for evaluating and handling
docking experiments. These parameters are detailed below.

1. Clustering of snapshots. The input file with all MD receptor conformations grouped
according to some similarity metric. This is the optimal clustering solution presented in
Chapter 3.

2. Analyses by cluster or batch. Determines whether the quality of docking results will
be evaluated by cluster or by batches. The latter splits clusters of snapshots into
subgroups and enables the next three parameters.

3. Percentage of snapshots in a batch sample. The portion of snapshots taken from a
cluster to create a new batch, considering the next two parameters.

4. Minimum quantity of snapshots per batch. It is the minimum number of snapshots
required to create a batch. If a batch has fewer snapshots than the amount defined,
the snapshots are added to the previous ones.

5. Maximum quantity of snapshots per batch. It is the maximum number of snapshots
that a batch may contain. If a batch is overloading, the extra snapshots are returned
to the original cluster and rearranged to another batch. This parameter aims at gener-
ating a well-balanced distribution of snapshots among batches to enhance the level of
accuracy in docking analyses.

Analysis per batch or cluster allows specifying the evaluation method for a group of
similar snapshots. In this study, only analyses per batch are employed since Hübler [Hüb10]
identified better quality results when small samples of snapshots from equal groups are
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gradually processed by P-SaMI data pattern. Thus, the three parameters used to assess
the quality of batches during the docking experiments are:

1. Percentage threshold to start analyses (startAnal). In the original P-SaMI data pat-
tern model, analyses start when the percentage of processed snapshots from a batch
reaches this parameter. Alternatively, in this study, analyses start when the percentage
of processed snapshots from all batches reach this parameter. This is due to the new
strategic function, which defines priorities based on samples of docking results from all
batches.

2. Percentage threshold to discard a batch (discB). Determines when a batch with low
priority is unable to increase the priority, and therefore, the remaining snapshots may
be discarded. Hence, if low quality docking results are reached after processing the
defined percentage of snapshots, the batch is considered unpromising and the docking
stops.

3. Percentage threshold to discard a cluster (discC). Determines when a cluster with dis-
carded batches is unable to reach better docking results, and therefore, the remaining
batches may be also discarded.

The purpose of the last item is to identify unpromising snapshots by analyzing the
quality among batches within a cluster. Specifically, when a cluster c1 reaches a percentage
of batches with low quality docking results (i.e. percentage to discarded batches), cluster
c1 is considered unpromising and its batches stop running docking experiments. This dis-
carding is applied for all batches with low priority (i.e. less than 3). If an unpromising cluster
contains batches with high priority, these batches are preserved and further docking results
will be used to analyze their quality.

4.3 Approach Developed to Perform Selective Ensemble Docking Experiments

To reduce systematically the ensemble docking experiments and outperform the
accuracy in the RFFR models produced by the method proposed, improvements were per-
formed in the P-SaMI data pattern. This approach attempts to find the best receptor con-
formations for a ligand without prior information about the interactions between the FFR
model and a specific ligand. Favorable binding modes are discovered and ranked during
the docking experiments, based on predicted FEB values extracted from snapshots already
processed. The approach developed to perform selective ensemble docking experiments is
divided into preprocessing and processing stages. Procedures of both stages are described
in this section. An overview of the schematic process is given in the flowchart shown in
Figure 4.2.
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Figure 4.2 – Strategic method for performing selective ensemble docking experiments. A
group can be a cluster or batch of snapshots. The processing stage comprises the cali-
bration and the batch analyses phases. Calibration phase is the process of quantitatively
defining interactions between a sample of MD conformations and a ligand. Batch analyses
phase is the process of qualitatively identifying the best protein-ligand complex predictions.

An experiment is created when a clustering of snapshots and a ligand are submitted
as input for the docking experiments. Each batch of snapshots contains a status and priority,
used for handling which snapshots will perform molecular docking simulations. Thus, the
priority indicates how promising a group of snapshots is on a scale from 0 to 5 (5 being the
most promising), whereas status denotes one of the following five possibilities:

1. Active (A): the batch contains pending snapshots, which will be docked according to
its priority.

2. Calibrate phase (C): the batch is waiting for other batches to reach the defined per-
centage to start the analyses. If a batch has this status, its priority is 0 and pending
snapshots are blocked until all batches from the same experiment reach the percent-
age of docked snapshots.

3. Priority changed (P): the batch increased or decreased its priority and it contains snap-
shots waiting to be processed.

4. Discarded (D): the batch was discarded and the pending snapshots will no longer be
processed. This status indicates a batch with unpromising snapshots.

5. Finalized (F): the batch processed all snapshots because it is more likely to have
promising snapshots.
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In this approach, when a docking experiment is submitted to be executed, all
batches receive status "A" and priority 5. The highest priority was used in this stage to ac-
celerate the conclusion of the experiment calibration. Status "C" and priority 0 are assigned
to the batches that reach the percentage threshold to start analysis during the calibration
phase, but they are waiting for all batches achieve the same percentage of processed snap-
shots. After all batches reach the percentage threshold to start analysis in a experiment, the
batch’s status changes to "A" and a priority is assigned for each batch based on FEB results
of the processed snapshots. The selective ensemble docking operation starts by selecting
batches of snapshots with status equal to "A" and uses the priority to dictate the order in
which the batches are processed. The higher the priority, the sooner the processing and
the larger portion of snapshots selected. An experiment ends when all batches hold status
equal to "D" or "F". Unless in the calibrate phase, which uses the maximum priority to reach
the percentage of processed snapshots to start analyses faster, the promising batches are
those with the higher priority.

A set of metrics are computed while the snapshots are executed, which are: per-
centage of processed snapshots (psi), sampling average (xi), estimated average (exi), sam-
pling lower quartile (lqi), sampling 13th percentile (pi), and sampling minimum value (mini).
During the calibrate phase only the processed snapshots and sampling average are com-
puted per batch. The sampling average is given by

xi =
1

ni

∑
xkεBi

xk (4.1)

where i denotes the i-batch, xk is the best estimated FEB value achieved from
a docking experiment between a snapshot and a ligand, and ni indicates the number of
processed snapshots from batch Bi. In the calibrate phase the percentage of processed
snapshots per batch is verified to update metrics and start docking analyses. When all
batches of snapshots from an experiment reach the percentage to start analyses, the batch
metrics are first computed, followed by the experiment metrics (Figure 4.2 ). The set of
experiment metrics, which are computed when the percentage to start analyses is reached
for all batches once, is the criteria used to categorize the quality of batches.

The estimated average is defined by Hübler et al. [HRFNdS15] as

exi =
1

ni
(
∑
xkεBi

xk + (0.4985× ri × (2xi − si))) (4.2)

where

si =

√
1

ni − 1
(
∑
xkεBi

(xk − xi)2 (4.3)
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where n is the amount of snapshots in batch i, r is the set of remaining snapshots
to be processed from batch Bi, xk is the best FEB value for each snapshots from batch Bi,
and xi is the sampling average (Equation 5.1).

The sampling lower quartile, sampling 13th percentile, and sampling minimum value
were computed with the aim of predicting more accurately binding affinity in protein-ligand
complexes. With this metrics, it is expected to outperform the quality in the RFFR mod-
els produced not only by considering the FEB values average, but also by identifying the
snapshots that account for at least 25.00% more negative FEB values of a batch.

The sampling average, the sampling lower quartile, the sampling 13th percentile,
and the sampling minimum are structured into four vectors to compute the experiment met-
rics, where each vector’s position contains the batch identification. Figure 4.3 depicts in a
vector the five metrics computed for each experiment based on the four metrics computed
(xi, lqi, pi, mini) for the batches. The five metrics of an experiment (Exp) are formally repre-
sented as follows

Exp(Mx, LQx, LQlq, LPp, LQmin) =
N∑
i=1

(xi, lqi, pi,mini) (4.4)

where i denotes the i-batch, Mx̄ is the median computed from the sampling average
of the experiment batches, LQx̄ is the lower quartile computed from the sampling average
of the experiment batches, the LQlq is the lower quartile computed from the sampling lower
quartile of the experiment batches, the LPp is the lower quartile computed from the sampling
13th percentile of the experiment batches, and LQmin is the lower quartile computed from the
sampling minimum value of the experiment batches. The set of metrics, status and priority
of each batch are updated while the snapshots are executed.

𝐸𝑥𝑝(𝑀ത𝑥 , 𝐿𝑄 ത𝑥, 𝐿𝑄𝑙𝑞 , 𝐿𝑄𝑝 , 𝐿𝑄𝑚𝑖𝑛)

ҧ𝑥1 𝑙𝑞1 𝑝1 𝑚𝑖𝑛1 Batch 1

ҧ𝑥2 𝑙𝑞2 𝑝2 𝑚𝑖𝑛2 Batch 2

ҧ𝑥3 𝑙𝑞3 𝑝3 𝑚𝑖𝑛3 Batch 3

... ... ... ...

ҧ𝑥𝑖 𝑙𝑞𝑖 𝑝𝑖 𝑚𝑖𝑛𝑖 Batch i

Figure 4.3 – Representation of the experiment and batch metrics computation. A vector
representation is generated for each experiment after reaching the percentage to start anal-
yses. Experiment metrics, which are defined after calibrate phase, are the parameters for
selecting and sorting the docking experiments.
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Algorithms 4.1 and 4.2 are the two function versions implemented to determine the
priority in different batches of snapshots according to the level of quality produced at docking
runtime. Both functions were developed on the basis of batches that contain the lowest FEB
values, accounting simultaneously for favorable protein-ligand interactions, high priority, as
well as larger number of processed snapshots. To enhance the quality of RFFR models and
identify a larger number of unpromising groups of snapshots, we developed two function ver-
sions: batch and cluster analysis functions. The first (Algorithm 4.1) investigates the internal
batch quality based on the following assumption: if a batch is unable to reach a specific level
of priority after processing the percentage threshold to discard a batch (discB), then it is
discarded or its priority is penalized by a decline of 2 levels, depending on the outcome of
comparative statistical tests on accuracy. Alternatively, cluster analysis function (Algorithm
4.2) investigates both batch and cluster quality, based on the following assumption:

• if a cluster c reaches the percentage threshold to discard a cluster (discC), and;

• the batches from c has priority less than 3, then the remaining batches from c are
discarded.

We noticed that the cluster analysis function without the percentage threshold to
discard a batch (discB) processed a significant quantity of unpromising snapshots (i.e.
batches with priority 1 or 2) during the empirical tests. For this reason, the (discB) pa-
rameter was inserted in the Algorithm 4.2 to operate in the same manner as Algorithm 4.1.
Thus, batches that are unable to achieve high levels of priority after processing a certain
percentage of snapshots are discarded.

We opted for creating a second function version to compare the different levels of
analyses, i.e. batch and cluster. By evaluating the quality of clusters, we expect not only
to find similarity among snapshots from the same batch, but also among snapshots from
different batches belonging to the same cluster. If this approach does not succeed, we can
assume: (i) the clustering quality is poor, or (ii) the clustering may be suitable for some ligand
and unsuitable for others. Next section presents empirical experiments to compare the two
distinct functions and propose an appropriate parametrization to run each function based on
a set of docking results between the InhA FFR model and 16 known ligands.

4.4 Evaluating Empirical Experiments to Select a Suitable Parametrization for
the Proposed Method

In this section, we describe the empirical evaluation performed to optimize docking-
based virtual screening in FFR models. These experiments were divided in two steps. First,
we generated batches by picking snapshots sequentially and randomly to assess the level
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of similarity between the cluster and its batches. In the sequential selection the snapshots
were picked in the ascending order, i.e. as they were generated by the MD simulation,
whereas in the random selection they were selected randomly. After finding an affordable
selection to generate the batches of snapshots, we performed empirical experiments by
using batch and cluster analysis functions (Algorithms 4.1 and 4.2) with six parameters in
order to choose a more suitable parametrization. All empirical experiments were conducted
based on exhaustive docking experiments between the FFR model and a set of compounds
experimentally tested from the InhA structure.

The docking results used to evaluate these experiments were taken from the dataset
employed to validate the data partitions presented in Chapter 3. A total of 16 ligands with
20,000 docking results each were used to execute the empirical experiments. The ligands
complexed with the NADH coenzyme (PTH-NAD and INH-NAD from 2NTJ, 2IDZ, 1ZID and
2NV6 enzymes) were not used in this set of experiments because the proposed methods
aims to perform docking experiments of the FFR model and ligands from database of small
molecules. The FFR model was generated from an MD simulation of the InhA-NADH en-
zyme complex and the presence of the NADH coenzyme in the InhA substrate-binding cavity
is essential to find a ligand capable of inhibiting the mycobacteria growth [QDS+96]. Thus,
the predicted FEB values between the FFR model and the set of ligands from Figure 3.3
were also extracted in order to assess: (i) the level of similarity from both batches and their
clusters; and (ii) the level of quality in the RFFR models by using the settingPriority1 and
settingPriority2 functions with six parameters each.

The level of homogeneity between a cluster and its batches was measured when
the snapshots were picked from clusters in a sequential and random manner. To evalu-
ate this level of similarity, the percentage of batch sampling, the minimum and maximum
quantity of snapshots to split clusters into batches used for both sequential and random
snapshots selection, were 20, 50 and 150, respectively. Although these parameters can be
modified according to the user purposes, we suggest to create batches with similar quantity
of snapshots, mainly due to (i) the uneven distribution of snapshots into clusters, whose to-
tal number of snapshots ranges from 11 to 3,640; and (ii) the statistical analyses performed
among batches, which demands small number of objects inside a group to indicate a more
realistic dispersion over data. Based on these parameters, a total of 247 batches were gen-
erated, and the similarity of each batch and its corresponding cluster was compared based
on FEB values obtained from exhaustive docking experiments of the FFR model with a set
of 16 ligands. The FEB average difference between clusters and their respective batches
from the sequential and random selection were computed as follows:

AvgDiff(Ci, Bj) =
∑
xcεCi

∑
xbεBj

| xc − xb | (4.5)
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xc =
1

ninj

l∑
i=1

∑
xkεCi,j

xk (4.6)

xb =
1

ninj

l∑
i=1

∑
xkεBi,j

xk (4.7)

where l is the total of ligands, xk is the FEB value from the ith ligand and the snap-
shot in the jth cluster for xc and the FEB value from the ith ligand and the snapshot in the
jth batch for xb. Similar equation was used to measure the standard deviation difference
(StdDiff(Ci, Bj)). Figure 4.4 shows the significant difference between the sequential and
random distribution of clusters into batches. Random selection clearly showed batches more
homogeneous and similar to their clusters, while sequential selection was more unsteady.
These findings suggest that batches composed of snapshots taken in a sequential manner
present a substantial difference in the binding modes among these batches and their original
clusters. In contrast, batches created by a random selection are able to obtain better levels
of homogeneity in the snapshots that form the same batch, as well as high similarity of bind-
ing modes among batches from the same cluster. The average of sequential and random
selections were 0.14±0.12 kcal/mol and 0.03±0.03 kcal/mol for AvgDiff , and 0.07±0.05
kcal/mol and 0.02±0.02 kcal/mol for StdDiff .
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Figure 4.4 – Comparative level of homogeneity between batches and their clusters for se-
quential and random snapshots selection. Average differences of the FEB average and
standard deviation as a function of the number of batches are shown in graphs (A) and (B),
respectively.

Both sequential and random selections were applied to pick snapshots during the
preparation and execution of experiments. Sequential selection was the strategy used by the
batch analysis function and random selection was the strategy used by the cluster analysis
function. Since random selection showed batches with better level of similarity with their
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clusters, we expect that it is also an appropriate strategy for finding promising snapshots
during docking runtime.

The suitable parametrization for the proposed method was chosen considering the
percentage of best snapshots interactions selected for each set of assigned values. Based
on exhaustive docking ensemble results, the snapshots which are in the top 10, 20, 30 and
100 best FEB values were ranked for each ligand, aiming at comparing the accuracy from the
RFFR models produced. In this assessment, we evaluated the percentage means obtained
by the processed snapshots and four top best rankings, when a different set of values were
assigned to the method’s parameters. A total of 30 different combinations of values were
assigned to the method, half of which for the batch analysis function and half for the cluster
analyses function. Parameters and their values were combined for each function as follows:

• Batch analysis function (sequential selection): 10, 15 and 20 for percentage to start
analyses, and 30, 40, 50, 60 and 70 for percentage to discard a batch parameter.

• Cluster analysis function (random selection): 10, 15 and 20 for percentage to start
analyses, and 10, 20, 30, 40, 50 and 60 for percentage to discard a cluster parameter.
The percentage to discard a batch, which is used for batches with low priorities (1 and
2) is 50.00% for all experiments.

As snapshots from the cluster analysis function were randomly selected, a total
of 20 executions were performed for each different values combination. The purpose of
running the same method’s parametrization several times is to ensure the generalization of
results when different snapshots are chosen by chance. It means that we expect to avoid
biased results by reaching equal performance level in every cluster analysis configuration.
Appendix B displays a complete investigation from the results obtained by executing the
cluster analysis function. In this investigation, the average percentages of the 20 executions
were computed for processed snapshots and the top 10, 20, 30 and 100 best snapshots
per ligand. A similar investigation is presented to the batch analysis function in Appendix A.
Both appendixes show tables of performance assessments for each ligand. However, unlike
cluster analysis function, snapshots from batch analysis function were selected sequentially,
and therefore, a unique execution was performed for each method’s parametrization.

The results obtained from empirical experiments of the method to optimize docking
experiment in FFR models are summarized in Figures 4.5 and 4.6. These figures display
the performance percentage means of 16 ligands for each method’s parametrization based
on percentage values from Appendixes A and B. It is clear that there were better similarities
among four performance percentages from cluster analysis than batch analysis regardless
of method’s parameterizations. Figure 4.5 indicates that percentage of processed snap-
shots increased over different percentages to discard batches, compared with cluster anal-
ysis function (Figure 4.6), with percentages of processed snapshots ranging from 8.00 and
12.00% for cluster analysis function, and 6.00 and 8.00% for batch analysis function.
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Figure 4.5 – Performance analyses of the empirical experiments applying different parame-
terizations for the batch analysis function. TOP10, TOP20, TOP30 and TOP100 identify the
best 10, 20, 30 and 100 snapshots and ligand interactions. Each method’s parametrization
is encoded as SA_XX_DB_YY, where XX is the percentage of processed snapshots to start
the analyses (SA), and YY is the percentage of processed snapshots to discard a batch
(DB).

Figure 4.5 demonstrates that TOP100 selected high percentages of best snapshots
in all cases. Conversely, TOP10 selected the worst percentages and obtained the biggest
differences from the TOP100 percentages. TOP20 and TOP30 showed better similarity over
different method’s parametrization. The results obtained from batch analysis method re-
vealed that sequential and centralized selection of snapshots were unable to represent the
real binding behavior among the snapshots inside a batch. This is evidenced by comparing
the percentage of top best snapshots selected for each method’s parametrization in both
functions, where batch analysis function produced biased results. Highest accuracies were
presented by cluster analysis function, even when the same percentage of processed snap-
shots was achieved.
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Figure 4.6 – Performance analyses of the empirical experiments applying different param-
eterizations for the cluster analysis function. Each method’s parametrization is encoded as
SA_XX_DC_YY, where XX is the percentage of processed snapshots to start the analyses
(SA), and YY is the percentage of processed snapshots to discard a cluster (DC).

Since the performance obtained by the empirical experiments was heavily depen-
dent on the function and parametrization chosen, we expect to achieve similar result quality
when different ligands are used to perform docking-base virtual screening experiments in
the cloud-based workflow environment. To corroborate this expectancy, a parametrization
for each function was chosen based on the comparative performance showed in Figures 4.5
and 4.6. As the batch analysis function presented biased results and we were not expecting
to obtain high levels of accuracy, we opted for selecting a parametrization that halved the
quantity of snapshot of the FFR model. Thus, the percentages for batch analysis function
were: 10.00% to start the analyses and 40.00% to discard a batch. By executing this function
in the cloud-based workflow environment under these conditions, it is expected to process
around 50.00% of snapshots from the FFR model and reach an accuracy of 74.00%.
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Contrary to the batch analysis function, results from cluster analysis function showed
higher accuracy levels in most of the parametrization tested. To select an option, we con-
sidered parametrization that processed the lowest percentage of processed snapshots, and
achieved good levels of quality. Hence, based on the empirical experiments, the satisfactory
parametrization adopted for cluster analysis function was: to start analysis after 15.00% of
snapshots have been processed, and to discard a cluster when 20% of its batches have
been discarded. At the end of the experiments, we expect to process around 54.00% of
snapshots from the FFR model and reach accuracy of 85.00%.

It is worth mentioning that the configurations chosen for each method are not the
only option to set the cloud-based workflow environment purposed in this study. Empirical
experiments, which were based on docking results between the FFR model and 16 ligands,
were performed to investigate the proposed functions, and identify a suitable configuration.
The parameters may be changed depending on different factors, such as time available for
executing, accuracy expected, number of parallel executions, budget and other purposes.

4.5 General Remarks

According to Korb et al. [KOB+12], the development of ensemble selection pro-
tocols able to identify optimally performing ensembles for different scoring functions and
targets will be one of the major challenges in the future. This study contributed to this chal-
lenging area of research by proposing a method capable of discarding groups of unpromising
snapshots for specific ligands using a clustered FFR model as input data. To validate this
new protocol for ensemble selection, empirical experiments were performed by investigat-
ing results from exhaustive docking simulations between the FFR model and 16 compounds
experimentally tested from the InhA structure. Empirical results revealed that the proposed
method is able to achieve high levels of accuracy. This was evidenced by assessing the per-
centage of processed snapshots, and the best snapshots interactions (up to 100) selected
for each ligand when the two analysis functions were executed with different parameters
(Appendixes A and B). After validating the proposed method, a parametrization option was
suggested for each function based on the performance obtained from the 16 ligands (Figures
4.5 and 4.6). These parameters are used to execute this new ensemble selection method in
the cloud-based workflow environment developed in this study.

The method proposed in this chapter outperforms the original P-SaMI data pattern
in the following aspects:

• Accuracy: The P-SaMI validation was performed by using FEB values obtained from
interactions between a FFR model of InhA with only 3,100 snapshots and two lig-
ands, where one of them is NADH, the coenzyme complexed with the InhA enzyme.
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Conversely, our empirical tests used FEB values obtained from interactions between
the FFR model of InhA with 20,000 snapshots and a set of 16 ligands experimentally
tested.

• Self-contained: Whereas P-SaMI requires that the expert domain provides parameters
to identify promising snapshots, our method is able to select promising docking results
and reducing the number of docking experiments, without having any previous infor-
mation on the protein-ligand interactions. Input parameters required by the proposed
method are particularly related to the AutoDock software and operating controls in the
batch/group of snapshots.

The method presented in this chapter aims at identifying promising snapshots
based on the binding affinity produced by screening a large database of organic molecules
for putative ligands that fit into the FFR model binding site. Towards this end, the FEB value
obtained from docking result was the measure selected for evaluating quality interactions be-
tween MD conformations and different ligands. Another measure option would be the RMSD
value, which provides the docking poses quality from InhA’s known ligands. However, in this
study, we intend to exploit opportunities for the discovery of potential new ligands in large
libraries of compounds, which in turn contains unknown ligands of the InhA enzyme.

To verify whether the method proposed is able to select snapshots with the best
docking final poses, an analysis on the level of accuracy in RMSD values is presented in
Chapter 6, which describes the experimental results achieved by performing e-FReDock on
cloud platforms. Next chapter provides details on e-FReDock, the cloud-based scientific
workflow developed to optimize molecular docking simulations of FFR models and multiple
ligands based on the method introduced in this chapter.
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1: Let ps be the percentage of processed snapshots from batch i.
2: Let discB be the percentage of processed snapshots to discard a batch in an experiment.
3: function settingPriority1 (x̄i, ēxi, lqi, pi,mini, psi)
4: if x̄i ≤ LQx̄ and ēxi ≤ LQx̄ then
5: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
6: priority ← 5
7: else if psi ≥ discB then
8: priority ← 3
9: else

10: priority ← 4
11: end if
12: else if x̄i > LQx̄ and ēxi ≤ LQx̄ then
13: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
14: priority ← 4
15: else if psi ≥ discB then
16: priority ← 2
17: else
18: priority ← 3
19: end if
20: else if x̄i > LQx̄ and ēxi > LQx̄ and x̄i ≤Mx̄ and ēxi ≤Mx̄ then
21: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
22: priority ← 3
23: else if psi ≥ discB then
24: priority ← 1
25: else
26: priority ← 2
27: end if
28: else if x̄i > Mx̄ and ēxi ≤Mx̄ then
29: if psi ≥ discB then
30: priority ← 0
31: else if lqi ≤ LQlq or pi ≤ LQp or mini ≤ LQmin then
32: priority ← 2
33: else
34: priority ← 1
35: end if
36: else if x̄i > Mx̄ and ēxi > Mx̄ then
37: if psi ≥ discB then
38: priority ← 0
39: else if lqi ≤ LQlq or pi ≤ LQp or mini ≤ LQmin then
40: priority ← 1
41: else
42: priority ← 0
43: end if
44: end if
45: return priority

Algorithm 4.1 – Batch analysis function for setting priority to the batches of snapshots. The
six function parameters represent the following values from batch i: sampling average (xi),
estimated average (exi), sampling lower quartile (lqi), sampling 13th percentile (pi), sampling
minimum value (mini), and percentage of processed snapshots (psi)
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1: Let ps be the percentage of processed snapshots from batch i.
2: Let discB be the percentage of processed snapshots to discard a batch in an experiment.
3: function settingPriority2 (x̄i, ēxi, lqi, pi,mini, psi)
4: if x̄i ≤ LQx̄ and ēxi ≤ LQx̄ then
5: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
6: priority ← 5
7: else
8: priority ← 4
9: end if

10: else if x̄i > LQx̄ and ēxi ≤ LQx̄ then
11: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
12: priority ← 4
13: else
14: priority ← 3
15: end if
16: else if x̄i > LQx̄ and ēxi > LQx̄ and x̄i ≤Mx̄ and ēxi ≤Mx̄ then
17: if lqi ≤ LQlq and pi ≤ LQp and mini ≤ LQmin then
18: priority ← 3
19: else
20: priority ← 2
21: end if
22: else if x̄i > Mx̄ and ēxi ≤Mx̄ then
23: if lqi ≤ LQlq or pi ≤ LQp or mini ≤ LQmin then
24: priority ← 2
25: else if psi ≥ discB then
26: priority ← 0
27: else
28: priority ← 1
29: end if
30: else if x̄i > Mx̄ and ēxi > Mx̄ then
31: if psi ≥ discB then
32: priority ← 0
33: else if lqi ≤ LQlq or pi ≤ LQp or mini ≤ LQmin then
34: priority ← 1
35: else
36: priority ← 0
37: end if
38: end if
39: return priority

Algorithm 4.2 – Cluster analysis function for setting priority to the batches of snapshots. The
six function parameters represent the following values from batch i: sampling average (xi),
estimated average (exi), sampling lower quartile (lqi), sampling 13th percentile (pi), sampling
minimum value (mini), and percentage of processed snapshots (psi)
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5. e-FReDock: A CLOUD-BASED SCIENTIFIC WORKFLOW TO
OPTIMIZE INTENSIVE MOLECULAR DOCKING SIMULATIONS OF FFR
MODELS

One of the major challenges in performing docking experiments of FFR models is
the computational demand to screen large databases of small compounds and extract po-
tential binders. According to Amaro et al. [AL10], performing virtual screening experiments
in the full set of structures is computationally intractable and likely unnecessary. In the same
way, Bier et al. [BZ10] states that both the steady increase of computer power and the im-
plementation of advanced sampling strategies will broaden the applicability of MD simulation
methods for pre-selection of relevant conformation transitions. For this reason, we propose a
method that selects groups of promising snapshots during the ensemble docking runtime in
a cloud-based scientific workflow. The most promising receptor-ligand bound conformations
are identified in groups with high level of similarity in their substrate-binding cavities, and
consequently, it is expected to find a binding pattern in each of the clusters of snapshots.

This chapter introduces e-FReDock, the cloud-based scientific workflow to optimize
intensive molecular docking simulations of FFR models based on the method presented in
Chapter 4. This scientific workflow was developed in e-Science Central (e-SC) [HWWC13],
the workflow enactment system created by the scalable computing research group based at
Digital Institute, Newcastle University, UK. We created a set of blocks in e-SC to design and
run the e-FReDock scientific workflow, which can be hosted in public and private clouds.
The e-SC platform allows to write blocks in a variety of languages and connect in differ-
ent database management systems, such as MongoDB [Cho13]. MongoDB is the NoSQL
database used to store and manage the large scale of data produced during e-FReDock
execution. The e-sc platform also allows to use Azure Tables

A preliminary conceptual architecture of e-FReDock was published earlier as a
PhD Consortium on the 2015 IEEE 7th International Conference on the Cloud Computing
Technology and Science [DPRNdS15]. The scientific workflow approach introduced in the
paper is different from the final architecture presented in this section as it was an ongoing
work and some improvements have been made to meet the primary objective of this study.
This chapter presents the final e-FReDock conceptual specification developed in e-SC, the
blocks created to design the workflows and the data model designed in MongoDB. We also
give a brief introduction to the services provide by e-SC workflow enactment system and the
concepts of MongoDB database.
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5.1 Workflow Enactment System: e-Science Central

The e-SC platform is a cloud-based web workflow enactment system for e-Science
projects [HWWC13]. This system, created in 2008, can be deployed on both private and
public clouds. The cloud-based platform provided by e-SC includes essential services to
support scientists and developers, who can design scientific workflows using available ser-
vices or building new applications. Figure 5.1 illustrates the set of virtualized services from
e-SC on a cloud platform. Each platform service is described below [HWWC13].

• Data storage: all e-SC files are versioned and placed in the cloud storage. These files
are services, workflows and user data.

• Processing: a set of VMs are attached to the e-SC server to execute workflow invoca-
tions. These VMs can be any worker node in a HPC environment (cloud computing or
physical environments) and are also called e-SC engines as they provide an execution
environment that can simultaneously support code in different languages.

• Security: workflows, data and services are controlled by the users, which grant different
access for specific users or groups. Access control lists are used to store in a database
the actions performed by users, which can be read, written, deleted or added.

• Analysis service: e-SC allows users to upload and deploy services into the platform.
Services can be written in a variety of languages including Java, JavaScript, R [Tea12]
and Octave [Eat16]. A binary library is also provided by e-SC to manipulate other files
formats.

• Workflow enactment: to provide scalable performance, the workflow services are stored
on the file system of a VM and their instances are sent as a temporary invocation to be
deployed on each of a pool of VMs. The file system can be placed in the e-SC server
VM or another VM on the cloud.

• Provenance: all system events such as workflow operation, data control, and other
interactions are stored in a database. This information can be retrieved by users to
reproduce their experiments or extract particular data. Moreover, e-SC allows users to
analyze the life cycle of every stage of data and process within the system thought the
Open Provenance Model (OPM) [MCF+11], a data model that provides the necessary
tools to follow the history of an object.

The e-SC core set of services includes components to design workflow by selecting
blocks. A typical workflow in e-SC is composed by blocks (or services) which are connected
by arrows to orchestrate the execution flows based on the DAG representation. Each block
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has any number of inputs and outputs, but only one connection is accepted on any given
block input, whereas any number of connections can be accepted on any given block output.
The data representation options of input and output files are: table structured format (CSV
file), serialized Java object, and a list of files in any format.

e-Science 
Central

...
API

Science Cloud Platform

Workflow Enactment Analysis Services

Provenance Security

Cloud Infrastructure

Processing Data Storage

App App

Figure 5.1 – e-Science Central Cloud Platform Architecture. The Application Program Inter-
face (API) allows users to build their external application and execute workflow invocation
directly on the cloud platform. Provenance and analysis are collected during the workflow
execution and stored into the data storage cloud infrastructure. Adapted from [HWWC13].

The invocation of a workflow enables a sequence of blocks that run when all input
ports have input data buffered and ready to use [CHWW13]. A block is a thin layer of an
API that allows users to customize their own algorithms, as well as to access input data
and properties to generate result invocations. A number of e-SC services is portable and
transparent to end users. Code and workflows can be prototyped on a laptop and then
executed at scale by transferring it to a hosted cloud environment [HWWC13].

Data, workflows and code are stored within logical folders. Each e-SC user has
its own home folders containing the user’s designed workflows, blocks developed, and files
uploaded or created into the platform. All these operations can be performed by users
through a web interface, or using external tools on which blocks are written and deployed
into the e-SC platform. User and e-SC data can be stored on the physical disk of the system
running e-SC server, or within a data storage service, which allows to store large amounts
of data as a persistent storage 1 in public cloud platforms.

Another service provided by e-SC is the Java REST API, which allows develop-
ers to build applications directly on the cloud platform. The external API service has the

1Persistent storage or non-volatile storage is any data storage device that retains data after power to that
device is shut off.
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advantage of developing specific functionalities by accessing and manipulating data files
and workflows stored in the e-SC file system, which would not be possible to design on
the e-SC platform. A further advantage of this external e-SC service is the possibility of
making decisions on the data before invoking a workflow engine. This is particularly useful
in enabling run-time assessments to identify consistent groups of promising snapshots in
molecular docking simulations of FFR models.

The other two main advantages that motivated the use of e-SC to develop the
cloud-based environment proposed are its web interface and its application for drug discov-
ery procedure [HWWL10, WLC+11, HWWC13, CHWW13]. Recently, Cala et al. [CHWW13]
designed a scalable system based on e-SC for reducing the time taken to generate QSAR
models in the Azure cloud platform. By assessing the scalability of prediction of chemical
activity experiments, they demonstrated efficiency of 90.00% with 200 work nodes on Azure
Cloud. One critical problem of using the e-SC is the lack of documentation for many services,
which can be a drawback for new users.

5.2 MongoDB NoSQL Database

MongoDB [Cho13] is the open source NoSQL database used to store the informa-
tion from molecular docking experiments performed on e-FReDock. It is a non-relational
database designed to support bulk processing of great amounts of data in distributed hor-
izontal scaling, e.g. large number of VMs on the cloud [GGM12]. NoSQL systems are
typically used to deal with scalability issues, in which relational databases are inefficient
[GGM12]. MongoDB supports an easy-to-use protocol for storing large files based on a
document-oriented database. The document-oriented approach is a more flexible model to
represent a single record, where a row from an SQL table can be replaced by a complex
hierarchical structure.

According to Chodorow [Cho13], the five main concepts that distinguish MongoDB
from SQL databases are document structure, unique key, collection, multiple independent
databases and JavaScript shell. As mentioned above, documents are analogous to rows in
a relational database. MongoDB supports many data types. The most commonly used are:
integer, double, boolean, string, date, timestamp, JavaScript code, binary data, array, and
embedded document or sub-documents. Embedded document is a vector field composed
of a set of sub-documents with equal or different field names. A document also contains
an object id field, which stores a unique identification for each document. The object id
consists of 12 bytes generated in the following sequence: four bytes for the timestamp (in
seconds), three bytes for the machine number, two bytes for the process id, and an in-
cremental number in the three last bytes. A collection (equivalent to tables in relational
databases), contains a group of documents. Unlike relational databases, a collection is a
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dynamic schema as within a single collection, each document can have a number of different
fields. MongoDB also groups collections into database. The main difference is that multiple
independent databases are stored in separate files on the same disk, allowing many appli-
cations and users to store data in the same MongoDB server. The interaction with MongoDB
databases may be through management tools (e.g. RoboMongo [Sch16]), http interfaces or
a JavaScript Shell. The last is a essential tool, since it is provided along with MongoDB
installation as a full-featured JavaScript interpreter, capable of managing databases by run-
ning arbitrary JavaScript programs.

MongoDB NoSQL database was chosen for this study due to the need for high scal-
ability and availability when large amounts of data are processed in distributed cloud-based
environments. Recent studies reveal the performance gains of MongoDB when compared to
SQL databases such as PostgreSQL [JYBC15] and Microsoft SQL Server [ARMG15]. An-
other major feature of MongoDB is its wide use for the management of big data for a variety
of distinct areas [GGM12]. For instance, The New York Times uses MongoDB for backing up
all submitted photos in its form-building application, eBay Inc. uses MongoDB for its internal
cloud manager and LinkedIn uses MongoDB for storing a huge variety of resources for its
internal learning platform.

5.3 e-FReDock Conceptual Specification

As mentioned in the Introduction, the foremost objective of this study is to propose
a new method to assist in performing practical virtual screening on FFR models through
three strategies: (i) speeding up ensemble docking experiments; (ii) reducing systematically
the resultant FFR models (RFFR models); and (iii) preserving the most biologically relevant
information in the RFFR models produced. To achieve this goal, we developed the scientific
workflow e-FReDock. e-FReDock is able to: (i) scale docking experiments out onto cloud
resources; (ii) store docking data required to run experiments in a NoSQL database; and
(iii) manage data and services required to evaluate and discard groups of snapshots at
docking runtime, based on the method proposed in Chapter 4. It also incorporates e-SC
services, which allow to reduce costs in cloud platforms, executes workflows in a loop as
a DCG representation, and access the scientific workflow functionalities entirely through a
web browser.

The conceptual architecture of e-FReDock scientific workflow is presented in Fig-
ure 5.2. It contains two sub-workflows: Create Experiment, which creates new docking
experiments of FFR models; and Selective Ensemble Docking, which performs the molec-
ular docking simulations and analyzes the quality of docking results. MongoDB database
and e-SC server are usually hosted in the same machine; however, it is possible to deploy
them into different machines or in storage data services from cloud platforms, such as Azure
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blob storage [AZU16]. Create Experiment workflow, Selective Ensemble Docking workflow,
and e-SC Share Library are designed by users and stored in the e-SC server. The workflow
enactment is executed on one of a number of virtual machines attached to the main e-SC
server. These attached virtual machines represent the Workflow Enactment Nodes (Figure
5.2). A workflow enactment node is composed of: an e-SC Engine, a Java Runtime, and
a Library Directory structure. The e-SC Engine component contains the e-SC code nec-
essary to install workflow blocks, execute workflow invocations, and communicate with the
e-SC server. Java development toolkit and an execution directory structure are required by
engines to run workflow invocations.

Workflow Enactment Nodes

e-SC Engines

Selective Ensemble Docking

e-SC Server

Web 
Browser

Workflow 
Invocations

Selective Ensemble Docking

Create Experiment

e-SC
API

MongoDB
Storage

e-SC
Share

Library

Selective Ensemble Docking

Selective Ensemble Docking

Create Experiment

Create Experiment

Create Experiment

Java 
Runtime

Library 
Directory

Figure 5.2 – Conceptual architecture of e-FReDock scientific workflow. A workflow instance
starts on the e-SC server and its invocation is sent to be executed on one of the enactment
nodes. The right box on the right represents the pool of virtual machines attached to the
e-SC server from which workflows are executed. Data and control flows are monitored by
e-SC, which is also responsible for scaling VMs onto cloud platforms.

There are a number of events performed by the e-SC Server from start to finish of
a workflow invocation. The system initiates by placing the workflow invocation onto a queue
with its parameters and settings required. When an idle node is found, the e-SC engine
installed on this node removes the execution request from the queue and starts to execute
the blocks. During workflow execution, the e-SC engine automatically deploys workflow
blocks into the library on the enactment node. The four main steps performed by an e-SC
Engine for each block within the workflow invocation are:

1. To verify if the Library Directory deployed on the enactment node contains the block
code and its dependencies, including software, packages and files.
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2. To download block code or dependencies from the e-SC Server and install them within
the Library Directory, in case they are missing. The snapshots and ligands input files
to execute the molecular docking simulations, which are in the e-SC Share Library, are
also transferred from the e-SC Server to the Library Directory on the enactment node.

3. To initiate the block code execution, in the case of block code and dependencies are
not missing.

4. To execute the main and post processing routine of the block.

It is worth mentioning that e-SC performs the deployment of blocks on the enact-
ment node only when the workflow invocation is executed for the first time. One advantage
of transferring all block files from e-SC server to the e-SC engine at once is that it avoids
the high-throughput data transfer produced at runtime, thereby minimizing delays or failures
caused by network connection issues, and data transfer costs charged by public cloud plat-
forms. The e-SC Share Library was used to store all snapshots from the FFR model and
ligands used to perform docking experiments. Thus, a total of 3.60 GB files were transferred
to deploy the blocks within the Library Directory on the enactment nodes.

The e-SC engine creates a file directory for each workflow invocation in order to
store input and output files that are used during the execution. By default, temporary work-
flow files are deleted from the enactment node immediately after ending the workflow execu-
tions; unless one or more target folders are indicated to save required files. This is especially
useful for performing docking-based virtual screening experiments, since a simple molecu-
lar docking simulation executed on AutoDock4.2 [MHL+09] generates approximately 3.15
MB files, varying depending on the ligand size. For instance, an exhaustive docking simu-
lations between the FFR model and a small ligand would produce approximately 60 GB of
input and output files, the majority of which are temporary files. This clearly indicates the
importance of having a database to store essential information from docking results, and
then delete all files produced by the Selective Ensemble Docking sub-workflow during each
docking experiment.

Before presenting the database model and explaining all activities of the sub-
workflows that constitute the e-FReDock conceptual architecture (Figure 5.2), the basic
steps of AutoDock4.2 [MHL+09] are presented, in order to better understand the next sec-
tion of this chapter. This software is used to perform the molecular docking simulations into
the e-FReDock scientific workflow.

5.3.1 AutoDock4.2 Software

AutoDock, a suite of automated docking tools, has been widely used to perform
virtual screening of a huge database of potential ligands against a variety of receptors. It
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has been successfully applied to design new inhibitors or bioactive compounds and, conse-
quently, to improve the RDD efforts. A selection of the most commonly used protein-ligand
docking programs is presented by Sousa et al. [SRC+13]. In their review of analyzing
the protein-receptor docking evolution in the period of 2001-2011, Sousa et al. ranked 53
docking software by number of citations and revealed that AutoDock [MHL+09] is the most
popular docking software used in the academic community. Due to wide acceptance along
with good accuracy and easy access by academic members, AutoDock is the software used
for performing molecular docking simulations in this study [MHL+09].

AutoDock4.2 software contains two executables AutoGrid and AutoDock, which are
responsible for preparing and executing docking experiments. The free energy of binding
(FEB) is estimated by an empirical force-field-based scoring function that incorporates a set
of atom types and charges, and by a stochastic algorithm that generates random conforma-
tions of receptor and ligand [MHL+09]. The four main steps to perform molecular docking
simulations between a target receptor and a ligand with AutoDock4.2 are summarized below.

1. Preparation of ligand and receptor files. In this step, from a coordinate file, generally in
PDB format, it is possible to insert the polar hydrogen atoms, partial charges and atom
types [MHL+09]. Furthermore, the torsion degree can be selected to limit the flexibility
of the ligand. After all configured, a PDBQT file is created for both receptor and ligand.

2. Configuration grid and docking files. After creating ligand and receptor files, the grid
and docking files are prepared. Each file contains parameters that are specified to
execute the third and fourth steps. A grid parameter file (GPF extension) is needed
to run AutoGrid, specifying the grid point spacing, the grid center, and the name of
output files written during the grid calculation [MHL+09]. One of the docking inputs, the
DPF file, contains the parameters to run the search algorithm. The algorithms used
by Autodock4 are Lamarckian Genetic Algorithm (LGA) [MGH+98], Genetic Algorithm
[MGH+98] and Simulated Annealing [GMO96].

3. Autogrid execution. For each atom type present in the ligand being docked (i.e. car-
bon, oxygen, nitrogen and hydrogen), the energy of interaction of this single atom with
the protein is assigned at each grid point [MGH+98]. This step is essential because,
besides the fact that the results of this pre-calculation will be the Autodock input pa-
rameters, it speeds up the docking computations. The grid output files consist of a log
file with grid calculation, information about the coordinates and specifications to create
a grid box. The quantity of grid map files depends on the number of atom types in each
small molecule.

4. Autodock execution. Finally, AutoDock is executed by one of the search methods. The
docked conformations and FEB results are independently generated by the search
algorithm employed to perform a number of receptor and ligand interactions. There
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are several parameters to improve the docking performance. However, different values
can be selected depending on the search approach chosen. Besides specification of
docking calculations, grid maps (step 3) and ligand files (step 1) are also specified
in the input file (DPF extension). At the end of the execution, an output file (DLG
extension) is produced with final docked coordinates, final binding energy values, such
as RMSD and FEB, and other values derived from each evaluation.

LGA is the search algorithm employed in this study do execute the docking ex-
periments. The main limitation of this algorithm is related to time constraints. LGA is the
most efficient search for docking procedure, but depending on the input parameters, such
as ligand structure, number of runs and number of energy evaluations, it can become com-
putationally expensive. For instance, the total time spent for 10 runs of LGA and 300,000
energy evaluations between one snapshot of the FFR model and the TCL ligand, in a i7
CPU with 3.40 GHz and 12 GB RAM, is 40 seconds. This time doubles when the number
of LGA runs and the energy evaluations are 25 and 150,000, respectively. On a practical
level, performing millions of possible protein-ligand interactions using only one physical CPU
is an impracticable task. One of the most intuitive ways to accelerate the execution time of
high-throughput docking experiments is to enhance the computational performance [KFJ14].
Cloud or grid computing or GPUs, for example, are recent technologies that provide powerful
capabilities to facilitate and streamline molecular docking-based virtual screening practices.

5.3.2 MongoDB Storage Component

The MongoDB Storage component is the database created to store and manipulate
data generated during the e-FReDock workflow execution. These data consist of input and
output information from AutoDock4.2 software [MHL+09], and all specifications needed to
execute the method described in Chapter 4. A total of 8 collections were created to conduct
the docking-based virtual screening experiments on e-FReDock scientific workflow. The E-R
based conceptual diagram from the MongoDB database [Cho13] is presented in Figure 5.3,
and a description on its collection is detailed in next subsections.

The only information needed to setup the high-throughput workflow invocations of
the Selective Ensemble Docking sub-workflow are stored into the Config collection. At-
tributes from Config collection are used by the e-SC API component, which controls the
quantity of workflow invocations and the quantity of selected snapshots per batch. Both,
quantProc and aveExpBatch attributes are used by the e-SC API component to avoid that a
large number of snapshots become processed even after their batches have been discarded.
Section 5.3.5 provides more details on this e-SC API operation.
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Figure 5.3 – Database model designed for e-FReDock scientific workflow. The collections
were created to store data docking and control the selective ensemble docking experiments.
Diagram produced with Astah Professional Software Development [Hir16].

5.3.2.1 Clustering Collection

The Clustering collection stores information regarding snapshots from the FFR
model and their clusters. It consists of a attribute to identify each cluster of snapshots
(id_clustering) and two attributes to save cluster and snapshot numbers. The id_atomtype
attribute is the foreign key from Atom_Type Collection, which stores the receptor atom types.
This structure allows storing more than one clustering for the same FFR model and cluster-
ing of new FFR models. Clustering is one of the most important collections for e-FReDock
as, besides providing the ensemble of receptor conformations that will be used to the docking
experiments, it also contains initial specifications to conduct the selective ensemble docking
experiments.

5.3.2.2 Experiment Collection

As mentioned in Chapter 4, an experiment is composed by a clustering of snap-
shots and a ligand. Experiment collection stores every ensemble docking experiments
submitted to the e-FReDock workflow, embodying input parameters needed to prepare
batches of snapshots and analyze their quality. Most attributes from this collection are
used to initialize and control experiments. For instance, perc_snap_batch, min_snap_batch,
max_snap_batch, start_analyses, perc_disc_batch and perc_disc_cluster attributes are up-
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dated only when the experiment is created and used to control the batches execution. Each
experiment also stores the date and time of experiment generation, and information related
to the clustering of snapshots. The cluster_list attribute is an embedded document that
contains the quantity of snapshots within each cluster.

Remaining attributes are updated at experiment runtime. The quantity of snapshots
already processed is computed while the experiment is active by the total_snap_processed
attribute, whereas experiment indexes and status are updated only when the analyses start
to be performed. According to the method specification, experiment indexes should be com-
puted after the end of calibration phase. To control the calibration phase during an ex-
periment, e-FReDock uses calib_status and update_status attributes, where calib_status
indicates an experiment waiting for all batches to reach the percentage to start analyses,
and update_status signalizes when batches and experiment indexes should be computed to
initialize the batch quality analyses.

5.3.2.3 Docking Parameters: Atom_Type and Docking_Conf Collections

All information required to create AutoGrid and AutoDock input files are stored in
the Docking_Conf collection. To store all AutoDock4.2 inputs in one collection, the type
attribute indicates "G" when a document has AutoGrid input parameters and, "D" when a
document has LGA input parameters. Thus, each experiment is related to two documents
of the Docking_Conf collection. A ligand file is taken from the Library Directory on the e-SC
engine when it matches to the ligandFile, which stores the file name in a string attribute.

5.3.2.4 Batch and Batch_History Collections

Once the experiment is created, Batch and Batch History collections save the
batches of snapshots generated by splitting the clustering of snapshots considering ex-
periment input parameters. Batches are identified by sequential numbers starting from 1
to the identifier of each cluster. The quantity of snapshots placed in a batch is stored into
total_snap attribute, whereas the list of snapshots is saved into snapshot_list attribute. This
attribute is an embedded document with the following parameters:

• id_snap: the snapshot integer identification.

• text_snap: the snapshot string identification used to recognize the snapshot file into
the Library Directory.

• status: denotes whether the snapshot has not been processed (0), has selected to be
processed or is been processed by an e-SC engine (1), or has been processed by an
e-SC engine (2).
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Attributes from Batch collection were created according to the method described
in Chapter 4, where priority and status retained the equal name, and batch indexes were
referred to the following attribute names: perc_snap_processed for psi, real_avg for xi, es-
tim_avg for exi, percentil25 for lqi, percentil13 for pi, and minimum for mini. To trace the
changes on batch values during or after e-FReDock experiments, every update makes to
these attributes creates a record into the Batch_History collection. Thus, during or after the
executions all batch progress, including the data and time the attributes were updated, can
be followed and retrieved by querying Batch_History collection.

5.3.2.5 Docking Collection

Crucial docking results are extracted from the AutoDock output file and stored in
Docking collection. Such data include: (i) the best predicted FEB value, which is saved into
the bestFEB attribute and used to update the batch indexes; and (ii) the 3D coordinates
from the best ligand pose, which is saved into the bestPose attribute. The latter allows
users to retrieve a final docking pose and plot it on a molecular graphical visualization tool.
The RMSD_value attribute stores the distance between the ideal ligand position and its final
docking pose when a known ligand position is used as reference. To retrieve the time taken
for each docking experiment, time_dockStart and time_dockEnd attributes record when the
Selective Ensemble Docking sub-workflow starts and ends its execution.

5.3.3 Create Experiment Sub-Workflow

All experiments submitted to run on e-FReDock are created in the Create Experi-
ment sub-workflow. This sub-workflow is responsible for storing and organizing all data into
the database to execute the Selective Ensemble Docking sub-workflow. All collections, ex-
cept for Config and Docking, are updated when a new experiment is added to e-FReDock.
Figure 5.4 displays the set of blocks that were used to design the Create Experiment sub-
workflow. Import File and CSVExport are services from e-SC platform. All other blocks were
developed for the purposes of this study.

The Import File block downloads files in any format from the e-SC file system to
the workflow (Figure 5.4-A). This block was added in the Create Experiment sub-workflow to
download the clustering of snapshots, the ligand, and the receptor files. If a ligand or recep-
tor file is taken from the e-SC Share Library, the Import File block should be disconnected to
the Ligand_Type or Receptor_Type block as shown Figure 5.4-B. In this case, the physical
file name should be set in the parameters to the block corresponding to the file.

The CSVExport block generates a CSV file format from the data sets received in its
input port. The e-SC system allows to provide the name and the folder to place the file into
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the e-SC file system. If no target folder is assigned, e-SC stores the file within the workflow
invocation folder.

Figure 5.4 – Create Experiment sub-workflows designed on the e-SC platform. White arrows
attached to the blocks indicate optional input data, while black arrows are mandatory to start
the block execution. Both sub-workflows insert new ensemble docking experiments to e-
FReDock. The main difference is that sub-workflow (A) adds a new receptor and clustering
of snapshots to the database, while sub-workflow (B) searches for an existing receptor and
clustering of snapshots into the database. The images within blocks indicate the program-
ming language used to write the blocks, where Java is represented by its logo, C is identified
by a black terminal box. Remaining images indicates blocks from e-SC system and they are
used to manipulate input/output files.

Receptor_Type and Ligand_Type blocks were developed to extract atom types from
receptor and ligand PDBQT files. The Receptor_Type block is linked to the NewExperiment
block whether a new receptor is used in the experiment. Figure (Figure 5.4-B) shows the
sub-workflow design to create an experiment when the receptor atom types are taken from
the database through ImportClustering block. Besides extract atom types from the ligand
file, the Ligand_Type block also obtains the number of rotatable bonds. Each block creates
a text file and places it in the output port. Receptor and ligand PDBQT files can be uploaded
from the e-SC file system (Import File block) or from the Library Directory (Figure 5.2).
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The input file with all snapshots and related clusters is read and saved into the
database by using ImportClustering block. This block inserts a new record to the Clustering
collection when the Import File block is linked to it input port; otherwise, an existing clustering
is selected to be used in the experiment. The textitImportClustering output is a file containing
the clustering identification, which should be provided by the user as a block parameter.

When all input ports have data ready to use, the NewExperiment block is invoked
to create a new experiment. This block creates a new record into Experiment, Batch,
Batch_History and DockingConf collections, according to the input parameters provided
by the user (Figures 5.5 and 5.6). Clustering and AtomType collections are updated only
when sub-workflow from Figure5.4-A is executed. All these data stored in the database are
used to execute the Selective Ensemble Docking sub-workflow invocation.

5.3.4 Selective Ensemble Docking Sub-Workflow

The Selective Ensemble Docking sub-workflow, designed to scale onto cloud VMs,
contains a set of blocks for performing molecular docking simulations based on Autodock4.2
features, and measuring the quality of batches of snapshots. Even though this sub-workflow
can be executed through the e-SC interface, we created an external program by using the
e-SC API. The e-SC API is described in more detail in the next section. Basically, it contains
essential functionalities to monitor workflows and send required information to every work-
flow’s blocks. Figure 5.7 shows the Selective Ensemble Docking sub-workflow designed to
run and select the best docking results of FFR models. A total of nine blocks was developed
to execute the selective ensemble docking experiments. The activities executed for each
block are detailed above.

• Load_Receptor block: It downloads the PDBQT snapshot file from the Library Direc-
tory to the workflow invocation folder and generates a TXT file with the atom types from
the receptor. The receptor physical file name and atom types are sent by the e-SC API
as a parameter.

• Load_Ligand block: It downloads the PDBQT ligand file from the Library Directory
to the workflow invocation folder, and generates a text file with the atom types and
number of rotatable bonds from the ligand. The ligand physical file name, atom types
and number of rotatable bonds are sent by the e-SC API as a parameters.

• StartExecution block: It generates a CSV file containing the experiment, cluster, batch
and snapshot identification, and the date and time the experiment starts. All identifica-
tion data are sent by the e-SC API as a parameter.
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Figure 5.5 – Experiment and LGA input parameters from NewExperiment block used to
create new experiments on e-FReDock. Parameters used to controls and analyze batches
of snapshots before and during the experiments, and to configure AutoDock4.2 based on
the LGA are in (A) and (B) interfaces, respectively.

• Prepare_AutoGrid block: It receives the receptor and ligand files through the input port,
and generates a GPF file with the input parameters assigned to the AutoGrid. Autogrid
parameters are taken from the database and sent by the e-SC API as a parameter.
This is step 2 from AutoDock4.2 software (Section 5.3.1).

• Prepare_AutoDock block: It receives the receptor and ligand files through the in-
put port, and generates a DPF file with the input parameters assigned to LGA and
AutoDock. This block has an optional input port to load the ligand reference file.
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Figure 5.6 – AutoGrid and AutoDock input parameters from NewExperiment block used
to create new experiments on e-FReDock. Parameters used to generate AutoGrid and
AutoDock files are in (A) and (B) interfaces, respectively.

Autodock input parameters are taken from the database and sent by the e-SC API
as a parameter. This is step 2 from AutoDock4.2 software (Section 5.3.1).

• AutoGrid block: It receives a GPF file through the input port, and execute AutoGrid
program from AutoDock4.2 toolkit. This is step 3 from AutoDock4.2 software (see
section 5.3.1).

• AutoDock block: It receives a DPF file and all AutoGrid output files through the input
port, and execute AutoDock from AutoDock4.2 toolkit. This is step 4 from AutoDock4.2
software (Section 5.3.1).
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Figure 5.7 – Selective Ensemble Docking sub-workflow designed on the e-SC platform. The
images within blocks indicate the programming language used to write their activities, where
Java is represented by its logo, and C is identified by a black terminal box.

• ReadDocking block: It receives the AutoDock output DLG file, and extracts the best
predicted FEB value along with its 3D coordinates pose and, when applicable, its
RMSD value. This information are saved in two different files: (i) a CSV file with the
data received from StartExection block, the best docking values (FEB and RMSD); and
(ii) a TXT containing the 3D coordinates from the best ligand-receptor pose.

• AnalyseDockExperiment block: It receives the files from StartExection block and con-
nects to the database to insert docking results. This block also updates priority and
status of batches by using the functions created to determine the priority in different
batches of snapshots (Algorithms 4.1 and 4.2). For each docking experiment, the
quantity of processed snapshots (total_snap_processed field) is updated in Experi-
ment collection, and all attributes from Batch collection are also updated. Batch_History
and Docking collections generate a new record, where Batch_History replicates the at-
tributes updated in Batch collection, and Docking stores the information from the input
files.

As described earlier, e-SC system removes all data at the workflow execution sites
when they are no longer needed. To store data into the e-SC file system, workflows need
a file export service, such as the CSVExport block from Create Experiment sub-workflow;
otherwise, all data used and generated by the workflow’s blocks are considered temporary,
and deleted after the end of its execution. We decided to store necessary docking data into
MongoDB database and eliminate all files generated during the Selective Ensemble Docking
sub-workflow execution for two critical reasons: disk space and data transfer overhead.

In this study, the selective Ensemble Docking sub-workflow invocation was per-
formed from the e-SC API. However, it also can be executed through e-SC interface, or by
designing new workflows, such as if one wants to perform a single molecular docking sim-
ulation. By using e-SC services and e-FReDock blocks, users can modify or design new
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docking workflows according to their needs, enacting them from the e-SC interface or via
API.

5.3.5 The e-SC API Component for Handling Selective Ensemble Docking Sub-Workflow
Invocations

The e-SC API is a set of programming instructions and standards that allows devel-
opers to deal with e-SC services and integrate them with existing systems by including a JAR
file into any Java project. It has a set of e-SC components to execute workflow instances on
cloud resource, and manage data files by accessing the e-SC file system. We decided to
use this component because e-SC enactment system is a DAG-based workflow. It means
that e-SC system does not allow to repeat the execution of the workflow blocks, which is a
essential feature to correctly run the method proposed in this study. Hence, the e-SC API
Java client was included in our e-FReDock project to monitor the Selective Ensemble Dock-
ing sub-workflow invocations in a queue of docking tasks. It also selects which snapshots
can be executed based on the processing stage presented in the workflow scheme from
Figure 4.2. In this schema, the two aspects from the experiment that need to be controlled
by the e-SC API are:

1. Calibration status: snapshots from all batches are selected to be executed until the
percentage to start analyses is reached (start_analyses attribute from Experiment col-
lection).

2. Execution status: snapshots from all batches are selected to be executed according
to their status and priority, i.e., snapshots belonging to batches with high priority and
status equal to "A" (active) or "P" (Priority changed) are executed earlier.

Algorithm 5.1 depicts how the Selective Ensemble Docking sub-workflow iterations
were controlled via e-SC API. Most procedures are based on statuses from snapshots,
batches and experiments. These statuses are updated in the database by AnalyseDock-
Experiment block. Status from batches and snapshots are attributes from Batch collection,
while updateStatus is an attribute from Experiment collection. This experiment status is
changed only when the percentage to start analyses is reached by all batches, in which
case batches and experiment indexes are computed, and batches status are changed from
"C" (calibrate) to "A" (active). Each Selective Ensemble Docking sub-workflow invocation is
added into a queue of docking tasks, whose size is stored in the quantProc attribute from
Config collection, according to the number of processors from VMs. The queue of docking
tasks contains a list of invocation identifiers, which are taken after the API runs a workflow.
In addition to the identifier, status and folder are also attributes from the invocation object,
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which is returned to the API and represents a record of the workflow run within the e-SC
system.

1: Let Q be the queue of docking tasks and i its first position;
2: Let W be the workflow invocation within Q;
3: Let S be the status from a snapshot;
4: Let B be the status from a batch;
5: while B is equal to "C", "A", or "P" do
6: Create one Q with quantProc positions;
7: while Q is not empty do
8: Remove W [i] from Q;
9: if W [i] status is equal to Finished or ExecutionError then

10: if W [i] status is equal to Finished then
11: S ← 2;
12: Delete folder from W [i];
13: end if
14: Select a snapshot from a batch;
15: Make a new workflow invocation;
16: Add the new workflow invocation into Q;
17: if W [i] status is equal to ExecutionError then
18: S ← 0;
19: end if
20: if updateStatus from experiment is equal to true then
21: Compute batches and experiment indexes;
22: end if
23: else
24: Add W [i] to Q;
25: end if
26: end while
27: Retrieve Q;
28: end while

Algorithm 5.1 – Algorithm designed to control workflow invocations via e-SC API.

The progress of each workflow invocation is monitored by calling the object invoca-
tion. In this procedure, the workflow engine reports progress back to the main e-SC server
and classifies the workflow as Running, Queued Finished or ExecutionError. Algorithm 5.1
uses the e-SC API to check periodically if a workflow execution is Finished or Execution-
Error to send a new invocation. Further, the experiment is set to rerun when the workflow
execution fails (ExecutionError ) due to some error within one of the workflow blocks, and the
invocation folder is removed when the workflow completes. This latter avoids system delays
and failures caused by many of folders created for each invocation.

Regardless of the selection procedure, whenever a workflow run ends or fails, a
snapshot is selected from the set of active batches considering its priorities. This proce-
dure, performed when line 14 of Algorithm 5.1 is executed, also deals with the problem of
false-positives risk by selecting many or even all snapshots from the same batches at once.
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Towards this end, we restricted the quantity of snapshots being processed by batch with the
following conditions:

• If CalibrationPhase = true and SnapProcessing > 0, then go to the next batch;

• Else if CalibrationPhase = false and BatchPriority ≥ 4 and SnapProcessing >

MaxSnapProcessing, then go to the next batch;

• Else if CalibrationPhase = false and BatchPriority < 4 and SnapProcessing >

(MaxSnapProcessing/2), then go to the next batch;

The qtdProcessing attribute from Batch collection is used and referred above as
SnapProcessing to count the number of snapshots being processed. To control the quan-
tity of docking experiments will be executed in parallel the MaxSnapProcessing parameter
stores the maximum quantity of snapshots. This parameter is taken from the maxDockBatch
attribute in Config collection and may be set by the user before starting the experiment.
In the calibration phase, only one parallel docking execution is allowed per batch, in or-
der to prevent that the percentage of processed snapshots exceeds the percentage to start
the batch analyses. In the execution phase the maximum quantity of parallel executions is
dictated by the priority. By giving more parallel docking executions for the highest priority
batches, we expect to execute less unpromising snapshots.

5.4 General Remarks

The main challenge faced by incorporating an FFR model in docking experiments
is the high computational cost of performing and analyzing each receptor conformation and
ligand interactions. This chapter introduced e-FReDock, the cloud-based scientific workflow
designed to optimize molecular docking simulations of FFR models based on the method
proposed in Chapter 4. The e-SC platform [HWWC13] was the SWfMS chosen to deal with
the high-throughput docking-based virtual screening experiments, where a set of blocks
were developed to prepare and perform a new selective ensemble docking protocol. The set
of workflow components and the MongoDB database scheme presented in this chapter were
developed to address the specifications described by the proposed method in Chapter4. The
four essential components presented in this chapter that make up the e-FReDock are:

1. The Create Experiment sub-workflow. A set of blocks were developed to prepare the
experiments that are submitted to the e-FReDok workflow, where a clustered FFR
model, a PDBQT receptor file, and a PDBQT ligand file are the input data required to
configure a new experiment.
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2. The Selective Ensemble Docking sub-workflow. A set of blocks were developed to
execute docking experiments, analyze docking results, and discard batches of snap-
shots based on the best binding free energies obtained from the snapshots already
processed.

3. A database for the e-FreDock workflow. MongoDB was the NoSQL database chosen
to store input/output data and control data execution. It stores all information generates
from create experiment and selective ensemble docking sub-workflows.

4. The e-SC API Component. It is one of the most important component of the e-
FReDock conceptual architecture. This component contains every procedure required
to scale the selective ensemble docking sub-workflow out onto VMs, monitor the Se-
lective Ensemble Docking sub-workflow invocations, and selects snapshots that are
likely to represent the most promising conformations between an FFR model and a
specific ligand.

Next chapter presents the results obtained by executing e-FReDock on private and
public cloud platforms. It is provided a detailed investigation on the performance gains ob-
tained by reducing the dimensionality of FFR models at docking runtime and executing par-
allel e-FReDock workflow invocation onto a set of VMs. Further, the accuracy of the resulting
RFFR models is also evaluated.
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6. EXPERIMENTAL RESULTS OF e-FReDock ON CLOUD
PLATFORMS

This chapter presents the set of results of this thesis. It begins with an overview of
the cloud platforms used to perform the experiments, focusing on the resources employed to
execute e-FReDock. After, a description is given on the performance evaluation performed to
select the most cost-effective cloud instance setting for executing the docking-based virtual
screening experiments. We divide the experimental results into two distinct scenarios: (i)
execution of e-FReDock for batch docking analyses; and (ii) execution of e-FReDock for
cluster docking analyses. In each scenario, we analyze the differences in performance by
comparing the accuracy reached from the RFFR models produced with the best docking
results obtained when all snapshots of the FFR model and its crystal structure interact with
a set of different ligands. In addition, we analyze the performance gains obtained by using
e-FReDock to optimize molecular docking experiments of FFR models.

6.1 Cloud Computing Platforms

Clouds are currently the most cost effective HPC alternative to considerably im-
prove virtual screening performance. According to D’Agostino et al. [DCQ+13] cloud com-
puting is able to provide clear advantages for small-to-medium laboratories working in the
field of biotechnology, which typically do not have the possibility to invest a sufficient amount
of time and money in creating and maintaining on-site hardware infrastructure. Despite hav-
ing intrinsic security and data transfer limitations, cloud computing has been demonstrated
a more viable option in scientific environments, especially for processing short peaks on
demand [KHB+13, Sul14]. The cloud platforms selected for performing the docking-based
virtual screening were: Microsoft Azure public cloud [AZU16] and Cloud Innovation Centre
(CIC) private cloud [Hor16]. A brief overview of these platforms and services used in this
study are presented below.

6.1.1 Microsoft Azure Cloud

Microsoft Azure is a SaaS solution for computing in public clouds. It provides a
comprehensive collection of propriety development tools and protocols to support develop-
ers in developing, hosting and controlling their application [BYV+09]. Currently, Microsoft
Azure platform offers a variety of services which are classified according to their functionali-
ties, such as computing, database, storage, networking, developer tools and others [AZU16].
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Services from different components can work conjointly or separately, providing more flexi-
bility in the applications developed on the cloud. This study will focus particularly on compute
and blob storage, which are the on demand services assigned to deploy the cloud environ-
ment proposed.

Azure VMs or instances provide IaaS to virtually deploy applications on any lan-
guage and Operating System (OS). These services are billed on a per-minute basis when
the machines are being used. The basic VM configuration includes the following specifica-
tions: virtual hard disk, size and region [AZU16]. A virtual hard disk contains the OS and
data. The user can select a virtual hard disk from Azure gallery, with a variety of OS and
applications, or create its own virtual hard disks and insert it on the gallery. Azure provides
a set of hardware, also called size options, to deploy a VM. The size is classified based
on purposes of processing, where a variety of CPU, RAM and disk size are offered among
different categories. Region is the location where the new VM will be hosted, e.g. Central
US, North Europe, Asia, Brazil, among others. The price is usually dictated by the size and
OS of the VM, but in some cases it is also affected by the region.

A blob, the acronym of Binary Large Object, is one of the data management ser-
vices that stores unstructured object data. This service is useful for storing large amounts
of data at a low cost or to provide a persistent storage by building an operational file system
on an Azure VM. There are two types of blobs: block, and page [AZU16]. Block blobs can
contain up to 195 GB of data distributed in 50,000 blocks of 4 MB each. They are suitable
for storing text and binary files, such as documents and media files. Page blobs can store
up to 1 TB and are commonly used as a data disk or operational system in the VMs due to
their efficiency in frequent read/write operations. Both block and pages are in a container,
which provides a grouping of a set of blobs. The number of blobs that a container can store
and the number of containers that an user account can contain are unlimited. Figure 6.1
illustrates the Azure blob storage structure.

Figure 6.1 – Azure blob storage. Each container consists of one or more pages or block
blobs for storing a collection of binary information [AZU16].
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The Azure storage service provides a geo-replication system to avoid hardware
faults and the loss of critical data [AZU16]. In this process, each blob is transversally repli-
cated in four accessible secondary computers from the same data center region. This step is
performed to ensure access to a secondary computer in case the primary fails. The system
only allows specification of computers from other regions if they are within a distance of 500
kilometers.

The Azure cloud platform was chosen for this study for two main reasons. First,
the performance observed when e-SC server is deployed on Azure instances for scaling
workflow invocations among 200 worker instances [CHWW13]. Second, the deployment of
different cloud environments for performing docking-based virtual screening on the Azure
cloud platform [KBT+14, NMT+15].

6.1.2 CIC Private Cloud

The second cloud platform used to execute the docking-based virtual screening
experiments was CIC, the acronym of Cloud Innovation Center. This private cloud is located
at Newcastle University and built by the School of Computing Science to support cloud
research, staff and students’ mass-scale visualization requirements and third party partners.
CIC private cloud infrastructure is a large visualization platform, consisting of 27 nodes with
20 cores each, resulting in a total of 540 cores and 7,424 GB total RAM memory. The
storage area network uses a 10 Gb Ethernet Storage LAN and 4 nodes with 12 cores, 64
GB RAM and 37 TB storage per node. Furthermore, 3 nodes with 12 cores, 64 GB RAM
and 1.4 TB storage each are used for management purposes. Horizon Dashboard [Hor16]
is the web based user interface for OpenStack Nova services.

The CIC Private Cloud is available for students and staff members from Newcastle
University since January 2016. Its access was granted by the project coordinators for the
sole purpose of running the experiments of this research.

6.2 e-FReDock Performance Analyses on Cloud Virtual Machines

The primary goal of this set of experiments is to assess the e-FReDock perfor-
mance on different Azure VMs located in the North Europe data center, and VMs from the
Private Cloud located at Newcastle University. We executed docking experiments without
discarding snapshots (percentage to start analysis equal to 100%) in order to create a more
scalable system. One VM on each cloud platform was turned into an e-SC server as we exe-
cuted e-FReDock separately. Azure e-SC server was hosted in a Standard D2 VM instance
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(Intel Xeon 2.4 GHz, 7 GB RAM), while CIC e-SC server was hosted in a Large flavor (Intel
Xeon 3 GHz, 8 GB RAM). MongoDB database was hosted in each one of these servers.

6.2.1 Azure Virtual Machines Performance

In an effort to better understand which choices to make regarding price and perfor-
mance of a commercial cloud system used in the e-FReDock scientific workflow, we tested
several instances in the Microsoft Azure cloud. A total of 100 Selective Ensemble Docking
sub-workflow invocations with identical ligand and docking parameters were used to esti-
mate the overall time, cost and efficiency to complete the docking experiments in different
Dv2-series Ubuntu 14.04 instances. This was performed to define a baseline cost, which
could be extended to multi-VM situations. Further, assuming AutoDock program can linearly
scale when using multiple cores, the goal was also to investigate whether AutoDock could
take advantage of larger memory allocations.

In these experiments, the LGA and its parameters were used to execute the molec-
ular docking simulations between the first 100 snapshots from the InhA FFR model [Gar09]
and the TCL ligand from PDB ID 2B35 [STB+06] with 2 rotatable bonds. Twenty-five LGA
independent runs were executed with a maximum of 500,000 energy evaluations. The other
LGA parameters were kept at default values. Table 6.1 lists the different VMs instances we
tested along with their corresponding features and costs. The Dv2-series instances were
used to scale the Selective Ensemble Docking sub-workflow, since they are based on the
2.4 GHz Intel Xeon E5-2673 v3 processor with Intel Turbo Boost Technology 2.0 that can
go up to 3.2 GHz. According to Azure website [AZU16], Dv2-series instances carry more
powerful CPUs which are on average about 35.00% faster than D-series instances for the
same memory and disk configuration.

Table 6.1 – Types of Azure Dv2-series instances used to assess e-FReDock performance.
Instance Name Cores RAM (GB) Disk Size (GB) Price (US$)a

D2 v2 2 7 100 0.14
D3 v2 4 14 200 0.28
D4 v2 8 28 400 0.55
D5 v2 16 56 800 1.11
D11 v2 2 14 100 0.18
D12 v2 4 28 200 0.37
D13 v2 8 56 400 0.74
D14 v2 16 112 800 1.48
a Pricing information from the Azure website as of January 15, 2016 [AZU16].

Figures 6.2 and 6.3 present the observed time and cost to complete the docking
experiments by the number of threads used in each Azure instances. Interestingly, the simi-
lar times for instances with equal number of cores suggest that the amount of RAM does not
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greatly affect the docking simulations completion time, regardless of the number of threads.
The number of cores had the largest impact, with the time to completion reduced by half
as the number of cores exponentially increased. On the contrary, the cost to completion
increased approximately 25.00% between instances with equal number of cores and differ-
ent amount of RAM. As the pricing per instance is proportional to the amount of RAM, it is
reasonable to use the price/core/hr to derive cost estimates for docking experiments. Thus,
the cost to perform an exhaustive docking experiment between the 20,000 snapshots from
the FFR model and the TCL ligand on Azure resources in the conditions above described
is US$ 34.00 for the D12 v2 instance. Without changing the docking parameters, the D3 v2
instance, which has equal number of cores but half amount of RAM, will perform this exper-
iment at the same rate resulting in a cost of approximately US$ 26.00. This analysis clearly
indicates that D11 v2, D12 v2, D13 v2, and D14 v2 instances do not outperform the other
instances with equal number of cores, in spite of higher RAM amounts.
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Figure 6.2 – Comparing the overall processing time of Dv2-2 Azure instances with different
number of threads.

We also observed that running e-FReDock on small VMs (2 or 4 cores) is slightly
more efficient than running the same workload on 16 core VMs. One possible explanation
for this performance loss is the logical isolation, which is a common practice of malicious
users to maximize utilization rate of physical sever [HCAL14]. This behavior can be seen in
Figure 6.4, where the efficiency of e-FReDock shows lowest percentage when the number of
cores is 16. Figure 6.4 also shows that the highest percentages of efficiency were reached
by D2 v2, following by D11 v2, D12 v2, D3 v2, and D4 v2 instances. However, the cost
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Figure 6.3 – Comparing the overall processing cost of Dv2-2 Azure instances with different
number of threads. Price per machine/hour based on Azure website applied to North Europe
region in January 15, 2016 [AZU16].

analyses above described revealed that D11 v2 and D12 v2 were unable to outperform VMs
with equivalent cores. Thus, we decided to execute the e-FReDock workflow in the most
efficient and less costly instances, i.e. D2 v2 and D3 v2 instances.

Cala et al. [CHWW13] demonstrated the high scalability achieved by e-SC system
on the cloud when 200 worker nodes were used for generating Quantitative Structure-Activity
Relationships (QSAR) models. We therefore would like to know if e-FReDock based on e-SC
API is also able to achieve performance gains for the docking-base virtual screening in the
Azure cloud platform. To answer this question, we executed 500 Selective Ensemble Dock-
ing sub-workflow invocations, instead of 100, and evaluated the speedup levels when the
number of LGA runs was 10 and 25. Figure 6.5 presents the behavior of performance gains
according to the number of D2 v2 VMs attached to e-SC server. The D2 v2 instance using 4
threads (i.e. 4 concurrent workflow invocations at the same VM) was chose to perform this
experiment, since it showed the best efficiency when compared with other instances from
Dv2-series (Figure 6.4).

Comparing the speedup of e-FReDock with 10 and 25 LGA runs, it is clear that
e-SC introduces an overhead to manage the distribution of activities when the number of
the Selective Ensemble Docking sub-workflows is configured for 10 LGA independent runs,
and the number of cores increases from 8 to 16 (Figure 6.5). Consequently, some VMs may
remain idle. This happens because the workflow executions in the VMs performed faster
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than the e-SC API workflow calls. We found that e-SC has a native weighted processing cost
associated with workflow invocation procedure, which includes ensuring the communication
among the set of VMs, storing data for provenance and performance, and other system
controls [HWWC13]. For this reason, when we increase the amount of invocations and the
number of available VMs, the algorithm designed to control the workflow invocation in e-SC
API (Algorithm 5.1) tends to require more time to process the workflow invocation. However,
this overhead can be solved when the total time to execute each Selective Ensemble Docking
sub-workflow is approximately 100 seconds, which was achieve when the number of LGA
runs in a docking simulation was 25.

As described in Section 5.3.1, the docking total time execution depends on the
ligand structure, maximum number of evaluations, and the number of LGA runs. The lower
these values, the faster the docking simulation completion time. TCL was chosen to evaluate
the performance analyses in the cloud VMs because it is the smallest molecule used to
screen the FFR model in this study. In addition, all docking experiments were performed
with a maximum of 500,000 energy evaluations and 20 LGA runs. Thus, it is expected that
the time to complete each Selective Ensemble Docking sub-workflow execution will be more
than 100 seconds, avoiding the possibility of overhead, observed in Figure 6.5.

6.2.2 CIC Private Cloud Virtual Machines Performance

CIC private cloud has a small set of flavors with limited hard disk (Table 6.2). Disk
size was the determining factor to select the VM flavors since the Ubuntu 14.04.3 LTS instal-
lation, which is required for e-SC server and engines, takes 7.5 GB from the total disk size.
For this reason, Large was the flavor chosen to evaluate the performance gains and execute
e-FReDock in the CIC cloud platform.

Table 6.2 – Types of virtual machine flavors from CIC private cloud.
Flavor Type Cores RAM Disk Size (GB)
Tiny 1 512 MB 1
Small 1 2 GB 8
Medium 2 4 GB 8
Large 4 8 GB 16

When comparing the processing rates at each cloud resource, it was found that the
efficiency from Large flavor is better than Dv2 series with 4 cores, i.e 97.00% against 88.00%
for D3 v2 and 92.00% for D12 v2. Table 6.3 presents the performance evaluation of the Large
private VM to execute 100 docking experiments employing the same parameters as those
used for assessing the Azure efficiency. The similar times for the Large VM suggest that the
amount of threads does not affect the total docking execution time. Thus, four threads on a
four cores VM seems to be the best option, since it prevent thrashing in operating system, a
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common problem caused when the system spends more time changing the active threads
than running the contents of the threads themselves.

Table 6.3 – Comparative performance of Large CIC cloud VMs according to the number of
threads.

Threads Total Time (Sec) Efficiency (%)
1 5846 100
4 1499 97
8 1496 98

16 1500 97

6.3 The Set of Ligands Used to Screen against the FFR model

The first database used for extraction of ligands was the PDB [BWF+00]. This
database has currently a total of 70 available Mycobacterium tuberculosis InhA crystallo-
graphic structures. Among them, 13 structures were chosen and their ligands were extracted
to perform the experiments on e-FReDock. These ligands were selected for two main rea-
sons. First, only the ligands without the coenzyme as part of their structures were used since
the NADH coenzyme was considered as part of the protein receptor in all snapshots of the
FFR model. Second, this set of ligands has being investigated in Chapters 4 and 3, as well
as in other studies performed by our research group [PdSR+13, DPQRNdS15, DPQR+15,
BQDPB15].

ZINC is the second database used to build the set of ligands [ISM+12]. It is a public
access database of commercially-available compounds for virtual screening. ZINC15, the
current ZINC version, contains 120 million purchasable "drug-like" compounds, of which ap-
proximately 25.00% are commercially available [SI15]. This database was chosen since it
is a free and well-known platform for research tool development. It is clear that perform-
ing virtual screening of 30 million ZINC compounds, specially using FFR models, is an
impracticable task. For this reason, the ranked list of drug candidates of the FFR model
generated by Quevedo [Que16] was used to select the ligands from ZINC database to per-
form the docking-based virtual screening in e-FReDock. Quevedo [Que16] investigated the
same FFR model used in this study and developed a heuristic function to rank databases
of ligands by scoring the most promising InhA drug candidates based on the assessment
of physiochemical properties between the 3D ligand structures and the substrate-binding
cavity from the MD receptor conformations. The result of this study is a list of 957 ligands,
which in turn were sorted by the minimum predicted FEB values obtained from performing
docking experiments into a set of 25 representative structures of the FFR model [Que16].
The first 89 compounds from this list of ranked compounds were selected to conduct the
analysis described in this section.
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6.4 e-FReDock Setup

The e-FReDock setup consists of installing and configuring e-SC system and Mon-
goDB into the server machine, and attaching the VMs to the e-SC server. An Azure blob
storage with 30 GB was used to deploy the e-SC server, and a hard disk with 40 GB was
attached to the e-SC server on the CIC private cloud. After preparing the e-SC environ-
ment, each experiment executed into e-FReDock is created by using Create Experiment
sub-workflow.

As described in Section 5.3.3, the input parameters and files for the method pro-
posed, grid and docking are defined in this sub-workflow. For all experiments, the maximum
number of energy was set to 500,000 and the number of runs was set to 20. The grid box
was centered in the middle coordinates of each ligand with a dimension of 48 X 48 X 44
used for ZINC’s compounds, and customized dimensions were configured from PDB’s lig-
ands. All ligands were treated as flexible during the docking experiments. A PDBQT file
for each snapshot from the FFR model was created before starting the experiments and
placed into the e-SC Share Library. We set the atom types used by AutoDock4.2, added the
Kollman charges and merged all receptor snapshots from the FFR model with the non-polar
hydrogens.

Input parameters related to the method were configured based on the empirical
evaluation described in Chapter 4. We selected a parametrization for each of the two func-
tion proposed: batch analysis and cluster analysis. Both functions were first developed
into the AnalyseDockExperiment block from Selective Ensemble Docking sub-workflow, and
then executed to compare their accuracy in practical experiments. Table 6.4 specifies the
parameters used to run the following scenarios:

• Scenario I: Execution of e-FReDock using the batch analysis function (Algorithm 4.1).

• Scenario II: Execution of e-FReDock using the cluster analysis function (Algorithm 4.2).

Table 6.4 – Set of settings employed to execute e-FReDock on Scenario I and II.
PerSnapBatch MinSnapBatch MaxSnapBatch StartAnalyses PercDiscCluster PercDiscBatch

Scenario I 20.00% 50 150 10.00% - 40.00%
Scenario II 20.00% 50 150 15.00% 20.00% 50.00%

The virtual machines from Azure and CIC cloud platforms, which executed the
workflow invocations, were selected based on the performance analyses presented in Sec-
tion 6.2. We attached 10 D2 v2 Azure VMs into the e-SC server, where each VM was set
to run 4 parallel workflow invocations (4 threads) for Scenario I, and 10 D3 v2 Azure VMs
into the e-SC server with 8 parallel workflow invocations (8 threads) per VM for Scenario
II. These VMs were chosen as they obtained the lowest cost among Dv2-series VMs by
performing 100 docking simulations (Figure 6.3).
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Another contributing factor behind the above choices was the efficiency rate, which
reached 102% when D2 v2 was executed with four threads and 94.00% when D3 v2 was
executed with 8 threads. We also observed that D3 v2 instance with 8 parallel workflow
executions was able to achieve the same e-FReDock efficiency obtained by instances with
higher number of cores (D4 and D12 v2 instances), which in turn presented higher costs to
complete the docking experiments.

We limited the number of VMs to 10 considering two main aspects: cost and
scalability. Before attaching the poll of VMs to the e-SC server, we investigated the best
cost/performance ratio to choose a number of VMs that could fit our initial budget. Based on
the docking parameters used in the performance analyses (Section 6.2), we estimated that
D2v2 would take 16 days and D3 v2 would take 8 days to execute approximately 450,000
molecular docking simulations. Further, we also predicted the amount of experiments that
could be performed based on the empirical tests described in Chapter 4. Considering that
the percentage expectancy to reduce the number of snapshots processed for Scenario I was
50.00% and for Scenario II was 46.00%, it was estimated a total of 46 and 42 experiments for
Scenario I and Scenario II, respectively. Thus, we believe that this quantity of experiments
would be reasonable to validate the method proposed in this study.

The second aspect to consider in order to limit the number of VMs was scalabil-
ity. Even though Figure 6.5 indicates that e-SC for e-FReDock on Azure D2 v2 VMs scales
linearly with the addition of resources when longer molecular docking simulations are exe-
cuted, the overall time to complete every compound screen is unpredictable. Furthermore,
due to time constraints, the scalability of D3 v2 instance was not measured. Thus, it is
uncertain whether the same performance achieved by D2 v2 instances will be obtained by
D3 v2 instance when more than 10 VMs are attached to the e-SC server. Based on this
hypothesis, we opted to use the same number of Large VMs in the CIC private cloud.

6.5 Evaluating e-FReDock Results

The assessment performed on e-FReDock results was divided in two distinct sets
of analyses. The first set compares the predicted FEB and RMSD values from all snapshots
that make up the FFR model and those selected by e-FReDock for different ligands. It
aims to evaluate the binding affinity quality and the accuracy in final docking poses from
the resulting RFFR models. The second set provides an analysis on the advantages of
performing docking experiments in ensemble of MD conformations using e-FReDock. In this
analysis, the minimal FEB values reached by RFFR models produced by different ligands
were compared with those obtained by the FFR model in its rigid structure (PDB ID: 1ENY)
[DQB+95].
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6.5.1 Comparing the Accuracy of e-FReDock Results based on the entire FFR Model

The method proposed in this study aims at reducing the dimensionality of FFR
models during the ensemble docking experiments without losing the most biological rele-
vant information. To validate the accuracy of e-FReDock results, the method proposed is
compared with an ensemble docking at random, composed by a reduced set of snapshots
selected by chance to dock with a specific ligand. Thus, the following hypotheses are ad-
dressed:

• Null Hypothesis: the method does not result in gains.

• Alternative Hypothesis: the method results in gains.

To reject the null hypothesis, the accuracy of e-FReDock results should be higher
than the selective ensemble docking at random, considering the same percentage of pro-
cessed snapshots.

Aiming to compare the estimated accuracy between empirical and practical exper-
iments, we submitted all 20,000 conformations that make up the FFR model and 17 distinct
ligands to execute exhaustive molecular docking simulations. These simulations were per-
formed on e-FReDock, which also allows to disable the quality analyses during docking
runtime by processing 100% of the snapshots from the FFR model. The accuracy of results
obtained from e-FReDock was evaluated by selecting the snapshots which are in the top
10, 20, 30, 100 and 200 best FEB values from the exhaustive ensemble docking results of
each ligand. These assessments are shown in Table 6.5, where 9 known inhibitors of the
InhA enzyme and 8 chemical compounds from ZINC database were used to compare the e-
FReDock accuracy from Scenario I and Scenario II. Ligands from PDB were chosen based
on the empirical results showed in Appendix B. The first 7 best experiments (4PI, GEQ, JPJ,
566, 468, 5PP, 665 and 8PC ligands) in the method’s parametrization chosen to run cluster
analysis function, and the well-known sub-micromolar inhibitor of the InhA enzyme (TCL lig-
and) were the criteria used to select the PDB’s ligands. The set of compounds from ZINC
database was chosen based on the 8 best predicted FEB values obtained from docking
experiments of 25 representative structures from the FFR model performed by [Que16].

Table 6.5 shows that Scenario II outperforms Scenario I regarding the larger num-
ber of promising snapshots selected per ligand. One reason for this performance gains, is
the random selection of snapshots applied to split cluster into batches in Scenario II. Another
relevant aspect that also contributes to the quality improvements in Scenario II is the per-
centage of processed snapshots, which was 3.49% higher when compared with the average
percentage of processed snapshots from all 17 ligands. However, we cannot support this
information based on the average percentage of processed snapshots since e-FReDock as-
sessments vary according to the ligand. For instance, 4PI and 91870997 ligands presented
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Table 6.5 – Accuracy assessments in the e-FReDock scientific workflow for 17 different
ligands.

Scenario I - Batch Analysis Function Scenario II - Cluster Analysis Function

PDB ID Ligand Proc.
Snap. (%)

TOP10
(%)

TOP20
(%)

TOP30
(%)

TOP100
(%)

TOP200
(%)

Proc.
Snap. (%)

TOP10
(%)

TOP20
(%)

TOP30
(%)

TOP100
(%)

TOP200
(%)

2NSD 4PI 53.61 100.00 95.00 86.00 89.00 86.00 48.22 100.00 95.00 96.00 98.00 97.00
1P44 GEQ 48.92 100.00 95.00 93.00 86.00 86.00 49.71 90.00 85.00 83.00 83.00 84.00
3FNH JPJ 47.89 100.00 100.00 100.00 96.00 93.00 50.15 100.00 100.00 96.00 94.00 95.00
2H7I 566 52.33 80.00 90.00 83.00 79.00 78.00 49.75 90.00 95.00 96.00 92.00 90.00
2H7P 468 49.84 90.00 95.00 83.00 82.00 82.00 53.10 100.00 100.00 96.00 89.00 90.00
2H7L 665 50.62 100.00 100.00 100.00 98.00 98.00 53.64 100.00 100.00 96.00 96.00 96.00
3FNE 8PC 52.46 90.00 90.00 90.00 93.00 90.00 52.04 100.00 95.00 93.00 92.00 92.00
2B35 TCL 50.67 80.00 55.00 60.00 75.00 80.00 52.42 80.00 80.00 80.00 87.00 87.00
2B36 5PP 50.97 60.00 70.00 66.00 67.00 73.00 48.51 80.00 75.00 83.00 73.00 77.00

- 91870997 47.23 90.00 90.00 93.00 90.00 86.00 44.88 80.00 80.00 76.00 78.00 77.00
- 35361468 43.79 100.00 90.00 86.00 89.00 86.00 55.73 90.00 90.00 86.00 85.00 82.00
- 12047789 42.64 100.00 100.00 100.00 92.00 88.00 53.75 100.00 90.00 86.00 83.00 81.00
- 56919632 46.33 100.00 100.00 93.00 85.00 84.00 49.81 100.00 95.00 90.00 85.00 86.00
- 63479951 35.30 80.00 75.00 73.00 72.00 74.00 45.69 100.00 100.00 96.00 86.00 84.00
- 4073149 45.45 60.00 65.00 70.00 66.00 64.00 56.14 90.00 80.00 76.00 80.00 79.00
- 39532319 47.03 90.00 90.00 90.00 88.00 85.00 51.44 90.00 90.00 93.00 94.00 93.00
- 34378053 45.03 90.00 90.00 93.00 87.00 84.00 54.65 100.00 100.00 96.00 92.00 92.00

Average - 47.67 88.82 87.65 86.59 84.65 83.82 51.16 93.53 91.18 89.29 87.47 86.76

less percentage of processed snapshots for Scenario II, while their accuracy were kept and
even enhanced when compared with the top best assessments in Scenario I.

Regarding the empirical experiments expectancy, both scenarios outperform ac-
curacy and increase the number of discarded snapshots in practical experiments. While
the average percentage of processed snapshots decreased approximately 2.50% in both
methods, the average percentage of the top best selected snapshots ranges from 83.82%
to 87.65%, and from 93.53% to 86.76% for Scenario I and Scenario II, respectively. These
ranges in empirical experiments was from 73.00% to 77.00%, and from 84.00% to 85.00%
for Scenario I and Scenario II, respectively. It is not surprising that e-FReDock results out-
perform empirical experiments, since most of ligands used to assess the accuracy are struc-
turally different, especially those from ZINC database. Empirical experiments were used as
a baseline accuracy, which may be extended to other method’s parametrization reported in
Appendixes A and B along with the findings presented in Table 6.5.

To validate the accuracy of the resulting RFFR models, we also assessed the
RMSD values from the snapshots selected by e-FReDock for six known ligands of the InhA
enzyme. Figure 6.6 compares the variation in the RMSD values between the FFR model and
the produced RFFR models in Scenario I and Scenario II. As can be seen in the graph from
Figure 6.6, boxplots from Scenario I and II report central tendencies and dispersions lower
than the FFR model. It can therefore assumed that e-FReDock was able to select snap-
shots with the best docking final poses for each ligand, even though the method proposed
to optimize docking-based virtual screening in FFR models is based only on FEB values.

Comparing boxplots from Scenario I and II, Figure 6.6 shows that the difference in
central tendencies and quartiles is minimal. For instance, 2H7L_665 and 2B35_TCL ligands
present their central tendencies lower in Scenario I but their lower quartiles and minimum
values are equals. Furthermore, except for 1P44_GEQ ligand, Scenario II has central ten-
dencies and minimum values lower or equal to Scenario I for all tested ligands. These results
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provide further support for the alternative hypothesis, since the proposed method is able to
select a considerable number of snapshots that contains the best binding affinity as well as
high quality in their docking final poses.

2NSD_4PI    1P44_GEQ      3FNH_JPJ       2H7I_566      2H7P_468     2H7L_665   3FNE_8PC       2B35_TCL         2B36_5PP  
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Figure 6.6 – Comparison between the RMSD values obtained by the FFR model and the
resulting RFFR models for six InhA’s known ligands. Boxplots represent the trends in RMSD
values changes per ligand for Scenario I and II. Values range from the first quartile to the
third with the median RMSD values denoted by the black line across the central box region.
Each set of docking results is represented by different colors, where blue and green are
RMSD values from Scenario I and Scenario II, respectively, and gray is the RMSD values
from the FFR model.

6.5.2 Comparing the Accuracy of e-FReDock Results based on 1ENY Crystal Structure

The second set of analyses aims at assessing the gains/losses obtained by per-
forming molecular docking simulations in an ensemble of dynamic structures, based on the
RFFR models produced by e-FReDock. For this purpose, we compare the minimal FEB
values achieved from the interactions between the tested ligands and the crystal structure
that originates the FFR model, considering the following hypotheses:

• Null Hypothesis: the 1ENY crystal structure reached predicted FEB values better than
the RFFR model.
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• Alternative Hypothesis: the RFFR model reached predicted FEB values better than the
1ENY crystal structure.

If the null hypothesis is rejected, then the selective method to strategically reduce
the number of MD conformations processed during the molecular docking simulations was
able to achieve benefits, which would be unreachable by the rigid version of the FFR model.

A total of 139 experiments were performed in e-SC, 101 for Scenario I and 38 for
Scenario II. The snapshots that reached the best predicted FEB values, along with their
clusters, batches and ligand identifiers are shown in Appendix C. To validate the hypothe-
ses above described, we compared each best FEB value achieved by the interactions be-
tween crystal structure and ligands based on the evaluation method proposed by Quevedo
[Que16]. Quevedo’s method consists of classifying each e-FReDock experiment as follows
[Que16]:

1. RFFR model winner: If the best predicted FEB value reached by the RFFR model
outperforms the best predicted FEB value from the 1ENY structure in more than 1
kcal/mol.

2. Tie for RFFR model: If the best predicted FEB value reached by the RFFR model
outperforms the best predicted FEB value from the 1ENY structure with a difference
equal to or less than 1 kcal/mol.

3. Tie for 1ENY structure: If the best predicted FEB value reached by the 1ENY structure
outperforms the best predicted FEB value from the RFFR model with a difference equal
to or less than 1 kcal/mol.

4. 1ENY structure winner: If the best predicted FEB value reached by the 1ENY struc-
ture outperforms the best predicted FEB value from the RFFR model in more than 1
kcal/mol.

The rate threshold of 1 kcal/mol used to identify the winners is based on the
set of docking experiments performed by Morris et al. [MHL+09] to validate accuracy on
Autodock4.2. They concluded that AutoDock4.2 was able to satisfactorily predict the binding
affinities for about 80.00% of docking results when the final pose and the FEB value vary up
to 2.0 Å and 1 kcal/mol from the crystal structure. Table 6.6 summarizes the results obtained
by executing e-FReDock in both scenarios according to the four categories used in this set
of analysis. Surprisingly, the resulting RFFR models were able to outperform the crystal
structure version of the FFR model for all ligands used in both scenarios. Most of ligands
that showed differences with the crystal structure were extracted from other InhA crystal
structures available at the PDB. We believe this is due to the fact that InhA crystal structures
from ligands used are unable to be reproduced by any MD conformations of the FFR model.
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Table 6.6 – Docking experiment analyses from the RFFR models produced by e-FReDock
and the 1ENY crystal structure with 14 PDB’s ligands and 89 ZINC’s compounds for Scenario
I and II.

Database Total
Ligands

Winner
1ENY

Winner
RFFR Model

Tie for
1ENY Structure

Tie for
RFFR Model

Scenario I PDB 12 0.00% 25.00% 25.00% 50.00%
ZINC 89 0.00% 87.64% 0.00% 12.36%

Scenario II PDB 14 0.00% 21.43% 14.28% 64.29%
ZINC 24 0.00% 87.50% 0.00% 12.50%

Conversely, Table 6.6 indicates that compounds from ZINC database show greater binding
affinities for the FFR model used in this study, even when they are in a case of tie.

In addition to comparing with the 1ENY crystal structure, the four categories used
to classify the e-FReDock results were also employed to compare the quality of the RFFR
models produced in this study and the representative set of snapshots used by Quevedo
[Que16]. Quevedo [Que16] generated a set of 25 representative snapshots from the FFR
model to be docked with 957 compounds from ZINC database. We found that the results
produced by e-FReDock were able to outperform the crystal structure better when compared
to the set of representative structures generated by Quevedo. Table 6.6 indicates that the
percentage of RFFR model winner and tie are 87.64% and 12.36%, while the set of rep-
resentative snapshots from Quevedo for the same categories and compounds tested were
32.00% and 54.00%, respectively (see [Que16]). Further, the 1ENY crystal structure out-
performed the set of representative snapshots in 3.00% of the 89 compounds. By analyzing
the results obtained by Quevedo, we conclude that our solution is capable of reducing the
dimensionality of the FFR model, maintaining a high level of quality in the RFFR models
produced for distinct ligands.

6.6 General Remarks

This section analyzed the results obtained by executing e-FReDock with the func-
tions developed to reduce the size of FFR models without losing relevant biological informa-
tion. We also investigated the performance gains on Azure Dv2-series and CIC Large VMs
by using a small set of snapshots from the FFR model. The best pool of cloud VMs settings
was selected to run the docking-based virtual screening experiments in e-FReDock.

To assess the accuracy of the results obtained from the experiments performed
in this study, we created two different hypotheses based on analyzing the quality of RFFR
models produced. Section 6.5.1 showed that the average reduction in the FFR model size by
executing e-FReDock with 17 different ligands was, on average, 51.16%, while the selection
in the best 10, 20, 30, 100 and 200 receptor-ligand interactions was, on average, in the
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range of 84.65% and 93.53%, where the highest percentages were reached by TOP 10
best docking results. These results reject the null-hypothesis, defined as the method does
not result in gains, since a random selection of 9,976 snapshots (equivalent to the 51.16%)
from the 20 ns InhA MD trajectory would statistically select roughly 50.00% of the best 10,
20, 30, 100 and 200 receptor-ligand interactions from the FFR model. However, Table 6.5
shows that the lowest percentage of the top docking selections by analyzing each experiment
individually was 73.00% for the best 100 interactions between the FFR model and 2B36_5PP
ligand.

Besides investigating the binding affinity achieved by the ligand tested, we also
extracted the RMSD values from the 1ENY’s known ligands to asses the final pose quality.
Based on this analysis, we concluded that, in addition to select the best binding affinity from
the FFR model under study, e-FReDock was also able to select the best docking poses
through the FEB-based selective method proposed in this study.

Section 6.5.2 described the analyses performed to validate the second hypothesis
from e-FReDock results. It verified if the RFFR models produced by e-FReDock were able to
outperform the crystal structure from the FFR model, as well as evaluated the gains achieved
by including flexibility of the 1ENY structure (target receptor) in the docking procedures, even
with only 50.00% of processed snapshots. A total of 102 distinct ligands were executed by
e-FReDock in Scenario I and II. Most of these experiments rejected the null hypothesis,
since the best predicted FEB values achieved from the RFFR models outperformed the best
predicted FEB values achieved from the 1ENY structure. Precisely, 97.00% of the ligands
tested indicated the predicted FEB values from the RFFR models better than 1ENY crystal
structure. We noticed that a high percentage of ligands from PDB presented differences in
the FEB values for the RFFR model and 1ENY structure. This is not surprising, because
even though 75.00% of them outperformed 1ENY structure, these ligands were not selected
from the heuristic function that ranked the most promising InhA drug candidates [Que16],
and they probably establish unfavorable interactions with the FFR model under study.

The e-FReDock scientific workflow generated a total of 1,253,887 Selective En-
semble Docking sub-workflow invocations, among which 440,492 were executed on Azure
cloud platform. In total 292.61 hours were taken for D2 instance (e-SC server), 1,154.74
hours for 10 D2 v2, and 1,360.08 hours for 10 D3 v2 instances (e-SC engines). Even though
D3 v2 instances are more powerful and spent more hours than D2 v2, the amount of work-
flow invocations executed by D3 v2 was only 35,695 more than D2 v2 instances. Table 6.7
depicts the Azure costs regarding the computation and data storage. According to the per-
formance evaluation on Dv2-series Azure instances showed in Section 6.2.1, we estimated
that the cost for executing the same quantity of workflow invocations in D2 v2 and D3 v2 in-
stances would be similar, but D2 v2 instances would take twice the time of D3 v2 instances.
The first reason for this lack of performance in D3 v2 instances was the two VMs failures
faced during the experiments, which executed workflow invocation errors for approximately
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8 hours in one VM and 3 hours in the other. The second reason is related to the fact that dif-
ferent ligands were submitted to Scenario I and Scenario II, with fastest docking performed
on D2 v2 (Scenario I).

Table 6.7 – Cost specification spent to run e-FReDock on Azure cloud platform
Cost Description Price (US$)
e-FReDock Deployment 10.06
e-FReDock Performance Tests 22.16
e-FReDock for Scenario I 360.06
e-FReDock for Scenario II 438.75
Blob Storage 80.51
File Transfer 6.48
Total 918.02
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7. RELATED WORKS

A number of different methods in the literature propose to reduce the overall time
taken for performing docking-based virtual screening. Most of these methods perform dock-
ing experiments with flexible ligands, but rigid receptor. As described in Chapter 2, con-
sidering the flexibility of receptor in docking simulations is still a challenging task. In order
to describe the current works associated with the contributions presented in this study, we
classify them into three topics: .

1. High performance environments to optimize docking-based virtual screening;

2. Approaches to reduce the ensemble of MD conformations for docking simulations;

3. Methods to optimize Molecular Docking Simulations of FFR Models.

7.1 High Performance Environments to Optimize Molecular Docking Simulations

Several computational approaches have focused on reducing the elapsed time
taken to perform virtual screening of small molecules against rigid receptors using High
Performance Computing (HPC) environments, such as computing clusters, grids [FK03],
and clouds [CSSB11, ZWL13, KBT+14, EB14, OBDO+14, NMT+15]. Most of these meth-
ods treat the receptor as rigid bodies to scale up the simulations based on the volume
of compounds to be docked. For instance, Collignon et al. [CSSB11] and Zhang et al.
[ZWL13] enhanced the performance of high-throughput virtual screening executing simul-
taneous docking experiments on a large number of processors from a Linux cluster using
AudoDock4.2 [MHL+09]. Unlike these studies, e-FReDock was developed to execute simul-
taneously AutoDock4.2 in worker nodes from clusters, grids or cloud VMs.

A variety of docking environments deployed on cloud platforms to enhance the
performance of docking simulation of rigid receptors is available. Kiss et al. [KBT+14] per-
formed virtual screening practices by using VMs from Azure cloud platform [AZU16]. They
compared the scalability of docking experiments using 5, 10 and 20 Azure VMs with a grid
structure and analyzed the performance gains achieved in each environment. In a recent
work, Nguyen et al. [NMT+15] proposed a multi-site cloud environment for molecular virtual
screening. They combined small allocations of VMs in multiple locations (Azure WestUS,
University of Florida and University of California) connected through a virtual networking sys-
tem, and compared the differences in performance with the individual cloud sites by running
low accuracy screening (docking completion time of approximately 10 seconds/compound),
using DOCK program [MLP+06]. Ocaña et al. [OBDO+14] also analyzed the performance
gains obtained by scaling large scale receptor-ligand docking experiments out on cloud VMs
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in a different scenario. They developed a docking-based virtual screening workflow and
compared a total of 10,000 receptor-ligand interactions using AutoDock4 and AutoDock Vina
[MHL+09]. Even though all these studies provided advances to facilitate large scale dock-
ing experiments, their environments were developed to analyze rigid receptors. Our study
is focused on the development of an environment that can be deployed on different HPC
environments, in order to optimize docking-based virtual screening of FFR models.

7.2 Approaches to Reduce the Ensemble of MD Conformations

To make feasible the incorporation of protein flexibility in docking experiments,
some studies attempted on reducing the ensemble of MD conformations to a manageable
size generating a small set of representative MD conformations from partitions of MD trajec-
tories [LZ06, HZ07, STTC07, ZCZ+08, LAB+08, LZ12, FTW12]. Such partitions are gener-
ated from clustering methods, which use measure of similarity to group MD conformations.
RMSD values obtained by pairwise or matrix error distances is the most traditional and pop-
ular measure of similarity used by clustering methods. For instance, Lyman and Zuckerman
[LZ06] generated a set of reference structures by enforcing a cutoff radius in RMSD for clus-
ter assignment from biomolecular simulation trajectories of metenkephalin, a pentapeptide
neurotransmitter. Shao et al. [STTC07] make use of several clustering algorithms and two
validity metrics to find the best clustering partition based on the pairwise RMSD values of
small samples from an MD trajectory. Even though the meaningful trajectories cover very
different portions of the conformation space, Shao et al. [STTC07] limited the structural met-
rics by using only a portion of the data, and then the remaining data were added to existing
clusters. However, the RMSD may not be the most appropriate measure of similarity to clus-
ter conformations for docking simulations, since it is influenced by changes that occur on the
whole protein. In contrast to previous studies, which use pairwise RMSD vales as measure
of similarity, we concentrate our efforts on identifying small and localized changes that occur
in the cavity of FFR models. Features from the substrate-binding cavity can play a role in
providing potential ligands to FFR models, and may identify all possible interactions of the
particular ligand with the alternative receptor conformations.

Another approaches to reduce the ensemble of MD conformations for docking sim-
ulations are presented by Flick et al. [FTW12] and Leis and Zacharias [LZ12]. While Flick et
al. [FTW12] confine the protein conformational changes to the relevant flexible sections of
the backbone, Leis and Zacharias [LZ12] represent a flexible receptor by a series of potential
grids, each corresponding to one discrete receptor. Indeed, limiting flexibility regions makes
the problem much more tractable [TA08]. However, depending on the system, methods that
treat only partial protein flexibility may not be sufficient for modeling realistic molecular in-
teractions between ligands and receptors. A different approach to reduce the number of
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receptor conformations is presented by Huang and Zou [HZ07]. They developed a method
to automatically select an optimal structure that contains the best fit with the ligand from an
ensemble of experimental structures based on a SIMPLEX local optimization procedure. Al-
though this method provided satisfactory results, the authors applied an unusual evaluation
methodology, making it a target of criticism [TA08].

7.3 Methods to Reduce the Molecular Docking Simulations of FFR Models

FReDoWS [MSR+11] and wFReDoW [DPFNdSR13] are applications developed in
our research group with the intention of optimizing molecular docking simulations of FFR
models by eliminating poor receptor snapshot and ligand interactions. FReDoWS [MSR+11]
is a scientific workflow that accelerates molecular docking experiments based on docking re-
sults obtained from an exhaustive execution of an FFR-ligand docking simulation. The main
drawbacks of FReDoWS are the time taken to perform a full ensemble docking experiment
for each new ligand, and the serial execution of AutoDock, by which one docking experiment
is processed on one CPU for a given snapshot.

P-SaMI [Hüb10] is also a data pattern for scientific workflows, whose purpose is to
identify cluster of promising snapshots at docking runtime from a clustering of snapshots. It
is the preliminary version of the method proposed in this study (Chapter 4). Hübler [Hüb10]
created and validate the P-SaMI hough empirical tests in a small FFR model with only two
ligands. The deployment of P-SaMI was presented by De Paris et al. [DPFNdSR13] and
Quevedo et al. [QDPRNdS14]. De Paris et al. [DPFNdSR13] developed wFReDoW, the
cloud-based environment to handle molecular docking simulations of FFR models based
on P-SaMI specifications. The main objective of this thesis is similar to wFReDoW ap-
proach: generating RFFR models by discarding clusters of unpromising snapshots at dock-
ing runtime, preserving the quality of the original FFR models. Even though De Paris et
al. [DPFNdSR13] and Quevedo et al. [QDPRNdS14] presented promising RFFR models,
wFReDoW has the following drawbacks:

• It does not perform docking-based virtual screening since only one experiment, which
constitutes docking simulations between an FFR model and a ligand, is allowed to be
executed at a time.

• It is not a scalable solution since it uses the MPI cluster model to execute parallel
docking experiments.

• It requires expert domain skills to provide information about interactions between the
FFR model and a specific ligand.
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• It does not provide a friendly user interface. Input files and system are manually pre-
pared by the user, being thus prone to failures.

The e-FReDock workflow developed in this study is able to address wFReDoW
limitations above described. Besides creating a novel environment to outperform wFRe-
DoW, this study also addresses P-SaMI’s disadvantages by developing an effective method
to perform selective ensemble docking experiments for large number of ligands on cloud
platforms.
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8. FINAL CONSIDERATIONS

With the advances in X-ray crystallography and nuclear magnetic resonance spec-
troscopy, the number of protein structures available in biological databases has been in-
creasing. This encourages the pharmaceutical industry that expects to benefit from the
wealth of data on new targets, and hence produce newer and more efficient drugs [GAG11].
Molecular docking simulations is an integral part of current drug design efforts. The quantity
of docking data has grown due to the amount of putative ligands and several parameters
used for the purpose of truly mimic biological systems in natural environments, especially
those considering the explicitly plasticity and flexibility of receptors and ligands. The major
challenge behind these experiments is to achieve an optimal compromise between satisfac-
tory accuracy and computational effort [BZ10].

This study aimed to make progress on reducing the computational cost involved in
using FFR models to perform practical virtual screening in database of small molecules. For
this purpose, we created e-FReDock, a cloud-based scientific worklfow to optimize inten-
sive molecular docking simulations of FFR models, based on the two questions described
in the Introduction of this thesis. The first question was solved by developing a scientific
workflow, and attaching a set of cloud VMs to it in order to balance the computational ef-
ficiency and prediction accuracy in docking-based virtual screening of FFR models. The
answer to the second question is the free-parameter method described in Chapter 4. This
method was developed to eliminate poor interactions between snapshots of the FFR model
and small molecules to generate RFFR models that best complements the shape of specific
ligands. e-FReDock, which is based on this method, was developed in the e-SC workflow
enactment system [HWWC13] and deployed on two cloud platforms: Microsoft Azure public
cloud [AZU16] and Cloud Innovation Centre (CIC) private cloud [Hor16]. The results are
very promising.

This thesis started by describing the theoretical principles for the understanding
problem at study. Chapter 2 provided explanations on the molecular docking procedure,
the existing approaches for considering the flexibility of receptors, highlighting those used in
this study, and the model used to perform all experiments. This chapter also presented a
brief overview of the main features of scientific workflow, pointing out the four phases of its
life cycle. It ended giving a better comprehension of the features, services and architecture
from cloud computing, used to deploy e-FReDock and run the selective ensemble docking
experiments.

Chapter 3 reported the six clustering methods applied to group snapshots of the
FFR model with similar features in their substrate-binding cavities. To assess the per-
formance gains of this novel measure of similarity, traditional clustering-based RMSD ap-
proaches were also submitted to the two partitioning and four hierarchical clustering algo-
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rithms. The optimal clustering solution was selected by evaluating binding conformations of
drug candidates to the InhA enzyme, performed by cross-docking experiments between the
FFR model and 20 different ligands experimentally tested. Furthermore, they also revealed
that the binding cavity features outperform other two traditional RMSD measures of similarity
in the clustering algorithms applied in this study.

Chapter 4 specified the method developed to discard groups of unpromising snap-
shots at docking runtime based on P-SaMI [HRFNdS15]. The input for this method is a
ligand, the optimal clustering solution from Chapter 3, and a set of method and docking pa-
rameters. The clustering of snapshots is split into small and balanced batches to improve the
analyses of protein-ligand interactions. The set of method parameters contains information
regarding the clusters/batches controls. Unlike P-SaMI data pattern, no specific informa-
tion about interactions between the protein and ligands or previous docking experiments is
required in order to benefit from the proposed method. Our method is able to identify en-
semble of snapshots with proper conformational states to accommodate a particular ligand
without previous information from a domain expert. To prioritize putative hits and select the
better protein-ligand interactions at docking runtime, two distinct analysis functions were pro-
posed: batch and cluster analysis functions. The batch analysis function discards a batch if
its processed snapshots present unsatisfactory FEB values. Alternatively, the cluster analy-
sis function discards a batch if the processed batches belonging to the same cluster present
poor quality in their snapshots. Such functions were validated by performing a set of em-
pirical experiments, from which a set of parameters was chosen to run experiments in the
e-FReDock workflow.

Chapter 5 introduced e-FReDock, the scientific workflow built in the e-SC enact-
ment system [HWWC13] that reduces the computational time involved in using FFR models
to perform practical virtual screening of ligands. It is composed of two sub-workflows: (i)
the Create Experiment, which prepares and insert new docking experiments of FFR mod-
els with different ligands; and (ii) the selective ensemble docking, which executes docking
experiments, analyses docking results, and discards snapshots based on the best binding
free energies for the ligand and snapshots already processed. This chapter also presented
the e-SC API component used to monitor the selective ensemble docking sub-workflow in-
vocations based on batches’s priority and the number of VMs linked to the e-SC system. A
strategic function was created in the e-SC API to give more virtual processors to batches
with high priority (higher than 3), and less to batches with low priority (less or equal to 3).

The experimental results from e-FReDock conceptual architecture were presented
on Chapter 6. First, a sample of snapshots from the FFR model in study was executed
on e-FReDock in Azure and CIC private cloud platforms. The performance results showed
that running e-FReDock on small VMs (2 or 4 cores) is more efficient than performing the
same workload on 16 core VMs. In addition, it was found that the amount of RAM does
not affect the docking simulation completion time. Based on this findings, a set of VMs
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were attached to the e-SC server from each cloud platform in order to scale up selective
ensemble docking workflow invocations. The foremost contribution presented in Chapter 6
is the high accuracy obtained from e-FReDock results when the dimensionality of the model
is reduced by 50.00%. To evaluate the quality of e-FReDock results, two sets of analyses
were presented. The first analysis showed that e-FReDock was able to preserve between
85.00 and 90.00% of the quality of the FFR models, while the dimensionality of the model
reduced on average 49.68%. The second analysis reported that the predicted FEB values
achieved by the resulting RFFR models outperformed the predicted FEB values obtained
from the rigid structure of the FFR model in 97.00% of the ligands tested.

Chapter 7 showed the state of art associated with this study, focusing on the key
contributions this thesis compared to the current works of scientific community.

8.1 Limitations

The generalizability of e-FReDock is subject to certain limitations. For instance,
if a new FFR model is introduced to execute the method proposed, a novel clustering of
snapshots should be investigated and generated. The clustered FFR model used as input
to the e-FReDock was generated by partitioning features from the substrate-binding cavity
of each MD conformation using the complete linkage method. Chapter 3 showed that this
solution was selected by comparing the level of similarity between the medoids from each
partition and the MD’s full trajectory when two traditional RMSD similarity function, and the
cavity attributes were used as input data to six different clustering methods. This study
revealed the high level of accuracy achieved by the partitioning solutions when the features
from substrate-biding cavity of each MD conformation was used as input to the hierarchical
clustering methods (see Figure 3.5). This means that the set of substrate-binding cavity
features is a promising measure of similarity for MD trajectories, and it can be extended to
other protein/receptors. The only constraint is that the binding pocket from the FFR models
should be known in advance.

The quality of the clustering solution is crucial for the proper operation of the method
proposed in Chapter 4. To obtain high quality in the RFFR models produced by e-FReDock,
the clustering methods and the input dataset should group snapshots that are as homo-
geneous as possible. Chapter 6 showed the gains obtained by using e-FReDock with the
optimal clustering solution selected in Chapter 3. However, to obtain similar or greater level
of quality to those achieved in the RFFR models generated in this study, the clustering of
snapshots should present high quality.

Finally, the overhead imposed when fast docking experiments are performed using
more than 8 VMs identified in Chapter 6, Section 6.2.1, is also a current limitation of the
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e-FReDock. A way to improve e-FReDock performance can be the creation of threads of
execution to control the queue of tasks rather than controlling the queue of tasks sequentially.

8.2 Future Works

In addition to the promising results showed in this study, more research is needed
to further reduce the ensemble of snapshots from the RFFR models in a manageable size.
An interesting possibility is to perform a careful analysis on docking results to select a small
set of representative candidate poses of the resulting RFFR models, for example, by using
clustering methods to partition snapshots into groups of dissimilar features. This would avoid
the grunt work of manually selecting the potential ligand poses by the domain expert.

A natural progression of this study is to work on the limitations described in the pre-
vious section. The empirical tests described in Chapter 4, Section 4.4, are used to validate
the method proposed and identify a suitable set of parametrization to execute the selective
ensemble docking experiments. Results and analyses presented in this study are very use-
ful to perform new experiments with the same FFR model. However, further empirical tests
are needed in order to determine a suitable set of parameters when new FFR models are
introduced to e-FReDock. Thus, further studies on methods to automatically create batches
and discard them during docking runtime, instead of depending on a set of parameters,
would add knowledge to the field.

Another direction for future research would be to examine FFR InhA model interac-
tions with a larger number of compounds, particularly those already ranked as drug candi-
dates to the FFR model by Quevedo [Que16]. This can assist in discovering new potential
lead compounds to the InhA enzyme, as well as support the method proposed in this study.

8.3 Publications

Throughout the research carried out during my PhD, I have published conference
and journal papers. Some of them are directly related to this thesis, whereas others are only
indirectly-related to main topic presented.

The following papers refer to the approach I developed and co-developed to the
area of clustering methods for partitioning MD trajectories:

• De Paris, R.; Quevedo, C.V; Ruiz, D.D.; and Norberto de Souza, O. An Effective Ap-
proach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding
Cavity Features. PloS One, 10(7), 1-25, 2015.
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• De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; Norberto de Souza, O.; and Barros, R.C. Clus-
tering Molecular Dynamics Trajectories for Optimizing Docking Experiments. Compu-
tational Intelligence and Neuroscience, 2015.

• Barros, R.C.; Quevedo, C. V.; De Paris, R.; and Basgalupp, M. P. Clustering Molecular
Dynamics Trajectories with a Univariate Estimation of Distribution Algorithm. IEEE
Congress on Evolutionary Computation (CEC), 2058-2065, 2015.

The following paper refers to the preliminary conceptual architecture of e-FReDock:

• De Paris, R.; Ruiz, D. D.; and Norberto de Souza, O. A Cloud-Based Workflow Ap-
proach for Optimizing Molecular Docking Simulations of Fully-Flexible Receptor Mod-
els and Multiple Ligands. IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), 495-498, 2015.

The following papers refer to ensemble docking experiments I performed for two
different clustered FFR models of InhA using wFReDoW:

• Quevedo, C.V.; De Paris, R.; Ruiz, D.D; and Norberto de Souza, O. A Strategic Solu-
tion to Optimize Molecular Docking Simulations Using Fully-Flexible Receptor Models.
Expert Systems with Applications, 41, 7608-7620, 2014.

• De Paris, R.; Frantz, F.A.; Norberto de Souza, O.; and Ruiz, D.D. wFReDoW: A Cloud-
Based Web Environment to Handle Molecular Docking Simulations of a Fully-Flexible
Receptor Model. BioMed research international, 2013.

The following abstract refers to works performed from our research group (Labio
and Gpin) during 10 years:

• Cunha, H.; De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; and Norberto de Souza, O. Recent
Advances in Molecular Docking Experiments of Fully-Flexible Receptor Models. In:
Poster papers of the ISCB-Latin America together with X-Meeting, BSB and SoiBio,
2014.
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APPENDIX A – RESULTS OF THE EMPIRICAL EXPERIMENTS USING
DIFFERENT METHOD’S PARAMETRIZATION FOR THE BATCH

ANALYSIS FUNCTION



158

Percentage
ofthe

best10,20,30
and

100
ligand

and
snapshots

interactions
(TO

P
10,TO

P
20,TO

P
30

and
TO

P
100),and

processed
snapshots

obtained
w

hen
the

docking
analyses

startafter10%
ofsnapshots

have
been

docked.
Ligand

TC
L300

TC
L400

4P
I

665
8P

C
8P

S
468

566
641

5P
P

744
G

E
Q

JP
J

JP
L

JP
M

TC
U

P
D

B
ID

2B
35

1P
45

2N
S

D
2H

7L
3FN

E
2B

37
2H

7P
2H

7I
2H

7M
2B

36
2H

7N
1P

44
3FN

H
3FN

G
3FN

F
2X

22

DB_30

TO
P

10
70.00

60.00
90.00

100.00
70.00

80.00
70.00

100.00
70.00

40.00
40.00

60.00
100.00

70.00
40.00

80.00
TO

P
20

60.00
75.00

80.00
100.00

75.00
90.00

70.00
90.00

70.00
60.00

50.00
65.00

100.00
65.00

30.00
90.00

TO
P

30
66.00

73.00
86.00

100.00
80.00

93.00
70.00

86.00
66.00

53.00
50.00

56.00
100.00

73.00
36.00

90.00
TO

P
100

77.00
64.00

89.00
93.00

80.00
91.00

81.00
81.00

69.00
66.00

59.00
57.00

91.00
74.00

49.00
90.00

P
rocessed

47.00
48.00

48.00
45.00

51.00
48.00

46.00
50.00

47.00
50.00

47.00
44.00

48.00
50.00

48.00
54.00

DB_40

TO
P

10
70.00

60.00
90.00

100.00
70.00

80.00
80.00

100.00
80.00

40.00
40.00

60.00
100.00

80.00
40.00

80.00
TO

P
20

60.00
75.00

80.00
100.00

75.00
90.00

75.00
90.00

75.00
60.00

50.00
65.00

100.00
70.00

35.00
90.00

TO
P

30
66.00

73.00
86.00

100.00
80.00

93.00
73.00

86.00
70.00

56.00
50.00

56.00
100.00

76.00
40.00

93.00
TO

P
100

77.00
65.00

89.00
93.00

80.00
91.00

84.00
81.00

74.00
68.00

59.00
58.00

91.00
77.00

51.00
92.00

P
rocessed

48.00
51.00

49.00
47.00

52.00
49.00

47.00
52.00

49.00
51.00

49.00
46.00

49.00
52.00

52.00
55.00

DB_50

TO
P

10
70.00

60.00
90.00

100.00
70.00

80.00
80.00

100.00
80.00

40.00
40.00

60.00
100.00

80.00
50.00

80.00
TO

P
20

60.00
75.00

80.00
100.00

75.00
90.00

75.00
90.00

75.00
60.00

55.00
65.00

100.00
70.00

50.00
90.00

TO
P

30
70.00

73.00
86.00

100.00
80.00

93.00
73.00

86.00
70.00

60.00
53.00

60.00
100.00

80.00
50.00

93.00
TO

P
100

78.00
67.00

89.00
93.00

80.00
92.00

84.00
82.00

78.00
73.00

64.00
62.00

92.00
81.00

56.00
92.00

P
rocessed

51.00
53.00

51.00
49.00

54.00
51.00

49.00
54.00

52.00
53.00

52.00
50.00

51.00
54.00

55.00
57.00

DB_60

TO
P

10
70.00

60.00
90.00

100.00
70.00

80.00
80.00

100.00
80.00

40.00
40.00

60.00
100.00

80.00
50.00

80.00
TO

P
20

70.00
80.00

80.00
100.00

75.00
90.00

75.00
95.00

75.00
60.00

55.00
65.00

100.00
70.00

50.00
90.00

TO
P

30
76.00

80.00
86.00

100.00
80.00

93.00
76.00

93.00
70.00

60.00
53.00

60.00
100.00

80.00
50.00

93.00
TO

P
100

82.00
69.00

89.00
93.00

80.00
92.00

85.00
87.00

79.00
73.00

65.00
63.00

92.00
81.00

58.00
92.00

P
rocessed

52.00
54.00

53.00
50.00

56.00
52.00

51.00
56.00

54.00
54.00

53.00
52.00

53.00
56.00

56.00
58.00

DB_70

TO
P

10
70.00

70.00
90.00

100.00
70.00

80.00
80.00

100.00
80.00

40.00
40.00

60.00
100.00

80.00
50.00

80.00
TO

P
20

70.00
85.00

80.00
100.00

75.00
90.00

75.00
95.00

75.00
60.00

55.00
65.00

100.00
75.00

50.00
90.00

TO
P

30
76.00

83.00
86.00

100.00
80.00

93.00
76.00

93.00
73.00

63.00
53.00

60.00
100.00

83.00
50.00

93.00
TO

P
100

82.00
73.00

89.00
93.00

81.00
93.00

85.00
87.00

80.00
75.00

65.00
64.00

92.00
83.00

59.00
92.00

P
rocessed

53.00
55.00

54.00
52.00

57.00
53.00

52.00
58.00

56.00
56.00

55.00
54.00

54.00
57.00

58.00
59.00

D
B

=
Percentage

threshold
to

discard
a

batch.



159

Pe
rc

en
ta

ge
of

th
e

be
st

10
,2

0,
30

an
d

10
0

lig
an

d
an

d
sn

ap
sh

ot
s

in
te

ra
ct

io
ns

(T
O

P
10

,T
O

P
20

,T
O

P
30

an
d

TO
P

10
0)

,a
nd

pr
oc

es
se

d
sn

ap
sh

ot
s

ob
ta

in
ed

w
he

n
th

e
do

ck
in

g
an

al
ys

es
st

ar
ta

fte
r1

5%
of

sn
ap

sh
ot

s
ha

ve
be

en
do

ck
ed

.
Li

ga
nd

TC
L3

00
TC

L4
00

4P
I

66
5

8P
C

8P
S

46
8

56
6

64
1

5P
P

74
4

G
E

Q
JP

J
JP

L
JP

M
TC

U
P

D
B

ID
2B

35
1P

45
2N

S
D

2H
7L

3F
N

E
2B

37
2H

7P
2H

7I
2H

7M
2B

36
2H

7N
1P

44
3F

N
H

3F
N

G
3F

N
F

2X
22

DB_30

TO
P

10
70

.0
0

60
.0

0
90

.0
0

10
0.

00
80

.0
0

80
.0

0
70

.0
0

10
0.

00
80

.0
0

60
.0

0
60

.0
0

70
.0

0
10

0.
00

70
.0

0
40

.0
0

80
.0

0
TO

P
20

60
.0

0
75

.0
0

80
.0

0
10

0.
00

80
.0

0
90

.0
0

70
.0

0
95

.0
0

80
.0

0
70

.0
0

65
.0

0
75

.0
0

10
0.

00
65

.0
0

30
.0

0
90

.0
0

TO
P

30
66

.0
0

73
.0

0
86

.0
0

10
0.

00
83

.0
0

93
.0

0
70

.0
0

90
.0

0
76

.0
0

63
.0

0
63

.0
0

70
.0

0
10

0.
00

73
.0

0
36

.0
0

90
.0

0
TO

P
10

0
77

.0
0

64
.0

0
89

.0
0

94
.0

0
84

.0
0

91
.0

0
82

.0
0

85
.0

0
72

.0
0

71
.0

0
67

.0
0

66
.0

0
94

.0
0

74
.0

0
49

.0
0

90
.0

0
P

ro
ce

ss
ed

51
.0

0
51

.0
0

52
.0

0
51

.0
0

53
.0

0
52

.0
0

49
.0

0
53

.0
0

50
.0

0
54

.0
0

50
.0

0
51

.0
0

52
.0

0
54

.0
0

51
.0

0
56

.0
0

DB_40

TO
P

10
70

.0
0

60
.0

0
90

.0
0

10
0.

00
80

.0
0

80
.0

0
80

.0
0

10
0.

00
90

.0
0

60
.0

0
60

.0
0

70
.0

0
10

0.
00

80
.0

0
40

.0
0

80
.0

0
TO

P
20

60
.0

0
75

.0
0

80
.0

0
10

0.
00

80
.0

0
90

.0
0

75
.0

0
95

.0
0

85
.0

0
70

.0
0

65
.0

0
80

.0
0

10
0.

00
70

.0
0

35
.0

0
90

.0
0

TO
P

30
70

.0
0

73
.0

0
86

.0
0

10
0.

00
83

.0
0

93
.0

0
73

.0
0

90
.0

0
80

.0
0

70
.0

0
63

.0
0

73
.0

0
10

0.
00

76
.0

0
40

.0
0

93
.0

0
TO

P
10

0
78

.0
0

66
.0

0
89

.0
0

94
.0

0
84

.0
0

91
.0

0
84

.0
0

85
.0

0
77

.0
0

74
.0

0
68

.0
0

69
.0

0
95

.0
0

79
.0

0
53

.0
0

92
.0

0
P

ro
ce

ss
ed

53
.0

0
54

.0
0

54
.0

0
54

.0
0

55
.0

0
53

.0
0

51
.0

0
55

.0
0

53
.0

0
56

.0
0

53
.0

0
55

.0
0

56
.0

0
58

.0
0

55
.0

0
58

.0
0

DB_50

TO
P

10
70

.0
0

60
.0

0
90

.0
0

10
0.

00
80

.0
0

80
.0

0
80

.0
0

10
0.

00
90

.0
0

60
.0

0
60

.0
0

80
.0

0
10

0.
00

90
.0

0
50

.0
0

80
.0

0
TO

P
20

70
.0

0
75

.0
0

80
.0

0
10

0.
00

80
.0

0
90

.0
0

75
.0

0
95

.0
0

85
.0

0
70

.0
0

70
.0

0
85

.0
0

10
0.

00
75

.0
0

50
.0

0
90

.0
0

TO
P

30
76

.0
0

73
.0

0
86

.0
0

10
0.

00
83

.0
0

93
.0

0
73

.0
0

90
.0

0
80

.0
0

70
.0

0
66

.0
0

76
.0

0
10

0.
00

83
.0

0
50

.0
0

93
.0

0
TO

P
10

0
82

.0
0

67
.0

0
89

.0
0

94
.0

0
84

.0
0

92
.0

0
84

.0
0

86
.0

0
81

.0
0

78
.0

0
73

.0
0

72
.0

0
95

.0
0

84
.0

0
57

.0
0

92
.0

0
P

ro
ce

ss
ed

55
.0

0
56

.0
0

56
.0

0
55

.0
0

56
.0

0
54

.0
0

53
.0

0
57

.0
0

56
.0

0
58

.0
0

55
.0

0
58

.0
0

58
.0

0
60

.0
0

57
.0

0
59

.0
0

DB_60

TO
P

10
70

.0
0

60
.0

0
90

.0
0

10
0.

00
80

.0
0

80
.0

0
80

.0
0

10
0.

00
90

.0
0

60
.0

0
60

.0
0

80
.0

0
10

0.
00

90
.0

0
50

.0
0

80
.0

0
TO

P
20

70
.0

0
80

.0
0

80
.0

0
10

0.
00

80
.0

0
90

.0
0

75
.0

0
10

0.
00

85
.0

0
70

.0
0

70
.0

0
85

.0
0

10
0.

00
75

.0
0

55
.0

0
90

.0
0

TO
P

30
76

.0
0

80
.0

0
86

.0
0

10
0.

00
83

.0
0

93
.0

0
76

.0
0

96
.0

0
80

.0
0

70
.0

0
66

.0
0

76
.0

0
10

0.
00

83
.0

0
53

.0
0

93
.0

0
TO

P
10

0
82

.0
0

69
.0

0
89

.0
0

94
.0

0
84

.0
0

92
.0

0
85

.0
0

91
.0

0
81

.0
0

78
.0

0
73

.0
0

73
.0

0
95

.0
0

84
.0

0
60

.0
0

92
.0

0
P

ro
ce

ss
ed

56
.0

0
57

.0
0

57
.0

0
56

.0
0

58
.0

0
55

.0
0

54
.0

0
59

.0
0

57
.0

0
59

.0
0

57
.0

0
61

.0
0

59
.0

0
61

.0
0

58
.0

0
61

.0
0

DB_70

TO
P

10
70

.0
0

70
.0

0
90

.0
0

10
0.

00
80

.0
0

80
.0

0
80

.0
0

10
0.

00
90

.0
0

70
.0

0
60

.0
0

80
.0

0
10

0.
00

90
.0

0
50

.0
0

80
.0

0
TO

P
20

70
.0

0
85

.0
0

80
.0

0
10

0.
00

80
.0

0
90

.0
0

75
.0

0
10

0.
00

85
.0

0
75

.0
0

70
.0

0
85

.0
0

10
0.

00
80

.0
0

55
.0

0
90

.0
0

TO
P

30
76

.0
0

83
.0

0
86

.0
0

10
0.

00
83

.0
0

93
.0

0
76

.0
0

96
.0

0
83

.0
0

76
.0

0
66

.0
0

76
.0

0
10

0.
00

86
.0

0
53

.0
0

93
.0

0
TO

P
10

0
82

.0
0

74
.0

0
89

.0
0

96
.0

0
85

.0
0

95
.0

0
85

.0
0

91
.0

0
82

.0
0

82
.0

0
74

.0
0

76
.0

0
95

.0
0

86
.0

0
61

.0
0

93
.0

0
P

ro
ce

ss
ed

57
.0

0
59

.0
0

58
.0

0
58

.0
0

59
.0

0
57

.0
0

55
.0

0
61

.0
0

59
.0

0
61

.0
0

59
.0

0
63

.0
0

60
.0

0
63

.0
0

60
.0

0
62

.0
0

D
B

=
Pe

rc
en

ta
ge

th
re

sh
ol

d
to

di
sc

ar
d

a
ba

tc
h.



160

Percentage
ofthe

best10,20,30
and

100
ligand

and
snapshots

interactions
(TO

P
10,TO

P
20,TO

P
30

and
TO

P
100),and

processed
snapshots

obtained
w

hen
the

docking
analyses

startafter20%
ofsnapshots

have
been

docked.
Ligand

TC
L300

TC
L400

4P
I

665
8P

C
8P

S
468

566
641

5P
P

744
G

E
Q

JP
J

JP
L

JP
M

TC
U

P
D

B
ID

2B
35

1P
45

2N
S

D
2H

7L
3FN

E
2B

37
2H

7P
2H

7I
2H

7M
2B

36
2H

7N
1P

44
3FN

H
3FN

G
3FN

F
2X

22

DB_30

TO
P

10
80.00

70.00
100.00

100.00
80.00

80.00
80.00

100.00
80.00

70.00
60.00

70.00
100.00

70.00
50.00

80.00
TO

P
20

70.00
80.00

90.00
100.00

80.00
90.00

85.00
90.00

80.00
75.00

70.00
85.00

100.00
65.00

35.00
90.00

TO
P

30
76.00

76.00
93.00

100.00
83.00

93.00
83.00

86.00
80.00

70.00
66.00

80.00
100.00

73.00
43.00

90.00
TO

P
100

82.00
69.00

93.00
94.00

85.00
91.00

87.00
83.00

75.00
74.00

70.00
71.00

97.00
77.00

54.00
89.00

P
rocessed

54.00
57.00

56.00
55.00

55.00
55.00

52.00
53.00

53.00
56.00

54.00
54.00

57.00
58.00

57.00
58.00

DB_40

TO
P

10
80.00

70.00
100.00

100.00
80.00

80.00
90.00

100.00
90.00

70.00
60.00

70.00
100.00

80.00
50.00

80.00
TO

P
20

70.00
80.00

90.00
100.00

80.00
90.00

90.00
95.00

85.00
75.00

70.00
85.00

100.00
70.00

40.00
90.00

TO
P

30
80.00

76.00
93.00

100.00
83.00

93.00
86.00

90.00
83.00

73.00
70.00

80.00
100.00

76.00
46.00

93.00
TO

P
100

83.00
70.00

93.00
94.00

85.00
92.00

89.00
85.00

83.00
76.00

71.00
74.00

97.00
82.00

60.00
91.00

P
rocessed

56.00
60.00

58.00
58.00

58.00
56.00

54.00
56.00

57.00
58.00

56.00
58.00

59.00
61.00

60.00
59.00

DB_50

TO
P

10
80.00

70.00
100.00

100.00
80.00

80.00
90.00

100.00
90.00

70.00
60.00

80.00
100.00

80.00
70.00

80.00
TO

P
20

70.00
80.00

90.00
100.00

80.00
90.00

90.00
95.00

85.00
75.00

75.00
90.00

100.00
70.00

65.00
90.00

TO
P

30
80.00

76.00
93.00

100.00
83.00

93.00
86.00

90.00
83.00

73.00
73.00

83.00
100.00

80.00
66.00

93.00
TO

P
100

83.00
71.00

93.00
94.00

85.00
92.00

89.00
88.00

85.00
80.00

76.00
79.00

97.00
86.00

69.00
91.00

P
rocessed

57.00
61.00

59.00
60.00

59.00
59.00

55.00
59.00

60.00
60.00

59.00
61.00

61.00
62.00

62.00
61.00

DB_60

TO
P

10
80.00

70.00
100.00

100.00
80.00

80.00
90.00

100.00
90.00

70.00
60.00

80.00
100.00

80.00
70.00

80.00
TO

P
20

80.00
85.00

90.00
100.00

80.00
90.00

90.00
95.00

85.00
75.00

75.00
90.00

100.00
70.00

70.00
90.00

TO
P

30
86.00

86.00
93.00

100.00
83.00

93.00
90.00

90.00
83.00

73.00
73.00

83.00
100.00

80.00
70.00

93.00
TO

P
100

87.00
74.00

93.00
96.00

85.00
92.00

90.00
88.00

85.00
80.00

77.00
80.00

97.00
86.00

74.00
92.00

P
rocessed

59.00
62.00

61.00
62.00

61.00
60.00

57.00
61.00

62.00
61.00

61.00
64.00

63.00
64.00

64.00
62.00

DB_70

TO
P

10
80.00

80.00
100.00

100.00
80.00

80.00
90.00

100.00
90.00

70.00
60.00

80.00
100.00

80.00
70.00

80.00
TO

P
20

80.00
90.00

90.00
100.00

80.00
90.00

90.00
95.00

85.00
75.00

75.00
90.00

100.00
75.00

70.00
90.00

TO
P

30
86.00

90.00
93.00

100.00
83.00

93.00
90.00

90.00
86.00

76.00
73.00

83.00
100.00

83.00
70.00

93.00
TO

P
100

87.00
76.00

93.00
96.00

86.00
95.00

90.00
88.00

86.00
83.00

77.00
82.00

97.00
88.00

74.00
93.00

P
rocessed

60.00
63.00

61.00
63.00

62.00
61.00

58.00
62.00

64.00
62.00

62.00
65.00

64.00
65.00

66.00
63.00

D
B

=
Percentage

threshold
to

discard
a

batch.



161

APPENDIX B – RESULTS OF THE EMPIRICAL EXPERIMENTS USING
DIFFERENT METHOD’S PARAMETRIZATION FOR THE CLUSTER

ANALYSIS FUNCTION
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86.15

88.10
90.65

95.65
85.50

77.50
91.30

P
rocessed

62.25
61.40

57.45
60.60

64.50
62.90

61.90
61.80

66.05
62.85

59.95
68.95

61.85
66.35

70.35
65.60

D
C

=
Percentage

threshold
to

discard
a

cluster.
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APPENDIX C – E-FREDOCK RESULTS
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Best FEB values from the tested ligands along
with their cluster and batch identifications for the batch and cluster analysis functions - Part I.

ANALYSIS BATCH FUNCTION ANALYSIS CLUSTER FUNCTION

Ligand Database 1ENY
FEB

Id
Snap.

Id
Batch

Id
Cluster

Best
FEB

Proc.
Snap. (%)

Id
Snap.

Id
Batch

Id
Cluster

Best
FEB

Proc.
Snap. (%)

34378053 ZINC -9.61 8625 9 10 -12.33 45.03 8625 2 10 -12.33 54.65
1P44_GEQ PDB -10.70 629 1 9 -12.21 48.92 629 5 9 -12.21 49.71
12047789 ZINC -10.57 855 2 2 -12.13 42.64 855 6 2 -12.13 53.75
35361468 ZINC -10.39 15889 1 36 -11.91 43.79 15889 1 36 -11.91 55.73
56919632 ZINC -7.51 1043 2 3 -11.89 46.33 1043 2 3 -11.89 49.81
11871395 ZINC -9.81 920 2 1 -11.79 43.82 920 4 1 -11.79 53.30
34378052 ZINC -10.80 6525 6 10 -11.56 42.18 6525 2 10 -11.56 53.81
23360796 ZINC -8.92 18107 2 46 -11.50 41.48 18107 1 46 -11.50 56.22
65298323 ZINC -9.88 19497 2 39 -11.38 35.53 19497 2 39 -11.38 43.49
2H7I_566 PDB -8.90 19888 5 11 -11.33 52.56 19888 2 11 -11.33 49.75
9251152 ZINC -9.46 1319 3 1 -11.05 39.10 1319 2 1 -11.05 44.57
20027278 ZINC -7.91 17810 6 13 -11.08 41.64 15870 1 32 -11.03 45.67
63479935 ZINC -8.56 18465 3 36 -11.46 35.06 17216 4 32 -10.95 45.69
63479951 ZINC -9.60 17216 9 32 -10.95 35.50 17216 2 32 -10.95 32.21
90914428 ZINC -8.82 17760 6 45 -10.90 43.37 17760 8 45 -10.90 49.06
63349859 ZINC -9.92 664 1 1 -11.49 44.25 19846 2 2 -10.84 47.24
53364786 ZINC -8.32 19214 2 39 -11.00 41.11 18156 2 39 -10.83 32.95
1456628 ZINC -8.26 1047 2 3 -10.78 45.21 1047 2 3 -10.78 51.84
3FNH_JPJ PDB -9.90 8483 8 10 -9.63 47.89 15817 1 41 -10.74 47.49
2NSD_4PI PDB -10.20 1390 2 3 -10.56 53.61 1390 2 3 -10.56 48.22
4073149 ZINC -8.57 17778 2 46 -10.16 45.45 16649 2 41 -10.53 56.14
91870997 ZINC -8.50 17618 2 46 -10.68 47.23 17779 3 36 -10.46 44.88
63503064 ZINC -8.40 17613 2 41 -10.45 42.09 17613 1 41 -10.45 50.48
36676865 ZINC -8.87 1038 2 3 -10.44 45.33 1038 2 3 -10.44 52.52
2347739 ZINC -8.40 18445 8 13 -10.41 39.88 18445 4 13 -10.41 50.21
63738775 ZINC -8.26 978 1 11 -10.52 45.40 979 2 3 -10.35 49.51
9197776 ZINC -9.32 16715 6 32 -10.32 43.89 16715 7 32 -10.32 52.57
39532319 ZINC -8.18 15837 2 32 -10.25 47.03 15837 11 32 -10.25 51.44
2H7M_641 PDB -9.10 4257 3 10 -10.11 47.75 4257 8 10 -10.11 48.99
2H7L_665 PDB -9.70 2539 2 4 -9.91 50.62 2539 3 4 -10.06 53.64
17243209 ZINC -8.20 17935 6 18 -9.87 39.96 18715 10 32 -9.79 47.99
2H7P_468 PDB -9.00 920 2 1 -9.62 49.84 15824 2 32 -9.75 53.10
11074320 ZINC -7.97 1056 1 16 -10.38 40.34 16084 4 45 -9.74 50.15
3FNE_8PC PDB -9.60 1374 1 7 -9.71 52.46 1374 1 7 -9.71 52.04
2H7N_744 PDB -9.00 3636 2 10 -9.52 50.65 3636 4 10 -9.52 49.66
2B36_5PP PDB -8.90 1377 4 1 -9.05 50.97 4499 16 10 -9.11 48.51
2B37_8PS PDB -8.80 546 1 1 -8.70 49.72 1299 2 1 -8.86 49.19
2B35_TCL300 PDB -8.50 5584 1 26 -8.47 50.67 5584 1 26 -8.47 52.42
1P45_TCL400 PDB 5584 1 26 -8.45 52.52
2911927 ZINC -9.50 18046 8 45 -10.53 37.04
2924572 ZINC -9.27 19207 2 45 -11.35 39.86
4335232 ZINC -7.97 15816 2 32 -10.31 44.86
5200961 ZINC -8.57 18720 3 43 -10.93 39.55
6144048 ZINC -9.53 1131 3 1 -10.80 46.06
6648224 ZINC -8.42 16117 2 45 -10.80 44.69
8323837 ZINC -8.19 1034 2 3 -11.10 43.54
8971422 ZINC -8.06 15870 2 32 -10.73 45.15
9130690 ZINC -8.54 1086 1 15 -11.07 45.93
9130701 ZINC -8.43 1043 2 3 -10.25 45.71
9197790 ZINC -9.38 16386 6 18 -10.36 42.19
9197821 ZINC -9.11 16386 6 18 -10.21 42.35
9409766 ZINC -8.51 17110 8 32 -10.05 40.57
9522091 ZINC -8.66 863 1 4 -10.63 45.56
11783975 ZINC -7.74 16392 4 32 -10.53 41.18
14989185 ZINC -8.47 3745 1 13 -10.19 46.13
15038988 ZINC -8.11 1319 3 1 -10.32 45.65
19336692 ZINC -7.73 4551 5 10 -9.70 40.93
20285686 ZINC -9.09 16692 6 32 -10.62 40.81
20753806 ZINC -9.47 18076 6 18 -10.12 38.13
20836860 ZINC -9.03 1034 2 3 -10.16 45.79
24000894 ZINC -8.50 1034 2 3 -10.28 42.77
25286217 ZINC -10.08 898 2 1 -11.47 47.10
31165497 ZINC -7.18 934 2 1 -10.23 44.90
35727540 ZINC -9.12 877 2 1 -11.27 42.32
38570167 ZINC -8.82 1036 2 3 -11.25 47.10
39445440 ZINC -7.85 4205 3 10 -9.92 45.57
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Best FEB values from the tested ligands along with their cluster and batch identifications for
the batch and cluster analysis functions - Part II.

ANALYSIS BATCH FUNCTION ANALYSIS CLUSTER FUNCTION

Ligand Database 1ENY
FEB

Id
Snap.

Id
Batch

Id
Cluster

Best
FEB

Proc.
Snap. (%)

Id
Snap.

Id
Batch

Id
Cluster

Best
FEB

Proc.
Snap. (%)

39923320 ZINC -8.25 15840 2 32 -11.80 42.05
40266184 ZINC -8.67 979 1 3 -10.31 40.79
41584148 ZINC -8.72 3909 1 26 -9.97 42.38
41584155 ZINC -8.11 18031 6 13 -9.38 44.88
41584161 ZINC -7.99 18042 8 45 -9.93 41.86
41584170 ZINC -7.94 18042 8 45 -9.61 44.52
41584175 ZINC -8.11 3870 4 15 -9.48 44.47
63234429 ZINC -7.12 18532 2 43 -8.59 52.08
63234437 ZINC -7.00 6508 6 10 -8.22 51.94
63362881 ZINC -9.71 19023 3 14 -10.71 38.36
63576270 ZINC -7.00 18086 6 18 -8.39 53.77
63772586 ZINC -7.46 17778 2 46 -8.59 51.05
63948238 ZINC -7.00 920 2 1 -8.56 54.44
64002358 ZINC -9.48 5119 4 2 -10.48 41.69
64019380 ZINC -6.95 1034 2 3 -8.33 54.49
64040264 ZINC -8.27 8722 9 10 -9.67 44.41
64040549 ZINC -8.39 15550 1 32 -10.42 44.19
64057877 ZINC -8.12 1035 3 1 -10.75 45.66
64074412 ZINC -8.17 1035 3 1 -10.55 46.62
64074451 ZINC -8.51 934 2 1 -10.64 46.89
64103060 ZINC -8.19 1034 2 3 -10.70 46.41
64604357 ZINC -7.96 1061 2 3 -9.76 47.50
64625806 ZINC -8.67 19224 2 39 -9.58 44.73
64626041 ZINC -7.80 2903 2 5 -10.04 44.14
64889693 ZINC -9.31 2080 1 11 -11.15 43.07
64889694 ZINC -9.07 2080 1 11 -11.18 43.09
65298175 ZINC -9.59 19088 3 31 -10.46 39.48
65298319 ZINC -9.97 19009 6 30 -11.03 40.00
67641394 ZINC -9.11 19942 5 11 -10.08 44.98
70656077 ZINC -7.67 946 1 6 -11.84 49.46
72047160 ZINC -8.29 1043 2 3 -11.00 46.02
89608939 ZINC -10.41 886 1 6 -11.49 43.58
90185596 ZINC -9.10 7921 7 10 -10.18 45.59
93933985 ZINC -6.50 17803 3 41 -8.10 39.54
94621875 ZINC -7.46 18720 3 43 -8.91 52.22
94621892 ZINC -7.76 19857 7 14 -10.28 46.04




